After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
In the case of a fully redundant load LI dominated by an equivalent load V, GVN
should always preserve the original debug location of V. Otherwise, we risk to
introduce an incorrect stepping.
If V has debug info, then clearly it should not be modified. If V has a null
debugloc, then it is still potentially incorrect to propagate LI's debugloc
because LI may not post-dominate V.
Differential Revision: https://reviews.llvm.org/D27468
llvm-svn: 288903
[recommitting after the fix in r288307]
This requires some changes to the opt-diag API. Hal and I have
discussed this at the Dev Meeting and came up with a streaming delimiter
(setExtraArgs) to solve this.
Arguments after this delimiter are only included in the optimization
records and not in the remarks printed in the compiler output. (Note,
how in the test the content of the YAML file changes but the remarks on
the compiler output don't.)
This implements the green GVN message with a bug fix at line
http://lab.llvm.org:8080/artifacts/opt-view_test-suite/build/SingleSource/Benchmarks/Dhrystone/CMakeFiles/dry.dir/html/_org_test-suite_SingleSource_Benchmarks_Dhrystone_dry.c.html#L446
The fix is that now we properly include the constant value in the
message: "load of type i32 eliminated in favor of 7"
Differential Revision: https://reviews.llvm.org/D26489
llvm-svn: 288380
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
llvm-svn: 288307
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
llvm-svn: 284796
In theory this could be generalized to move anything where
we prove the operands are available, but that would require
rewriting PRE. As NewGVN will hopefully come soon, and we're
trying to rewrite PRE in terms of NewGVN+MemorySSA, it's probably
not worth spending too much time on it. Fix provided by
Daniel Berlin!
llvm-svn: 284311
Refactor replaceDominatedUsesWith to have a flag to control whether to replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
llvm-svn: 280949
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24170
llvm-svn: 280427
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Fix for PR 28418.
opt never finishes compiling a test when -gvn option is passed.
The problem is caused by the fact that GVN fails to fold a constant expression.
Differential Revision: https://reviews.llvm.org/D22185
llvm-svn: 275483
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
llvm-svn: 273753
Again, fairly simple. Only change is ensuring that we actually copy the property of the load correctly. The aliasing legality constraints were already handled by the FRE patches. There's nothing special about unorder atomics from the perspective of the PRE algorithm itself.
llvm-svn: 268804
You'll note there are essentially no code changes here. Cross block FRE heavily reuses code from the block local FRE. All of the tricky parts were done as part of the previous patch and the refactoring that removed the original code duplication.
llvm-svn: 268775
This patch is the first in a small series teaching GVN to optimize unordered loads aggressively. This change just handles block local FRE because that's the simplest thing which lets me test MDA, and the AvailableValue pieces. Somewhat suprisingly, MDA appears fine and only a couple of small changes are needed in GVN.
Once this is in, I'll tackle non-local FRE and PRE. The former looks like a natural extension of this, the later will require a couple of minor changes.
Differential Revision: http://reviews.llvm.org/D19440
llvm-svn: 268770
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
As suggested by Chandler in his review comments for D18662, this
follow-on patch renames some variables in GetLoadValueForLoad and
CoerceAvailableValueToLoadType to hopefully make it more obvious
which variables hold value sizes and which hold load/store sizes.
No functional change intended.
llvm-svn: 265687
When GVN wants to re-interpret an already available value in a smaller
type, it needs to right-shift the value on big-endian systems to ensure
the correct bytes are accessed. The shift value is the difference of
the sizes of the two types.
This is correct as long as both types occupy multiples of full bytes.
However, when one of them is a sub-byte type like i1, this no longer
holds true: we still need to shift, but only to access the correct
*byte*. Accessing bits within the byte requires no shift in either
endianness; e.g. an i1 resides in the least-significant bit of its
containing byte on both big- and little-endian systems.
Therefore, the appropriate shift value to be used is the difference of
the *storage* sizes of the two types. This is already handled correctly
in one place where such a shift takes place (GetStoreValueForLoad), but
is incorrect in two other places: GetLoadValueForLoad and
CoerceAvailableValueToLoadType.
This patch changes both places to use the storage size as well.
Differential Revision: http://reviews.llvm.org/D18662
llvm-svn: 265684
member type.
Because of how this type is used by the ValueTable, it cannot actually
have hidden visibility. GCC actually nicely warns about this but Clang
just silently ... I don't even know. =/ We should do a better job either
way though.
This should resolve a bunch of the GCC warnings about visibility that
the port of GVN triggered and make the visibility story a bit more
correct.
llvm-svn: 263250
much to my horror, so use variables to fix it in place.
This terrifies me. Both basic-aa and memdep will provide more precise
information when the domtree and/or the loop info is available. Because
of this, if your pass (like GVN) requires domtree, and then queries
memdep or basic-aa, it will get more precise results. If it does this in
the other order, it gets less precise results.
All of the ideas I have for fixing this are, essentially, terrible. Here
I've just caused us to stop having unspecified behavior as different
implementations evaluate the order of these arguments differently. I'm
actually rather glad that they do, or the fragility of memdep and
basic-aa would have gone on unnoticed. I've left comments so we don't
immediately break this again. This should fix bots whose host compilers
evaluate the order of arguments differently from Clang.
llvm-svn: 263231
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
need to be changed for porting to the new pass manager.
Also sink the comment on the ValueTable class back to that class instead
of it dangling on an anonymous namespace.
No functionality changed.
llvm-svn: 263084
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.
There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.
Differential Revision: http://reviews.llvm.org/D17962
llvm-svn: 263082