Implementing new functionality tested in this file requires adding new
tests for many IR addressing patterns, which can be a large
maintenance burden. This patch makes adding tests easier by switching
to using autogenerated checks. This patch also removes the testing
mode that has simd128 disabled because it would produce very large
checks and is not particularly interesting.
Differential Revision: https://reviews.llvm.org/D84288
Accounting for the fact that Wasm function indices are 32-bit, but in wasm64 we want uniform 64-bit pointers.
Includes reloc types for 64-bit table indices.
Differential Revision: https://reviews.llvm.org/D83729
Although the SIMD spec proposal does not specifically include a
select instruction, the select instruction in MVP WebAssembly is
polymorphic over the selected types, so it is able to work on v128
values when they are enabled. This patch introduces a new variant of
the select instruction for each legal vector type. Additional ISel
patterns are adapted from the SELECT_I32 and SELECT_I64 patterns.
Depends on D83736.
Differential Revision: https://reviews.llvm.org/D83737
Updating the simd-select.ll tests manually with consistent named
regexps for the register numbers was taking more time than it was
worth, so this patch updates that test file to have autogenerated
output. This is not a significant readability regression because the
tests in that file are all very small.
Depends on D83734.
Differential Revision: https://reviews.llvm.org/D83736
We were previously expanding vselect and matching on the expansion to
generate bitselects, but in some cases the expansion would be further
combined and a bitselect would not get generated. This patch improves
codegen in those cases by legalizing vselect and lowering it to
v128.bitselect. The old pattern that matches the expansion is still
useful for lowering IR that already uses the expansion rather than a
select operation.
Differential Revision: https://reviews.llvm.org/D83734
The existing code already considered this case. Unfortunately a typo in
the condition prevents it from triggering. Also the existing code, had
it run, forgot to do the folding.
This fixes PR42876.
Differential Revision: https://reviews.llvm.org/D65802
In BUILD_VECTOR lowering, we used to generally prefer using splats
over v128.const instructions because v128.const has a very large
encoding. However, in d5b7a4e2e8 we switched to preferring consts
because they are expected to be more efficient in engines. This patch
updates the ISel patterns to match this current preference.
Differential Revision: https://reviews.llvm.org/D83581
This patch builds on 0d7286a652 by simplifying the code for detecting
splat values and adding new tests demonstrating the lowering of
splatted absolute value shift amounts, which are common in code
generated by Halide. The lowering is very bad right now, but
subsequent patches will improve it considerably. The tests will be
useful for evaluating the improvements in those patches.
Reviewed By: aheejin
Differential Revision: https://reviews.llvm.org/D83493
`__stack_chk_fail` does not return, but `unreachable` was not generated
following `call __stack_chk_fail`. This had a possibility to generate an
invalid binary for functions with a return type, because
`__stack_chk_fail`'s return type is void and `call __stack_chk_fail` can
be the last instruction in the function whose return type is non-void.
Generating `unreachable` after it makes sure CFGStackify's
`fixEndsAtEndOfFunction` handles it correctly.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D83277
Since WebAssembly's vector shift instructions take a scalar shift
amount rather than a vector shift amount, we have to check in ISel
that the vector shift amount is a splat. Previously, we were checking
explicitly for splat BUILD_VECTOR nodes, but this change uses the
standard utilities for detecting splat values that can handle more
complex splat patterns. Since the C++ ISel lowering is now more
general than the ISel patterns, this change also simplifies shift
lowering by using the C++ lowering for all SIMD shifts rather than
mixing C++ and normal pattern-based lowering.
This change improves ISel for shifts to the point that the
simd-shift-unroll.ll regression test no longer tests the code path it
was originally meant to test. The bug corresponding to that regression
test is no longer reproducible with its original reported reproducer,
so rather than try to fix the regression test, this change just
removes it.
Differential Revision: https://reviews.llvm.org/D83278
This covers both the existing memory functions as well as the new bulk memory proposal.
Added new test files since changes where also required in the inputs.
Also removes unused init/drop intrinsics rather than trying to make them work for 64-bit.
Differential Revision: https://reviews.llvm.org/D82821
Summary:
Since the br_table instruction takes an i32, switches over i64s (and
larger integers) must use the i32.wrap_i64 instruction to truncate the
table index. This truncation makes numbers just over 2^32
indistinguishable from small numbers, so it was a miscompilation to
omit the range check preceding these br_tables. This change fixes the
problem by skipping the "fixing" of the br_table when the range check
is an i64 instruction.
Fixes PR46447.
Reviewers: aheejin, dschuff, kripken
Reviewed By: kripken
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83017
When created in RegStackify pass, `TEE` has two destinations, where
op0 is stackified and op1 is not. But it is possible that
op0 becomes unstackified in `fixUnwindMismatches` function in
CFGStackify pass when a nested try-catch-end is introduced, violating
the invariant of `TEE`s destinations.
In this case we convert the `TEE` into two `COPY`s, which will
eventually be resolved in ExplicitLocals.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D81851
Summary:
This commit fixes a bug in the FixBrTables pass in which an
unconditional branch from the switch header block to the jump table
block was not removed before the blocks were combined. The result was
an invalid CFG in the MachineFunction. This commit also switches from
using bespoke branch analysis and deletion code to using the standard
utilities for the same.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81909
Context: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
This is just a first step, adding the new instruction variants while keeping the existing 32-bit functionality working.
Some of the basic load/store tests have new wasm64 versions that show that the basics of the target are working.
Further features need implementation, but these will be added in followups to keep things reviewable.
Differential Revision: https://reviews.llvm.org/D80769
Summary:
After their range checks were removed in 7f50c15be5, br_tables
started being duplicated into their predecessors by tail
folding. Unfortunately, when the br_tables were in loops this
transformation introduced bad irreducible control flow which was later
expanded into even more br_tables. This commit abuses the
`isNotDuplicable` property to prevent this irreducible control flow
from being introduced. This change saves a few dozen bytes of code
size and has a negligible affect on performance for most of the large
Emscripten benchmarks, but can improve performance significantly on
microbenchmarks of switches in loops.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81628
Summary:
The natural alignments for extending and splatting loads had not
previously been tested. It is good to have them tested because they
are non-obvious details in the SIMD spec proposal.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81303
Summary:
As specified in https://github.com/WebAssembly/simd/pull/232. These
instructions are implemented as LLVM intrinsics for now rather than
normal ISel patterns to make these instructions opt-in. Once the
instructions are merged to the spec proposal, the intrinsics will be
replaced with proper ISel patterns.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81222
There's two properties we want to verify:
1. That the successors returned by analyzeBranch are in the CFG
successor list, and
2. That there are no extraneous successors are in the CFG successor
list.
The previous implementation mostly accomplished this, but in a very
convoluted manner.
Differential Revision: https://reviews.llvm.org/D79793
Summary:
Unlike normal traps, debug traps are allowed to return and can have
additional instructions in the same basic block. Without explicit
backend support for debug traps, they are lowered in ISel as normal
traps. Since normal traps are lowered in the WebAssembly backend to
the UNREACHABLE instruction, which is a terminator, using debug traps
could lead to invalid MBBs when there are additional instructions
after the trap. This patch fixes the issue by lowering debug traps to
a new version of the UNREACHABLE instruction, DEBUG_UNREACHABLE, that
is not a terminator.
An alternative approach would have been to make UNREACHABLE not a
terminator, but that breaks a large number of tests. In particular, it
would require removing the traps inserted after noreturn calls to
@llvm.wasm.throw because otherwise the terminator throw would be
followed by a non-terminator UNREACHABLE and we would be back to
having invalid MBBs. Overall the approach in this patch seems simpler.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81055
Summary:
The code previously assumed that the index of a vector extract was
constant, but this was not always true. This patch fixes the problem
by bailing out of the lowering if the index is nonconstant and also
replaces `static_cast`s in the lowering function with `cast`s because
the latter contain type-checking asserts that would make similar
issues easier to find and debug.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81025
This reverts commit 755a895915.
Although I was not able to reproduce any test failures locally,
aheejin was able to reproduce them and found a fix, applied here.
Summary:
Jump tables for most targets cannot handle out of range indices by
themselves, so LLVM emits range checks to guard the jump
tables. WebAssembly, on the other hand, implements jump tables using
the br_table instruction, which takes a default branch target as an
operand, making the range checks redundant. This patch introduces a
new MachineFunction pass in the WebAssembly backend to find and
eliminate the redundant range checks.
Reviewers: aheejin, dschuff
Subscribers: mgorny, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80863
Summary:
`getMatchingEHPad()` in LateEHPrepare is a function to find the nearest
EH pad that dominates the given instruction. This intends to be
lightweight so it does not use full WebAssemblyException scope analysis
or dominator analysis. It simply does backward BFS to its predecessors
and stops at the first EH pad each search path encounters. All search
should end up at the same EH pad, and if not, it returns null.
But it didn't take into account that when there are inner scopes within
the current scope, some path in BFS can hit an inner EH pad first. For
example, in the given diagram, `Inst` belongs to the outer scope and
`getMathingEHPad()` should return 'EHPad 1', but some search path can go
into the inner scope and end up with 'EHPad 2'. The search will return
null because different paths end up with different EH pads.
```
--- EHPad 1 ---
| - EHPad 2 - |
| | | |
| ----------- |
| Inst |
---------------
```
So far this was OK because we haven't tested a case in which a given
instruction is far from its EH pad. Also, this bug does not happen when
the inner EH scope is a cleanup scope, because a cleanup scope ends with
a `cleanupret` whose successor is an EH pad, so the search encounters
that EH pad first before going into the child scope. But this can happen
when the child scope is a catch scope that ends with `catchret`. So this
patch, when doing backward BFS, does not search predecessors that ends
with `catchret`. Because `catchret`s are replaced with `br`s during this
pass, this records BBs that have `catchret`s in the beginning, before
doing any other transformations.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80571
Summary:
One of the things `removeUnnecessaryInstrs()` in CFGStackify does is to
remove an unnecessary unconditinal branch before an EH pad. When there
is an unconditional branch right before a catch instruction and it
branches to the end of `end_try` marker, we don't need the branch,
because it there is no exception, the control flow transfers to
that point anyway.
```
bb0:
try
...
br bb2 <- Not necessary
bb1:
catch
...
bb2:
end
```
This applies when we have a conditional branch followed by an
unconditional one, in which case we should only remove the unconditional
branch. For example:
```
bb0:
try
...
br_if someplace_else
br bb2 <- Not necessary
bb1:
catch
...
bb2:
end
```
But `TargetInstrInfo::removeBranch` we used removed all existing
branches when there are multiple ones. This patch fixes it by only
deleting the last (= unconditional) branch manually.
Also fixes some `preds` comments in the test file.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80572
Summary:
The code previously assumed the source of the bitcast in the combined
pattern was a vector type, but this is not always true. This patch
adds a check to avoid an assertion failure in that case.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80164
Summary:
This reflects changes in the spec proposal made since basic arithmetic
was first implemented.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80174
Summary:
This new custom DAG combine fixes a codegen issue with the
wasm_simd128.h intrinsics. Clang lowers the
return (v128_t)(__f32x4){__a, __a, __a, __a};
body of f32x4_splat to a splat shuffle of a bitcasted vector, as seen
in the new simd-shuffle-bitcast.ll test. The bitcast interfered with
the target-independent DAG combine that combines splat shuffles into
BUILD_VECTOR nodes, so this patch introduces a new custom DAG combine
to hoist the bitcast out of the shuffle, allowing the
target-independent combine to work as intended.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80021
Summary:
Move instructions that have recently been implemented in V8 from the
`unimplemented-simd128` target feature to the `simd128` target
feature. The updated instructions match the update at
https://github.com/WebAssembly/simd/pull/223.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D79973
Summary:
As proposed in https://github.com/WebAssembly/simd/pull/122. Since
these instructions are not yet merged to the SIMD spec proposal, this
patch makes them entirely opt-in by surfacing them only through LLVM
intrinsics and clang builtins. If these instructions are made
official, these intrinsics and builtins should be replaced with simple
instruction patterns.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D79742
Summary:
Although using `__builtin_shufflevector` and the `shufflevector`
instruction works fine, they are not opaque to the optimizer. As a
result, DAGCombine can potentially reduce the number of shuffles and
change the shuffle masks. This is unexpected behavior for users of the
WebAssembly SIMD intrinsics who have crafted their shuffles to
optimize the code generated by engines. This patch solves the problem
by adding a new shuffle intrinsic that is opaque to the optimizers in
line with the decision of the WebAssembly SIMD contributors at
https://github.com/WebAssembly/simd/issues/196#issuecomment-622494748. In
the future we may implement custom DAG combines to properly optimize
shuffles and replace this solution.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D66983
Summary:
The WebAssembly backend automatically lowers atomic operations and TLS
to nonatomic operations and non-TLS data when either are present and
the atomics or bulk-memory features are not present, respectively. The
resulting object is no longer thread-safe, so the linker has to be
told not to allow it to be linked into a module with shared
memory. This was previously done by disallowing the 'atomics' feature,
which prevented any objct with its atomic operations or TLS removed
from being linked with any object containing atomics or TLS, and
therefore preventing it from being linked into a module with shared
memory since shared memory requires atomics.
However, as of https://github.com/WebAssembly/threads/issues/144, the
validation rules are relaxed to allow atomic operations to validate
with unshared memories, which makes it perfectly safe to link an
object with stripped atomics and TLS with another object that still
contains TLS and atomics as long as the resulting module has an
unshared memory. To allow this kind of link, this patch disallows a
pseudo-feature 'shared-mem' rather than 'atomics' to communicate to
the linker that the object is not thread-safe. This means that the
'atomics' feature is available to accurately reflect whether or not an
object has atomics enabled.
As a drive-by tweak, this change also requires that bulk-memory be
enabled in addition to atomics in order to use shared memory. This is
because initializing shared memories requires bulk-memory operations.
Reviewers: aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79542
Summary:
This fixes a few things that are connected. It is very hard to provide
an independent test case for each of those fixes, because they are
interconnected and sometimes one masks another. The provided test case
triggers some of those bugs below but not all.
---
1. Background:
`placeBlockMarker` takes a BB, and if the BB is a destination of some
branch, it places `end_block` marker there, and computes the nearest
common dominator of all predecessors (what we call 'header') and places
a `block` marker there.
When we first place markers, we traverse BBs from top to bottom. For
example, when there are 5 BBs A, B, C, D, and E and B, D, and E are
branch destinations, if mark the BB given to `placeBlockMarker` with `*`
and draw a rectangle representing the border of `block` and `end_block`
markers, the process is going to look like
```
-------
----- |-----|
--- |---| ||---||
|A| ||A|| |||A|||
--- --> |---| --> ||---||
*B | B | || B ||
C | C | || C ||
D ----- |-----|
E *D | D |
E -------
*E
```
which means when we first place markers, we go from inner to outer
scopes. So when we place a `block` marker, if the header already
contains other `block` or `try` marker, it has to belong to an inner
scope, so the existing `block`/`try` markers should go _after_ the new
marker. This was the assumption we had.
But after placing all markers we run `fixUnwindMismatches` function.
There we do some control flow transformation and create some branches,
and we call `placeBlockMarker` again to place `block`/`end_block`
markers for those newly created branches. We can't assume that we are
traversing branch destination BBs from top to bottom now because we are
basically inserting some new markers in the middle of existing markers.
Fix:
In `placeBlockMarker`, we don't have the assumption that the BB given is
in the order of top to bottom, and when placing `block` markers,
calculates whether existing `block` or `try` markers are inner or
outer scopes with respect to the current scope.
---
2. Background:
In `fixUnwindMismatches`, when there is a call whose correct unwind
destination mismatches the current destination after initially placing
`try` markers, we wrap that with a new nested `try`/`catch`/`end` and
jump to the correct handler within the new `catch`. The correct handler
code is split as a separate BB from its original EH pad so it can be
branched to. Here's an example:
- Before
```
mbb:
call @foo <- Unwind destination mismatch!
wrong-ehpad:
catch
...
cont:
end_try
...
correct-ehpad:
catch
[handler code]
```
- After
```
mbb:
try (new)
call @foo
nested-ehpad: (new)
catch (new)
local.set n / drop (new)
br %handleri (new)
nested-end: (new)
end_try (new)
wrong-ehpad:
catch
...
cont:
end_try
...
correct-ehpad:
catch
local.set n / drop (new)
handler: (new)
end_try
[handler code]
```
Note that after this transformation, it is possible there are no calls
to actually unwind to `correct-ehpad` here. `call @foo` now
branches to `handler`, and there can be no other calls to unwind to
`correct-ehpad`. In this case `correct-ehpad` does not have any
predecessors anymore.
This can cause a bug in `placeBlockMarker`, because we may need to place
`end_block` marker in `handler`, and `placeBlockMarker` computes the
nearest common dominator of all predecessors. If one of `handler`'s
predecessor (here `correct-ehpad`) does not have any predecessors, i.e.,
no way of reaching it, we cannot correctly compute the common dominator
of predecessors of `handler`, and end up placing no `block`/`end`
markers. This bug actually sometimes masks the bug 1.
Fix:
When we have an EH pad that does not have any predecessors after this
transformation, deletes all its successors, so that its successors don't
have any dangling predecessors.
---
3. Background:
Actually the `handler` BB in the example shown in bug 2 doesn't need
`end_block` marker, despite it being a new branch destination, because
it already has `end_try` marker which can serve the same purpose. I just
put that example there for an illustration purpose. There is a case we
actually need to place `end_block` marker: when the branch dest is the
appendix BB. The appendix BB is created when there is a call that is
supposed to unwind to the caller ends up unwinding to a wrong EH pad. In
this case we also wrap the call with a nested `try`/`catch`/`end`,
create an 'appendix' BB at the very end of the function, and branch to
that BB, where we rethrow the exception to the caller.
Fix:
When we don't actually need to place block markers, we don't.
---
4. In case we fall through to the continuation BB after the catch block,
after extracting handler code in `fixUnwindMismatches` (refer to bug 2
for an example), we now have to add a branch to it to bypass the
handler.
- Before
```
try
...
(falls through to 'cont')
catch
handler body
end
<-- cont
```
- After
```
try
...
br %cont (new)
catch
end
handler body
<-- cont
```
The problem is, we haven't been placing a new `end_block` marker in the
`cont` BB in this case. We should, and this fixes it. But it is hard to
provide a test case that triggers this bug, because the current
compilation pipeline from .ll to .s does not generate this kind of code;
we always have a `br` after `invoke`. But code without `br` is still
valid, and we can have that kind of code if we have some pipeline
changes or optimizations later. Even mir test cases cannot trigger this
part for now, because we don't encode auxiliary EH-related data
structures (such as `WasmEHFuncInfo`) in mir now. Those functionalities
can be added later, but I don't think we should block this fix on that.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79324
We allocated a suitably aligned frame index so we know that all the values
have ABI alignment.
For MIPS this avoids using pair of lwl + lwr instructions instead of a
single lw. I found this when compiling CHERI pure capability code where
we can't use the lwl/lwr unaligned loads/stores and and were to falling
back to a byte load + shift + or sequence.
This should save a few instructions for MIPS and possibly other backends
that don't have fast unaligned loads/stores.
It also improves code generation for CodeGen/X86/pr34653.ll and
CodeGen/WebAssembly/offset.ll since they can now use aligned loads.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D78999
Summary:
As described in https://github.com/WebAssembly/simd/pull/209. This is
the final reorganization of the SIMD opcode space before
standardization. It has been landed in concert with corresponding
changes in other projects in the WebAssembly SIMD ecosystem.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79224
Summary:
In CFGStackify, `fixUnwindMismatches` function fixes unwind destination
mismatches created by `try` marker placement. For example,
```
try
...
call @qux ;; This should throw to the caller!
catch
...
end
```
When `call @qux` is supposed to throw to the caller, it is possible that
it is wrapped inside a `catch` so in case it throws it ends up unwinding
there incorrectly. (Also it is possible `call @qux` is supposed to
unwind to another `catch` within the same function.)
To fix this, we wrap this inner `call @qux` with a nested
`try`-`catch`-`end` sequence, and within the nested `catch` body, branch
to the right destination:
```
block $l0
try
...
try ;; new nested try
call @qux
catch ;; new nested catch
local.set n ;; store exnref to a local
br $l0
end
catch
...
end
end
local.get n ;; retrieve exnref back
rethrow ;; rethrow to the caller
```
The previous algorithm placed the nested `try` right before the `call`.
But it is possible that there are stackified instructions before the
call from which the call takes arguments.
```
try
...
i32.const 5
call @qux ;; This should throw to the caller!
catch
...
end
```
In this case we have to place `try` before those stackified
instructions.
```
block $l0
try
...
try ;; this should go *before* 'i32.const 5'
i32.const 5
call @qux
catch
local.set n
br $l0
end
catch
...
end
end
local.get n
rethrow
```
We correctly handle this in the first normal `try` placement phase
(`placeTryMarker` function), but failed to handle this in this
`fixUnwindMismatches`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77950
Summary:
D74269 added debug info to newly created instructions, including calls
to `malloc` and `free`, by taking debug info from existing instructions
around, whose debug info may or may not be empty.
But there are cases debug info is required by the IR verifier: when both
the caller and the callee functions have DISubprograms, meaning we
already have declarations to `malloc` or `free` with a DISubprogram
attached, newly created calls to `malloc` and `free` should have
non-empty debug info. This patch creates a non-empty dummy debug info in
this case to those calls to make the IR verifier pass.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45461.
Reviewers: dschuff
Subscribers: aprantl, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77784
Summary:
When we insert a call to the personality function wrapper
(`_Unwind_CallPersonality`) for a catch pad, we store some necessary
info in `__wasm_lpad_context` struct and pass it. One of the info is the
LSDA address for the function. For this, we insert a call to
`wasm.lsda()`, which will be lowered down to the address of LSDA, and
store it in a field in `__wasm_lpad_context`.
There are exceptions to this personality call insertion: catchpads for
`catch (...)` and cleanuppads (for destructors) don't need personality
function calls, because we don't need to figure out whether the current
exception should be caught or not. (They always should.)
There was a little optimization to `wasm.lsda()` call insertion. Because
the LSDA address is the same throughout a function, we don't need to
insert a store of `wasm.lsda()` return value in every catchpad. For
example:
```
try {
foo();
} catch (int) {
// wasm.lsda() call and a store are inserted here, like, in
// pseudocode,
// %lsda = wasm.lsda();
// store %lsda to a field in __wasm_lpad_context
try {
foo();
} catch (int) {
// We don't need to insert the wasm.lsda() and store again, because
// to arrive here, we have already stored the LSDA address to
// __wasm_lpad_context in the outer catch.
}
}
```
So the previous algorithm checked if the current catch has a parent EH
pad, we didn't insert a call to `wasm.lsda()` and its store.
But this was incorrect, because what if the outer catch is `catch (...)`
or a cleanuppad?
```
try {
foo();
} catch (...) {
// wasm.lsda() call and a store are NOT inserted here
try {
foo();
} catch (int) {
// We need wasm.lsda() here!
}
}
```
In this case we need to insert `wasm.lsda()` in the inner catchpad,
because the outer catchpad does not have one.
To minimize the number of inserted `wasm.lsda()` calls and stores, we
need a way to figure out whether we have encountered `wasm.lsda()` call
in any of EH pads that dominates the current EH pad. To figure that
out, we now visit EH pads in BFS order in the dominator tree so that we
visit parent BBs first before visiting its child BBs in the domtree.
We keep a set named `ExecutedLSDA`, which basically means "Do we have
`wasm.lsda()` either in the current EH pad or any of its parent EH
pads in the dominator tree?". This is to prevent scanning the domtree up
to the root in the worst case every time we examine an EH pad: each EH
pad only needs to examine its immediate parent EH pad.
- If any of its parent EH pads in the domtree has `wasm.lsda()`, this
means we don't need `wasm.lsda()` in the current EH pad. We also insert
the current EH pad in `ExecutedLSDA` set.
- If none of its parent EH pad has `wasm.lsda()`
- If the current EH pad is a `catch (...)` or a cleanuppad, done.
- If the current EH pad is neither a `catch (...)` nor a cleanuppad,
add `wasm.lsda()` and the store in the current EH pad, and add the
current EH pad to `ExecutedLSDA` set.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77423
This means the linker will be expect them be undefined at link time an
will generate imports from the `env` module rather than reporting
undefined externals.
Differential Revision: https://reviews.llvm.org/D77192
Summary:
The previous code for determining the innermost region in CFGSort was
not correct. We determine subregion relationship by domination of their
headers, i.e., if region A's header dominates region B's header, B is a
subregion of A. Previously we assumed that if a BB belongs to both a
loop and an exception, the region with fewer number of BBs is the
innermost one. This may not be true, because while WebAssemblyException
contains BBs in all its subregions (loops or exceptions), MachineLoop
may not, because MachineLoop does not contain BBs that don't have a path
to its header even if they are dominated by its header.
Loop header <---|
| |
Exception header |
| \ |
A B |
| \ |
| C |
| |
Loop latch |
| |
-------------|
For example, in this CFG, the loop does not contain B and C, because
they don't have a path back to the loops header. But for CFGSort we
consider the exception here belongs to the loop and the exception should
be a subregion of the loop and scheduled together.
So here we should use `WE->contains(ML->getHeader())` (but not
`ML->contains(WE->getHeader())`, for the stated region above).
This also fixes some comments and deletes `Regions` vector in
`RegionInfo` class, which was not used anywere.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77181
Fix the LowerGlobalDtors pass to run destructors in the same order as the
regular LLVM destructor lowering -- in reverse order. Adjacent
destructors with the same associated object are grouped, but destructors
are not reordered based on associated objects.
Differential Revision: https://reviews.llvm.org/D70685
Summary:
Swift ABI is based on basic C ABI described here https://github.com/WebAssembly/tool-conventions/blob/master/BasicCABI.md
Swift Calling Convention on WebAssembly is a little deffer from swiftcc
on another architectures.
On non WebAssembly arch, swiftcc accepts extra parameters that are
attributed with swifterror or swiftself by caller. Even if callee
doesn't have these parameters, the invocation succeed ignoring extra
parameters.
But WebAssembly strictly checks that callee and caller signatures are
same. https://github.com/WebAssembly/design/blob/master/Semantics.md#calls
So at WebAssembly level, all swiftcc functions end up extra arguments
and all function definitions and invocations explicitly have additional
parameters to fill swifterror and swiftself.
This patch support signature difference for swiftself and swifterror cc
is swiftcc.
e.g.
```
declare swiftcc void @foo(i32, i32)
@data = global i8* bitcast (void (i32, i32)* @foo to i8*)
define swiftcc void @bar() {
%1 = load i8*, i8** @data
%2 = bitcast i8* %1 to void (i32, i32, i32)*
call swiftcc void %2(i32 1, i32 2, i32 swiftself 3)
ret void
}
```
For swiftcc, emit additional swiftself and swifterror parameters
if there aren't while lowering. These additional parameters are added
for both callee and caller.
They are necessary to match callee and caller signature for direct and
indirect function call.
Differential Revision: https://reviews.llvm.org/D76049