This continues the work that was started in r342313, which now gets applied to
object-under-construction tracking in C++. Makes it possible to debug
temporaries by dumping exploded graphs again.
Differential Revision: https://reviews.llvm.org/D54459
llvm-svn: 348200
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
In earlier patches regarding AnalyzerOptions, a lot of effort went into
gathering all config options, and changing the interface so that potential
misuse can be eliminited.
Up until this point, AnalyzerOptions only evaluated an option when it was
querried. For example, if we had a "-no-false-positives" flag, AnalyzerOptions
would store an Optional field for it that would be None up until somewhere in
the code until the flag's getter function is called.
However, now that we're confident that we've gathered all configs, we can
evaluate off of them before analysis, so we can emit a error on invalid input
even if that prticular flag will not matter in that particular run of the
analyzer. Another very big benefit of this is that debug.ConfigDumper will now
show the value of all configs every single time.
Also, almost all options related class have a similar interface, so uniformity
is also a benefit.
The implementation for errors on invalid input will be commited shorty.
Differential Revision: https://reviews.llvm.org/D53692
llvm-svn: 348031
From what I can see, this should be the last patch needed to replicate macro
argument expansions.
Differential Revision: https://reviews.llvm.org/D52988
llvm-svn: 348025
During the review of D41938 a condition check with an early exit accidentally
slipped into a branch, leaving the other branch unprotected. This may result in
an assertion later on. This hotfix moves this contition check outside of the
branch.
Differential Revision: https://reviews.llvm.org/D55051
llvm-svn: 347981
It's an old bug that consists in stale references to symbols remaining in the
GDM if they disappear from other program state sections as a result of any
operation that isn't the actual dead symbol collection. The most common example
here is:
FILE *fp = fopen("myfile.txt", "w");
fp = 0; // leak of file descriptor
In this example the leak were not detected previously because the symbol
disappears from the public part of the program state due to evaluating
the assignment. For that reason the checker never receives a notification
that the symbol is dead, and never reports a leak.
This patch not only causes leak false negatives, but also a number of other
problems, including false positives on some checkers.
What's worse, even though the program state contains a finite number of symbols,
the set of symbols that dies is potentially infinite. This means that is
impossible to compute the set of all dead symbols to pass off to the checkers
for cleaning up their part of the GDM.
No longer compute the dead set at all. Disallow iterating over dead symbols.
Disallow querying if any symbols are dead. Remove the API for marking symbols
as dead, as it is no longer necessary. Update checkers accordingly.
Differential Revision: https://reviews.llvm.org/D18860
llvm-svn: 347953
The "free" call frees the object immediately, ignoring the reference count.
Sadly, it is actually used in a few places, so we need to model it.
Differential Revision: https://reviews.llvm.org/D55092
llvm-svn: 347950
Summary: Left only the constructors that are actually required, and marked the move constructors as deleted. They are not used anymore and we were never sure they've actually worked correctly.
Reviewers: george.karpenkov, NoQ
Reviewed By: george.karpenkov
Subscribers: xazax.hun, baloghadamsoftware, szepet, a.sidorin, Szelethus, donat.nagy, dkrupp
Differential Revision: https://reviews.llvm.org/D54974
llvm-svn: 347777
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Summary:
A __builtin_constant_p may end up with a constant after inlining. Use
the is.constant intrinsic if it's a variable that's in a context where
it may resolve to a constant, e.g., an argument to a function after
inlining.
Reviewers: rsmith, shafik
Subscribers: jfb, kristina, cfe-commits, nickdesaulniers, jyknight
Differential Revision: https://reviews.llvm.org/D54355
llvm-svn: 347294
CheckerOptInfo feels very much out of place in CheckerRegistration.cpp, so I
moved it to CheckerRegistry.h.
Differential Revision: https://reviews.llvm.org/D54397
llvm-svn: 347157
With z3-4.8.1:
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: error:
'Z3_get_error_msg_ex' was not declared in this scope
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: note:
suggested alternative: 'Z3_get_error_msg'
Formerly used Z3_get_error_msg_ex() as one could find in z3-4.7.1 states:
"Retained function name for backwards compatibility within v4.1"
And it is implemented only as a forwarding call:
return Z3_get_error_msg(c, err);
Differential Revision: https://reviews.llvm.org/D54391
llvm-svn: 346635
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
One of the reasons why AnalyzerOptions is so chaotic is that options can be
retrieved from the command line whenever and wherever. This allowed for some
options to be forgotten for a looooooong time. Have you ever heard of
"region-store-small-struct-limit"? In order to prevent this in the future, I'm
proposing to restrict AnalyzerOptions' interface so that only checker options
can be retrieved without special getters. I would like to make every option be
accessible only through a getter, but checkers from plugins are a thing, so I'll
have to figure something out for that.
This also forces developers who'd like to add a new option to register it
properly in the .def file.
This is done by
* making the third checker pointer parameter non-optional, and checked by an
assert to be non-null.
* I added new, but private non-checkers option initializers, meant only for
internal use,
* Renamed these methods accordingly (mind the consistent name for once with
getBooleanOption!):
- getOptionAsString -> getCheckerStringOption,
- getOptionAsInteger -> getCheckerIntegerOption
* The 3 functions meant for initializing data members (with the not very
descriptive getBooleanOption, getOptionAsString and getOptionAsUInt names)
were renamed to be overloads of the getAndInitOption function name.
* All options were in some way retrieved via getCheckerOption. I removed it, and
moved the logic to getStringOption and getCheckerStringOption. This did cause
some code duplication, but that's the only way I could do it, now that checker
and non-checker options are separated. Note that the non-checker version
inserts the new option to the ConfigTable with the default value, but the
checker version only attempts to find already existing entries. This is how
it always worked, but this is clunky and I might end reworking that too, so we
can eventually get a ConfigTable that contains the entire configuration of the
analyzer.
Differential Revision: https://reviews.llvm.org/D53483
llvm-svn: 346113
Windows buildbots break with the previous commit '[analyzer][PlistMacroExpansion]
Part 2.: Retrieving the macro name and primitive expansion'. This patch attempts
to solve this issue.
llvm-svn: 346112
This patch adds a couple new functions to acquire the macro's name, and also
expands it, although it doesn't expand the arguments, as seen from the test files
Differential Revision: https://reviews.llvm.org/D52794
llvm-svn: 346095
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from the
command line, and be able to list them all.
In this patch, I'm moving all analyzer options to a def file, and move 2 enums
to global namespace.
Differential Revision: https://reviews.llvm.org/D53277
llvm-svn: 345986
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from
the command line, and be able to list them all.
In this patch, I found some flags that should've been used as checker options,
or have absolutely no mention of in AnalyzerOptions, or are nonexistent.
- NonLocalizedStringChecker now uses its "AggressiveReport" flag as a checker
option
- lib/StaticAnalyzer/Frontend/ModelInjector.cpp now accesses the "model-path"
option through a getter in AnalyzerOptions
- -analyzer-config path-diagnostics-alternate=false is not a thing, I removed it,
- lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp and
lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h are weird, they actually
only contain an option getter. I deleted them, and fixed RetainCountChecker
to get it's "leak-diagnostics-reference-allocation" option as a checker option,
- "region-store-small-struct-limit" has a proper getter now.
Differential Revision: https://reviews.llvm.org/D53276
llvm-svn: 345985
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
SARIF allows you to export descriptions about rules that are present in the SARIF log. Expose the help text table generated into Checkers.inc as the rule's "full description" and export all of the rules present in the analysis output. This information is useful for analysis result viewers like CodeSonar.
llvm-svn: 345874
This removes the Step property (which can be calculated by consumers trivially), and updates the schema and version numbers accordingly.
llvm-svn: 345823
Trusting summaries of inlined code would require a more thorough work,
as the current approach was causing too many false positives, as the new
example in test. The culprit lies in the fact that we currently escape
all variables written into a field (but not passed off to unknown
functions!), which can result in inconsistent behavior.
rdar://45655344
Differential Revision: https://reviews.llvm.org/D53902
llvm-svn: 345746
This is the first part of the implementation of the inclusion of macro
expansions into the plist output. It adds a new flag that adds a new
"macro_expansions" entry to each report that has PathDiagnosticPieces that were
expanded from a macro. While there's an entry for each macro expansion, both
the name of the macro and what it expands to is missing, and will be implemented
in followup patches.
Differential Revision: https://reviews.llvm.org/D52742
llvm-svn: 345724
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
This allows users to specify SARIF (https://github.com/oasis-tcs/sarif-spec) as the output from the clang static analyzer so that the results can be read in by other tools, such as extensions to Visual Studio and VSCode, as well as static analyzers like CodeSonar.
llvm-svn: 345628
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
This has been a long time coming. Note the usage of AnalyzerOptions: I'll need
it for D52742, and added it in rC343620. The main motivation for this was that
I'll need to add yet another parameter to every single function, and some
functions would reach their 10th parameter with that change.
llvm-svn: 345531
Nodes which have only one predecessor and only one successor can not
always be hidden, even if all states are the same.
An additional condition is needed: the predecessor may have only one successor.
This can be seen on this example:
```
A
/ \
B C
\ /
D
```
Nodes B and C can not be hidden even if all nodes in the graph have the
same state.
Differential Revision: https://reviews.llvm.org/D53735
llvm-svn: 345341
Previously, OSDynamicCast was modeled as an identity.
This is not correct: the output of OSDynamicCast may be zero even if the
input was not zero (if the class is not of desired type), and thus the
modeling led to false positives.
Instead, we are doing eager state split:
in one branch, the returned value is identical to the input parameter,
and in the other branch, the returned value is zero.
This patch required a substantial refactoring of canEval infrastructure,
as now it can return different function summaries, and not just true/false.
rdar://45497400
Differential Revision: https://reviews.llvm.org/D53624
llvm-svn: 345338
Summary:
This patch moves the last method in `Z3ConstraintManager` to `SMTConstraintManager`: `canReasonAbout()`.
The `canReasonAbout()` method checks if a given `SVal` can be encoded in SMT. I've added a new method to the SMT API to return true if a solver can encode floating-point arithmetics and it was enough to make `canReasonAbout()` solver independent.
As an annoying side-effect, `Z3ConstraintManager` is pretty empty now and only (1) creates the Z3 solver object by calling `CreateZ3Solver()` and (2) instantiates `SMTConstraintManager`. Maybe we can get rid of this class altogether in the future: a `CreateSMTConstraintManager()` method that does (1) and (2) and returns the constraint manager object?
Reviewers: george.karpenkov, NoQ
Reviewed By: george.karpenkov
Subscribers: mehdi_amini, xazax.hun, szepet, a.sidorin, dexonsmith, Szelethus, donat.nagy, dkrupp
Differential Revision: https://reviews.llvm.org/D53694
llvm-svn: 345284
Summary:
Getting an `APSInt` from the model always returned an unsigned integer because of the unused parameter.
This was not breaking any test case because no code relies on the actual value of the integer returned here, but rather it is only used to check if a symbol has more than one solution in `getSymVal`.
Reviewers: NoQ, george.karpenkov
Reviewed By: george.karpenkov
Subscribers: xazax.hun, szepet, a.sidorin, Szelethus, donat.nagy, dkrupp
Differential Revision: https://reviews.llvm.org/D53637
llvm-svn: 345283
trackNullOrUndefValue is a long and confusing name,
and it does not actually reflect what the function is doing.
Give a function a new name, with a relatively clear semantics.
Also remove some dead code.
Differential Revision: https://reviews.llvm.org/D52758
llvm-svn: 345064
This patch is a part of https://reviews.llvm.org/D48456 in an attempt to split
the casting logic up into smaller patches. This contains the code for casting
from fixed point types to boolean types.
Differential Revision: https://reviews.llvm.org/D53308
llvm-svn: 345063
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from the
command line, and be able to list them all.
This first NFC patch contains small modifications to make AnalyzerOptions.cpp a
little more consistent.
Differential Revision: https://reviews.llvm.org/D53274
llvm-svn: 344870
The GDMIndex functions return a pointer that's used as a key for looking up
data, but addresses of local statics defined in header files aren't the same
across shared library boundaries and the result is that analyzer plugins
can't access this data.
Event types are uniqued by using the addresses of a local static defined
in a header files, but it isn't the same across shared library boundaries
and plugins can't currently handle ImplicitNullDerefEvents.
Patches by Joe Ranieri!
Differential Revision: https://reviews.llvm.org/D52905
Differential Revision: https://reviews.llvm.org/D52906
llvm-svn: 344823
In C++17, when class C has large alignment value, a special case of
overload resolution rule kicks in for expression new C that causes the aligned
version of operator new() to be called. The aligned new has two arguments:
size and alignment. However, the new-expression has only one "argument":
the construct-expression for C(). This causes a false positive in
core.CallAndMessage's check for matching number of arguments and number
of parameters.
Update CXXAllocatorCall, which is a CallEvent sub-class for operator new calls
within new-expressions, so that the number of arguments always matched
the number of parameters.
rdar://problem/44738501
Differential Revision: https://reviews.llvm.org/D52957
llvm-svn: 344539
This patch is a part of https://reviews.llvm.org/D48456 in an attempt to
split them up. This contains the code for casting between fixed point types
and other fixed point types.
The method for converting between fixed point types is based off the convert()
method in APFixedPoint.
Differential Revision: https://reviews.llvm.org/D50616
llvm-svn: 344530
Summary:
Enhanced support for Z3 in the cmake configuration of clang; now it is possible to specify any arbitrary Z3 install prefix (CLANG_ANALYZER_Z3_PREFIX) to cmake with lib (or bin) and include folders. Before the patch only in cmake default locations
were searched (https://cmake.org/cmake/help/v3.4/command/find_path.html).
Specifying any CLANG_ANALYZER_Z3_PREFIX will force also CLANG_ANALYZER_BUILD_Z3 to ON.
Removed also Z3 4.5 version requirement since it was not checked, and now Clang works with Z3 4.7
Reviewers: NoQ, george.karpenkov, mikhail.ramalho
Reviewed By: george.karpenkov
Subscribers: rnkovacs, NoQ, esteffin, george.karpenkov, delcypher, ddcc, mgorny, xazax.hun, szepet, a.sidorin, Szelethus
Tags: #clang
Differential Revision: https://reviews.llvm.org/D50818
llvm-svn: 344464
Doesn't do much despite sounding quite bad, but fixes an exotic test case where
liveness of a nonloc::LocAsInteger array index is now evaluated correctly.
Differential Revision: https://reviews.llvm.org/D52667
llvm-svn: 343631
I intend to add a new flag macro-expnasions-as-events, and unfortunately
I'll only be able to convert the macro piece into an event one once I'm
about to emit it, due to the lack of an avaible Preprocessor object in
the BugReporter.
Differential Revision: https://reviews.llvm.org/D52787
llvm-svn: 343620
Summary:
Several improvements in preparation for the new backends.
Refactoring:
- Removed duplicated methods `fromBoolean`, `fromAPSInt`, `fromInt` and `fromAPFloat`. The methods `mkBoolean`, `mkBitvector` and `mkFloat` are now used instead.
- The names of the functions that convert BVs to FPs were swapped (`mkSBVtoFP`, `mkUBVtoFP`, `mkFPtoSBV`, `mkFPtoUBV`).
- Added a couple of comments in function calls.
Crosscheck encoding:
- Changed how constraints are encoded in the refutation manager so it doesn't start with (false OR ...). This change introduces one duplicated line (see file `BugReporterVisitors.cpp`, the `SMTConv::getRangeExpr is called twice, so I can remove this change if the duplication is a problem.
Reviewers: george.karpenkov, NoQ
Reviewed By: george.karpenkov
Subscribers: xazax.hun, szepet, a.sidorin, Szelethus
Differential Revision: https://reviews.llvm.org/D52365
llvm-svn: 343581
This is patch is a preparation for the proposed inclusion of macro expansions in the plist output.
Differential Revision: https://reviews.llvm.org/D52735
llvm-svn: 343511
Dumping graphs instead of opening them is often very useful,
e.g. for transfer or converting to SVG.
Basic sanity check for generated exploded graphs.
Differential Revision: https://reviews.llvm.org/D52637
llvm-svn: 343352
Commit r340984 causes a crash when a pointer to a completely unrelated type
UnrelatedT (eg., opaque struct pattern) is being casted from base class BaseT to
derived class DerivedT, which results in an ill-formed region
Derived{SymRegion{$<UnrelatedT x>}, DerivedT}.
Differential Revision: https://reviews.llvm.org/D52189
llvm-svn: 343051
Combine the two constructor overrides into a single ArrayRef constructor
to allow easier brace initializations and simplify how the respective field
is used internally.
Differential Revision: https://reviews.llvm.org/D51390
llvm-svn: 343037
When a checker maintains a program state trait that isn't a simple list/set/map, but is a combination of multiple lists/sets/maps (eg., a multimap - which may be implemented as a map from something to set of something), ProgramStateManager only contains the factory for the trait itself. All auxiliary lists/sets/maps need a factory to be provided by the checker, which is annoying.
So far two checkers wanted a multimap, and both decided to trick the
ProgramStateManager into keeping the auxiliary factory within itself
by pretending that it's some sort of trait they're interested in,
but then never using this trait but only using the factory.
Make this trick legal. Define a convenient macro.
One thing that becomes apparent once all pieces are put together is that
these two checkers are in fact using the same factory, because the type that
identifies it, ImmutableMap<const MemRegion *, ImmutableSet<SymbolRef>>,
is the same. This situation is different from two checkers registering similar
primitive traits.
Differential Revision: https://reviews.llvm.org/D51388
llvm-svn: 343035
This patch is a band-aid. A proper solution would be too change
trackNullOrUndefValue to only try to dereference the pointer when it is
relevant to the problem.
Differential Revision: https://reviews.llvm.org/D52435
llvm-svn: 342920
If the non-sink report is generated at the exit node, it will be
suppressed by the current functionality in isInevitablySinking, as it
only checks the successors of the block, but not the block itself.
The bug shows up in RetainCountChecker checks.
Differential Revision: https://reviews.llvm.org/D52284
llvm-svn: 342766
Fixes a number of issues:
- Global variables are not used for communication
- Trait should be defined on a graph, not on a node
- Defining the trait on a graph allows us to use a correct allocator,
no longer crashing while printing trimmed graphs
Differential Revision: https://reviews.llvm.org/D52183
llvm-svn: 342413
Those are not created in the allocator.
Since they are created fairly rarely, a counter overhead should not
affect the memory consumption.
Differential Revision: https://reviews.llvm.org/D51827
llvm-svn: 342314