To convert CTLZ to popcount we do
x = x | (x >> 1);
x = x | (x >> 2);
...
x = x | (x >>16);
x = x | (x >>32); // for 64-bit input
return popcount(~x);
This smears the most significant set bit across all of the bits
below it then inverts the remaining 0s and does a population count.
To support non-power of 2 types, the last shift amount must be
more than half of the size of the type. For i15, the last shift
was previously a shift by 4, with this patch we add another shift
of 8.
Fixes PR56457.
Differential Revision: https://reviews.llvm.org/D129431
Noticed while investigating the SystemZ regressions in D77804, prefer handling the knownbits analysis/simplification in the bitop nodes directly before falling back to SimplifyMultipleUseDemandedBits
visitInlineAsm() in SDAGBuilder was duplicating a lot of the code
in ParseConstraints(), in particular all the logic to determine the
operand value and constraint VT.
Rely on the data computed by ParseConstraints() instead, and update
its ConstraintVT implementation to match getCallOperandValEVT()
more precisely.
As far as I can tell what was happening in the original code is
that the getNode call receives the same operands as the original
node with different SDNodeFlags. The logic inside getNode detects
that the node already exists and intersects the flags into the
existing node and returns it. This results in Op and NewOp for the
TLO.CombineTo call always being the same node.
We may have already called CombineTo as part of the recursive handling.
A second call to CombineTo as we unwind the recursion overwrites
the previous CombineTo. I think this means any time we updated the
poison flags that was the only change that ends up getting made
and we relied on DAGCombiner to revisit and call SimplifyDemandedBits
again. The second time the poison flags wouldn't need to be dropped
and we would keep the CombineTo call from further down the recursion.
We can instead call setFlags to drop the poison flags and remove the
call to TLO.CombineTo. This way we keep the CombineTo from deeper in
the recursion which should be more efficient.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D129511
As suggested in the post-commit feedback for D128123,
we can ease the mask constraint to ignore the MSB
(and make the code easier to read by adjusting the check).
https://alive2.llvm.org/ce/z/bbvqWv
This patch restores calls to has_value to make it clear that we are
checking the presence of an optional value, not the underlying value.
This patch partially reverts d08f34b592.
Differential Revision: https://reviews.llvm.org/D129454
(Reapply after revert in e9ce1a5880 due to
Fuchsia test failures. Removed changes in lib/ExecutionEngine/ other
than error categories, to be checked in more detail and reapplied
separately.)
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
We already handled this case for add with a constant RHS. A
similar pattern can occur for sub with a constant left hand side.
Test cases use add and a mul representing (neg (shl X, C)) because
that's what I saw in the wild. The mul will be decomposed and then
the new transform can kick in.
Tests have not been committed, but this patch shows the changes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D128769
If all the demanded bits of the AND mask covering the inserted subvector 'X' are known to be one, then the mask isn't affecting the subvector at all.
In which case, if the base vector 'C' is undef/constant, then move the AND mask up to just (constant) fold it directly.
Addresses some of the regressions from D129150, particularly the cases where we're attempting to zero the upper elements of a widened vector.
Differential Revision: https://reviews.llvm.org/D129290
This is almost the same as the abandoned D48529, but it
allows splat vector constants too.
This replaces the x86-specific code that was added with
the alternate patch D48557 with the original generic
combine.
This transform is a less restricted form of an existing
InstCombine and the proposed SDAG equivalent for that
in D128080:
https://alive2.llvm.org/ce/z/OUm6N_
Differential Revision: https://reviews.llvm.org/D128123
This is done during type legalization since the target representation of
these nodes may not be valid until after type legalization, and after
type legalization the fact that these are dealing with i1 types may be
lost.
Differential Revision: https://reviews.llvm.org/D128996
Truncates and compares require some changes to generic legalisation functions
to use ElementCount instead of getNumElements.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D129082
Prior to this change, live variable operands passed to
`llvm.experimental.stackmap` would be emitted directly to target nodes,
meaning that they don't get legalised. The upshot of this is that LLVM
may crash when encountering illegally typed target nodes.
e.g. https://github.com/llvm/llvm-project/issues/21657
This change introduces a platform independent stackmap DAG node whose
operands are legalised as per usual, thus avoiding aforementioned
crashes.
Note that some kinds of argument are still not handled properly, namely
vectors, structs, and large integers, like i128s. These will need to be
addressed in follow-up changes.
Note also that this does not change the behaviour of
`llvm.experimental.patchpoint`. A follow up change will do the same for
this intrinsic.
Differential review:
https://reviews.llvm.org/D125680
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
This removes the insertvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This is very similar to the extractvalue removal from D125795.
insertvalue is also not supported in bitcode, so no auto-ugprade
is necessary.
ConstantExpr::getInsertValue() can be replaced with
IRBuilder::CreateInsertValue() or ConstantFoldInsertValueInstruction(),
depending on whether a constant result is required (with the latter
being fallible).
The ConstantExpr::hasIndices() and ConstantExpr::getIndices()
methods also go away here, because there are no longer any constant
expressions with indices.
Differential Revision: https://reviews.llvm.org/D128719
One motivation to add support for these types are the LD1Q/ST1Q
instructions in SME, for which we have defined a number of load/store
intrinsics which at the moment still take a `<vscale x 16 x i1>` predicate
regardless of their element type.
This patch adds basic support for the nxv1i1 type such that it can be passed/returned
from functions, as well as some basic support to support some existing tests that
result in a nxv1i1 type. It also adds support for splats.
Other operations (e.g. insert/extract subvector, logical ops, etc) will be
supported in follow-up patches.
Reviewed By: paulwalker-arm, efriedma
Differential Revision: https://reviews.llvm.org/D128665
`commonAlignment` is a shortcut to pick the smallest of two `Align`
objects. As-is it doesn't bring much value compared to `std::min`.
Differential Revision: https://reviews.llvm.org/D128345
These intrinsics are now fundemental for SVE code generation and have been
present for a year and a half, hence move them out of the experimental
namespace.
Differential Revision: https://reviews.llvm.org/D127976
Patch was reverted in 4c5f10a due to buildbot failures, now being
reapplied with updated AArch64 and RISCV tests.
This patch adds handling for the llvm.powi.* intrinsics in
BasicTTIImplBase::getIntrinsicInstrCost() and improves vectorization.
Closes#53887.
Differential Revision: https://reviews.llvm.org/D128172
According to the vector spec, mf8 is not supported for i8 if ELEN
is 32. Similarily mf4 is not suported for i16/f16 or mf2 for i32/f32.
Since RVVBitsPerBlock is 64 and LMUL is calculated as
((MinNumElements * ElementSize) / RVVBitsPerBlock) this means we
need to disable any type with MinNumElements==1.
For generic IR, these types will now be widened in type legalization.
For RVV intrinsics, we'll probably hit a fatal error somewhere. I plan
to work on disabling the intrinsics in the riscv_vector.h header.
Reviewed By: arcbbb
Differential Revision: https://reviews.llvm.org/D128286
We're slowly removing SelectionDAG::GetDemandedBits and replacing it with SimplifyMultipleUseDemandedBits, we no longer have any uses for the vector demanded elt variant.
This patch adds handling for the llvm.powi.* intrinsics in
BasicTTIImplBase::getIntrinsicInstrCost() and improves vectorization.
Closes#53887.
Differential Revision: https://reviews.llvm.org/D128172
An AArch64ISD::DUP is just a splat, where the known bits for each lane
are the same as the input. This teaches that to computeKnownBitsForTargetNode.
Problems arise for constants though, as a constant BUILD_VECTOR can be
lowered to an AArch64ISD::DUP, which SimplifyDemandedBits would then
turn back into a constant BUILD_VECTOR leading to an infinite cycle.
This has been prevented by adding a isTargetCanonicalConstantNode node
to prevent the conversion back into a BUILD_VECTOR.
Differential Revision: https://reviews.llvm.org/D128144
Similar to the existing (shl (srl x, c1), c2) fold
Part of the work to fix the regressions in D77804
Differential Revision: https://reviews.llvm.org/D125836
The VT we want to shrink to may not be legal especially after type
legalization.
Fixes PR56110.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D128135
WidenVecOp_INSERT_SUBVECTOR only supported cases where widening
effectively converts the insert into a copy. However, when the
widened subvector is no bigger than the vector being inserted into
and we can be sure there's no loss of data, we can simply emit
another INSERT_SUBVECTOR.
Fixes: #54982
Differential Revision: https://reviews.llvm.org/D127508
MinRCSize is 4 and prevents constrainRegClass from changing the
register class if the new class has size less than 4.
IMPLICIT_DEF gets a unique vreg for each use and will be removed
by the ProcessImplicitDef pass before register allocation. I don't
think there is any reason to prevent constraining the virtual register
to whatever register class the use needs.
The attached test case was previously creating a copy of IMPLICIT_DEF
because vrm8nov0 has 3 registers in it.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D128005
This helps handling a case where the BUILD_VECTOR has i16 element type
and i32 constant operands
t2: v8i16 = setcc t8, t17, setult:ch
t3: v8i16 = BUILD_VECTOR Constant:i32<1>, ...
t4: v8i16 = and t2, t3
t5: v8i16 = add t8, t4
This can be turned into t5: v8i16 = sub t8, t2, and allows us to remove
t3 and t4 from the DAG.
Differential Revision: https://reviews.llvm.org/D127354
This is modeled after the half-precision fp support. Two new nodes are
introduced for casting from and to bf16. Since casting from bf16 is a
simple operation I opted to always directly lower it to integer
arithmetic. The other way round is more complicated if you want to
preserve IEEE semantics, so it's handled by a new __truncsfbf2
compiler-rt builtin.
This is of course very bare bones, but sufficient to get a semi-softened
fadd on x86.
Possible future improvements:
- Targets with bf16 conversion instructions can now make fp_to_bf16 legal
- The software conversion to bf16 can be replaced by a trivial
implementation under fast math.
Differential Revision: https://reviews.llvm.org/D126953
Another issue unearthed by D127115
We take a long time to canonicalize an insert_vector_elt chain before being able to convert it into a build_vector - even if they are already in ascending insertion order, we fold the nodes one at a time into the build_vector 'seed', leaving plenty of time for other folds to alter it (in particular recognising when they come from extract_vector_elt resulting in a shuffle_vector that is much harder to fold with).
D127115 makes this particularly difficult as we're almost guaranteed to have the lost the sequence before all possible insertions have been folded.
This patch proposes to begin at the last insertion and attempt to collect all the (oneuse) insertions right away and create the build_vector before its too late.
Differential Revision: https://reviews.llvm.org/D127595
This patch allows SimplifyDemandedBits to call SimplifyMultipleUseDemandedBits in cases where the source operand has other uses, enabling us to peek through the shifted value if we don't demand all the bits/elts.
This helps with several of the regressions from D125836
In the same spirit as D73543 and in reply to https://reviews.llvm.org/D126768#3549920 this patch is adding support for `__builtin_memset_inline`.
The idea is to get support from the compiler to easily write efficient memory function implementations.
This patch could be split in two:
- one for the LLVM part adding the `llvm.memset.inline.*` intrinsics.
- and another one for the Clang part providing the instrinsic as a builtin.
Differential Revision: https://reviews.llvm.org/D126903
This should fix a number of shuffle regressions in D127115 where the re-ordered combines mean we fail to fold a EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT sequence into a BUILD_VECTOR if we extract from more than one vector source.
This matches what we do in IR. For the RISC-V test case, this allows
us to use -8 for the AND mask instead of materializing a constant in a register.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D127335
During lowering of memcmp/bcmp, the check for a size of 0 is done
in 2 different ways. In rare cases this can lead to a crash in
SystemZSelectionDAGInfo::EmitTargetCodeForMemcmp(). The root cause
is that SelectionDAGBuilder::visitMemCmpBCmpCall() checks for a
constant int value which is not yet evaluated. When the value is
turned into a SDValue, then the evaluation is done and results in
a ConstantSDNode. But EmitTargetCodeForMemcmp() expects the special
case of 0 length to be handled, which results in an assertion.
The fix is to turn the value into a SDValue, so that both functions
use the same check.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D126900
Extend the TypeWidenVector case of PromoteIntRes_BITCAST to work
with TypeSize directly rather than silently casting to unsigned.
To accomplish this I've extended TypeSize with an interface that
essentially allows TypeSize division when both operands have the
same number of dimensions.
There still exists combinations of scalable vector bitcasts that
cause compiler crashes. I call these out by adding "is missing"
entries to sve-bitcast.
Depends on D126957.
Fixes: #55114
Differential Revision: https://reviews.llvm.org/D127126
Bitcasting between unpacked scalable vector types of different
element counts is not a NOP because the live elements are laid out
differently.
01234567
e.g. nxv2i32 = XX??XX??
nxv4f16 = X?X?X?X?
Differential Revision: https://reviews.llvm.org/D126957
As noticed on D127115 - we were missing this fold, instead just having the shuffle(shuffle(x,undef,splatmask),undef) fold. We should be able to merge these into one using SelectionDAG::isSplatValue, but we'll need to match the shuffle's undef handling first.
This also exposed an issue in SelectionDAG::isSplatValue which was incorrectly propagating the undef mask across a bitcast (it was trying to just bail with a APInt::isSubsetOf if it found any undefs but that was actually the wrong way around so didn't fire for partial undef cases).
I can't remove the function just yet as it is used in the generated .inc files.
I would also like to provide a way to compare alignment with TypeSize since it came up a few times.
Differential Revision: https://reviews.llvm.org/D126910
These assert that there are no "useless" assertzext/assertsext nodes
(that assert a wider width than a following trunc), but I don't think
there is anything preventing such nodes from reaching this code.
I don't think the assertion is relevant for correctness of this
transform either -- if such an assert is present, then the other
one will always be to a smaller width, and we'll pick that one.
The assertion dates back to D37017.
Fixes https://github.com/llvm/llvm-project/issues/55846.
Differential Revision: https://reviews.llvm.org/D126952
Move the code that was added for D126896 after the normal recursive calls
to computeKnownBits. This allows us to calculate trailing zeros.
Previously we would break out of the switch before the recursive calls.