to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Previously we used ISD::SHL and ISD::SRL to represent these in SelectionDAG. ISD::SHL/SRL interpret an out of range shift amount as undefined behavior and will constant fold to undef. While the intrinsics are defined to return 0 for out of range shift amounts. A previous patch added a special node for VPSRAV to produce all sign bits.
This was previously believed safe because undefs frequently get turned into 0 either from the constant pool or a desire to not have a false register dependency. But undef is treated specially in some optimizations. For example, its ignored in detection of vector splats. So if the ISD::SHL/SRL can be constant folded and all of the elements with in bounds shift amounts are the same, we might fold it to single element broadcast from the constant pool. This would not put 0s in the elements with out of bounds shift amounts.
We do have an existing InstCombine optimization to use shl/lshr when the shift amounts are all constant and in bounds. That should prevent some loss of constant folding from this change.
Patch by zhutianyang and Craig Topper
Differential Revision: https://reviews.llvm.org/D56695
llvm-svn: 351381
This cleans up the duplication we have with both intrinsic isel patterns and vselect isel patterns. This should also allow the intrinsics to get SimplifyDemandedBits support for the condition.
I've switched the canonical pattern in isel to use the X86ISD::BLENDV node instead of VSELECT. Since it always seemed weird to move from BLENDV with its relaxed rules on condition bits to VSELECT which has strict rules about all bits of the condition element being the same. Its more correct to go from VSELECT to BLENDV.
Differential Revision: https://reviews.llvm.org/D56771
llvm-svn: 351380
That's really what it is. If we didn't use intrinsics for BLENDVPS/BLENDVPD/PBLENDVB all the way to isel, this is the node we would use.
llvm-svn: 351278
We can't represent this properly with vselect like we normally do. We also have to update the instruction definition to use a VK2WM mask instead of VK4WM to represent this.
Fixes another case from PR34877
llvm-svn: 351018
We can't represent this properly with vselect like we normally do. We also have to update the instruction definition to use a VK2WM mask instead of VK4WM to represent this.
Fixes another case from PR34877.
llvm-svn: 351017
The 128-bit input produces 64-bits of output and fills the upper 64-bits with 0. The mask only applies to the lower elements. But we can't represent this with a vselect like we normally do.
This also avoids the need to have a special X86ISD::SELECT when avx512bw isn't enabled since vselect v8i16 isn't legal there.
Fixes another instruction for PR34877.
llvm-svn: 350994
We can't properly represent this with a vselect since the upper elements of the result are supposed to be zeroed regardless of the mask.
This also reuses the new nodes even when the result type fits in 128 bits if the input is q/d and the result is w/b since vselect w/b using k-register condition isn't legal without avx512bw. Currently we're doing this even when avx512bw is enabled, but I might change that.
This fixes some of PR34877
llvm-svn: 350985
As noted in PR39973 and D55558:
https://bugs.llvm.org/show_bug.cgi?id=39973
...this is a partial implementation of a fold that we do as an IR canonicalization in instcombine:
// extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
We want to have this in the DAG too because as we can see in some of the test diffs (reductions),
the pattern may not be visible in IR.
Given that this is already an IR canonicalization, any backend that would prefer a vector op over
a scalar op is expected to already have the reverse transform in DAG lowering (not sure if that's
a realistic expectation though). The transform is limited with a TLI hook because there's an
existing transform in CodeGenPrepare that tries to do the opposite transform.
Differential Revision: https://reviews.llvm.org/D55722
llvm-svn: 350354
INC/DEC are pretty much the same as ADD/SUB except that they don't update the C flag.
This patch removes the special nodes and just pattern matches from ADD/SUB during isel if the C flag isn't being used.
I had to avoid selecting DEC is the result isn't used. This will become a SUB immediate which will turned into a CMP later by optimizeCompareInstr. This lead to the one test change where we use a CMP instead of a DEC for an overflow intrinsic since we only checked the flag.
This also exposed a hole in our RMW flag matching use of hasNoCarryFlagUses. Our root node for the match is a store and there's no guarantee that all the flag users have been selected yet. So hasNoCarryFlagUses needs to check copyToReg and machine opcodes, but it also needs to check for the pre-match SETCC, SETCC_CARRY, BRCOND, and CMOV opcodes.
Differential Revision: https://reviews.llvm.org/D55975
llvm-svn: 350245
All of these use custom isel so we can pretty easily detect the differences in the custom code in X86ISelDAGToDAG. The ISD opcodes just need to express the desired semantics not the details of how they would be selected by isel. So unifying them lets us remove the special casing from lowering.
llvm-svn: 350206
Make each of the helper functions only return their comparison node and the condition code. Leave X86ISD::SETCC creation to the LowerSETCC function itself.
Looking into whether we can use this code directly in BRCOND and SELECT lowering instead of going through LowerSETCC which creates an X86ISD::SETCC node we need to look through.
llvm-svn: 350082
Migrate the X86 backend from X86ISD opcodes ADDS and SUBS to generic
ISD opcodes SADDSAT and SSUBSAT. This also improves scodegen for
@llvm.sadd.sat() and @llvm.ssub.sat() intrinsics.
This is a followup to D55787 and part of PR40056.
Differential Revision: https://reviews.llvm.org/D55833
llvm-svn: 349520
Replace the X86ISD opcodes ADDUS and SUBUS with generic ISD opcodes
UADDSAT and USUBSAT. As a side-effect, this also makes codegen for
the @llvm.uadd.sat and @llvm.usub.sat intrinsics reasonable.
This only replaces use in the X86 backend, and does not move any of
the ADDUS/SUBUS X86 specific combines into generic codegen.
Differential Revision: https://reviews.llvm.org/D55787
llvm-svn: 349481
This is an initial patch to add the necessary support for a DemandedElts argument to SimplifyDemandedBits, more closely matching computeKnownBits and to help improve vector codegen.
I've added only a small amount of the changes necessary to get at least one test to update - a lot more can be done but I'd like to add these methodically with proper test coverage, at the same time the hope is to slowly move some/all of SimplifyDemandedVectorElts into SimplifyDemandedBits as well.
Differential Revision: https://reviews.llvm.org/D55768
llvm-svn: 349374
This requires the two callers to manifest a 0 to make EmitCmp call EmitTest.
I'm looking into changing how we combine TEST and flag setting instructions to not be part of lowering. And instead be part of DAG combine or isel. Which will mean EmitTest will probably become gutted and maybe disappear entirely.
llvm-svn: 349094
PR17686 demonstrates that for some targets FP exceptions can fire in cases where the FP_TO_UINT is expanded using a FP_TO_SINT instruction.
The existing code converts both the inrange and outofrange cases using FP_TO_SINT and then selects the result, this patch changes this for 'strict' cases to pre-select the FP_TO_SINT input and the offset adjustment.
The X87 cases don't need the strict flag but generates much nicer code with it....
Differential Revision: https://reviews.llvm.org/D53794
llvm-svn: 348251
This should likely be adjusted to limit this transform
further, but these diffs should be clear wins.
If we have blendv/conditional move, then we should assume
those are cheap ops. The loads become independent of the
compare, so those can be speculated before we need to use
the values in the blend/mov.
llvm-svn: 347526
Previously, the extend_vector_inreg opcode required their input register to be the same total width as their output. But this doesn't match up with how the X86 instructions are defined. For X86 the input just needs to be a legal type with at least enough elements to cover the output.
This patch weakens the check on these nodes and allows them to be used as long as they have more input elements than output elements. I haven't changed type legalization behavior so it will still create them with matching input and output sizes.
X86 will custom legalize these nodes by shrinking the input to be a 128 bit vector and once we've done that we treat them as legal operations. We still have one case during type legalization where we must custom handle v64i8 on avx512f targets without avx512bw where v64i8 isn't a legal type. In this case we will custom type legalize to a *extend_vector_inreg with a v16i8 input. After that the input is a legal type so type legalization should ignore the node and doesn't need to know about the relaxed restriction. We are no longer allowed to use the default expansion for these nodes during vector op legalization since the default expansion uses a shuffle which required the widths to match. Custom legalization for all types will prevent us from reaching the default expansion code.
I believe DAG combine works correctly with the released restriction because it doesn't check the number of input elements.
The rest of the patch is changing X86 to use either the vector_inreg nodes or the regular zero_extend/sign_extend nodes. I had to add additional isel patterns to handle any_extend during isel since simplifydemandedbits can create them at any time so we can't legalize to zero_extend before isel. We don't yet create any_extend_vector_inreg in simplifydemandedbits.
Differential Revision: https://reviews.llvm.org/D54346
llvm-svn: 346784
The main caller of this already has an MVT and several targets called getSimpleVT inside without checking isSimple. This makes the simpleness explicit.
llvm-svn: 346180
Add X86 SimplifyDemandedBitsForTargetNode and use it to simplify PMULDQ/PMULUDQ target nodes.
This enables us to repeatedly simplify the node's arguments after the previous approach had to be reverted due to PR39398.
Differential Revision: https://reviews.llvm.org/D53643
llvm-svn: 345182
When implementing memset's today we often see this pattern:
$x0 = MOV 0xXYXYXYXYXYXYXYXY
store $x0, ...
$w1 = MOV 0xXYXYXYXY
store $w1, ...
We first create a 64bit constant in a 64bit register with all bytes the
same and then create a 32bit constant with all bytes the same in a 32bit
register. In many targets we could just access the lower byte of the
64bit register instead.
- Ideally this would be handled by the ConstantHoist pass but it runs
too early when memset isn't expanded yet.
- The memset expansion code already had this optimization implemented,
however SelectionDAG constantfolding would constantfold the
"trunc(bigconstnat)" pattern to "smallconstant".
- This patch makes the memset expansion mark the constant as Opaque and
stop DAGCombiner from constant folding in this situation. (Similar to
how ConstantHoisting marks things as Opaque to avoid folding
ADD/SUB/etc.)
Differential Revision: https://reviews.llvm.org/D53181
llvm-svn: 345102
Summary:
As discussed in D52304 / IRC, we now have pattern matching for
'bit extract' in two places - tablegen and `X86DAGToDAGISel`.
There are 4 patterns.
And we will have a problem with `x & (-1 >> (32 - y))` pattern.
* If the mask is one-use, then it is always unfolded into `x << (32 - y) >> (32 - y)` first.
Thus, the existing test coverage is already broken.
* If it is not one-use, then it is not unfolded, and is matched as BZHI.
* If it is not one-use, we will not match it as BEXTR. And if it is one-use, it will have been unfolded already.
So we will either not handle that pattern for BEXTR, or not have test coverage for it.
This is bad.
As discussed with @craig.topper, let's unify this matching, and do everything in `X86DAGToDAGISel`.
Then we will not have code duplication, and will have proper test coverage.
This indeed does not affect any tests, and this is great.
It means that for these two patterns, the `X86DAGToDAGISel` is identical to the tablegen version.
Please review carefully, i'm not fully sure about that intrinsic change, and introduction of the new `X86ISD` opcode.
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: craig.topper
Subscribers: llvm-commits, craig.topper
Differential Revision: https://reviews.llvm.org/D53164
llvm-svn: 344904
Summary:
These nodes exist to overcome an isel problem where we can generate a zero extend of an AH register followed by an extract subreg, and another zero extend. The first zero extend exists to avoid a partial register update copying the AH register into the low 8-bits. The second zero extend exists if the user wanted the remainder zero extended.
To make this work we had a DAG combine to morph the DIVREM opcode to a special opcode that included the extend. But then we had to add the new node to computeKnownBits and computeNumSignBits to process the extension portion.
This patch instead removes all of that and adds a late peephole to detect the two extends.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53449
llvm-svn: 344874
This patch adds an initial x86 SimplifyDemandedVectorEltsForTargetNode implementation to handle target shuffles.
Currently the patch only decodes a target shuffle, calls SimplifyDemandedVectorElts on its input operands and removes any shuffle that reduces to undef/zero/identity.
Future work will need to integrate this with combineX86ShufflesRecursively, add support for other x86 ops, etc.
NOTE: There is a minor regression that appears to be affecting further (extractelement?) combines which I haven't been able to solve yet - possibly something to do with how nodes are added to the worklist after simplification.
Differential Revision: https://reviews.llvm.org/D52140
llvm-svn: 342564
This is an alternative to D37896. I don't see a way to decompose multiplies
generically without a target hook to tell us when it's profitable.
ARM and AArch64 may be able to remove some duplicate code that overlaps with
this transform.
As a first step, we're only getting the most clear wins on the vector examples
requested in PR34474:
https://bugs.llvm.org/show_bug.cgi?id=34474
As noted in the code comment, it's likely that the x86 constraints are tighter
than necessary, but it may not always be a win to replace a pmullw/pmulld.
Differential Revision: https://reviews.llvm.org/D52195
llvm-svn: 342554
I noticed this along with the patterns in D51125, but when the index is variable,
we don't convert insertelement into a build_vector.
For x86, that means these get expanded at legalization time into the loading/spilling
code that we see in the tests. I think it's always better to avoid going to memory on
these, and we get the optimal 'broadcast' if it's available.
I suspect other targets may want to look at enabling the hook. AArch64 and AMDGPU have
regression tests that would be affected (although I did not check what would happen in
those cases). In the most basic cases shown here, AArch64 would probably do much
better with a splat.
Differential Revision: https://reviews.llvm.org/D51186
llvm-svn: 340705
Summary:
Previously the value being stored is the last operand in SDNode. This causes the type legalizer to visit the mask operand before the value operand. The type legalizer was more complicated because of this since we want the type of the value to drive the decisions.
This patch moves the value to be the first operand so we visit it first during type legalization. It also simplifies the type legalization code accordingly.
X86 is currently the only in tree target that uses this SDNode. Not sure if there are any users out of tree.
Reviewers: RKSimon, delena, hfinkel, eli.friedman
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50402
llvm-svn: 340689
AVX512 added new versions of these intrinsics that take a rounding mode. If the rounding mode is 4 the new intrinsics are equivalent to the old intrinsics.
The AVX512 intrinsics were being lowered to ISD opcodes, but the legacy SSE intrinsics were left as intrinsics. This resulted in the AVX512 instructions needing separate patterns for the ISD opcodes and the legacy SSE intrinsics.
Now we convert SSE intrinsics and AVX512 intrinsics with rounding mode 4 to the same ISD opcode so we can share the isel patterns.
llvm-svn: 339749
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.
Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.
llvm-svn: 337547
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
But the IR-optimal patter does not lower efficiently, so we want to undo it..
This handles the simple pattern.
There is a second pattern with predicate and constants inverted.
NOTE: we do not check uses here. we always do the transform.
Reviewers: spatel, craig.topper, RKSimon, javed.absar
Reviewed By: spatel
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49266
llvm-svn: 337166
We now use llvm.fma.f32/f64 or llvm.x86.fmadd.f32/f64 intrinsics that use scalar types rather than vector types. So we don't these special ISD nodes that operate on the lowest element of a vector.
llvm-svn: 336883
These ISD nodes try to select the MOVLPS and MOVLPD instructions which are special load only instructions. They load data and merge it into the lower 64-bits of an XMM register. They are logically equivalent to our MOVSD node plus a load.
There was only one place in X86ISelLowering that used MOVLPD and no places that selected MOVLPS. The one place that selected MOVLPD had to choose between it and MOVSD based on whether there was a load. But lowering is too early to tell if the load can really be folded. So in isel we have patterns that use MOVSD for MOVLPD if we can't find a load.
We also had patterns that select the MOVLPD instruction for a MOVSD if we can find a load, but didn't choose the MOVLPD ISD opcode for some reason.
So it seems better to just standardize on MOVSD ISD opcode and manage MOVSD vs MOVLPD instruction with isel patterns.
llvm-svn: 336728
Summary:
This adds a reverse transform for the instcombine canonicalizations
that were added in D47980, D47981.
As discussed later, that was worse at least for the code size,
and potentially for the performance, too.
https://rise4fun.com/Alive/Zmpl
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: spatel
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D48768
llvm-svn: 336585
The intrinsics can be implemented with a f32/f64 llvm.fma intrinsic and an insert into a zero vector.
There are a couple regressions here due to SelectionDAG not being able to pull an fneg through an extract_vector_elt. I'm not super worried about this though as InstCombine should be able to do it before we get to SelectionDAG.
llvm-svn: 336416
I don't believe there is any real reason to have separate X86 specific opcodes for vector compares. Setcc has the same behavior just uses a different encoding for the condition code.
I had to change the CondCodeAction for SETLT and SETLE to prevent some transforms from changing SETGT lowering.
Differential Revision: https://reviews.llvm.org/D43608
llvm-svn: 335173
This is the new version of D46181, allowing setjmp/longjmp
to work correctly with the Intel CET shadow stack by storing
SSP on setjmp and fixing it on longjmp. The patch has been
updated to use the cf-protection-return module flag instead
of HasSHSTK, and the bug that caused D46181 to be reverted
has been fixed with the test expanded to track that fix.
patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D47311
llvm-svn: 333990
There seems to be no real reason to have these separate copies.
The existing implementations just copy each other for x86.
For Mips there is a subtle difference, which is just a bug
since it changes based on the context where which one was called.
Dropping this version, all tests pass. If I try to merge them
to match the removed version, a test fails.
llvm-svn: 333440
These do the same thing with the first and second sources swapped. They previously came from separate intrinsics that specified different masking behavior. But we can cover that with isel patterns and a single node.
This is a step towards reducing the number of intrinsics needed.
A bunch of tests change because we are now biased to choosing VPERMT over VPERMI when there is nothing to signal that commuting is beneficial.
llvm-svn: 333383
This patch adds a shadow stack fix when compiling
setjmp/longjmp with the shadow stack enabled. This
allows setjmp/longjmp to work correctly with CET.
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46181
llvm-svn: 331748
Summary:
Split off from D46031.
In masked merge case, this degrades IPC by decreasing instruction count.
{F6108777}
The next patch should be able to recover and improve this.
This also affects the transform @spatel have added in D27489 / rL289738,
and the test coverage for X86 was missing.
But after i have added it, and looked at the changes in MCA, i'm somewhat confused.
{F6093591} {F6093592} {F6093593}
I'd say this regression is an improvement, since `IPC` increased in that case?
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: andreadb, llvm-commits, spatel
Differential Revision: https://reviews.llvm.org/D46493
llvm-svn: 331684