Handle out-of-order COMDAT second symbols. In llvm codegen, the second symbol of COMDAT sequence always follows the first symbol in the global symbol list. But, when the object file came from MSVC compiler, these can come in out of order.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D129721
This prevents the dead strip of associative comdat section when parent section is alive.
Reviewed By: sgraenitz
Differential Revision: https://reviews.llvm.org/D129720
DWARFRecordSectionSplitter pre-builds a splitBlock cache, but wasn't passing it
to the call to splitBlock. This was an oversight in the original patch.
Adds initial COFF support in JITLink. This is able to run a hello world c program in x86 windows successfully.
Implemented
- COFF object loader
- Static local symbols
- Absolute symbols
- External symbols
- Weak external symbols
- Common symbols
- COFF jitlink-check support
- All COMDAT selection type execpt largest
- Implicit symobl size calculation
- Rel32 relocation with PLT stub.
- IMAGE_REL_AMD64_ADDR32NB relocation
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D128968
(Reapply after revert in e9ce1a5880 due to
Fuchsia test failures. Removed changes in lib/ExecutionEngine/ other
than error categories, to be checked in more detail and reapplied
separately.)
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
PointerToGOT lowering was accidentally changed from Delta32 to Delta64 in
db37225803. This patch moves it back to Delta32 and renames the generic
aarch64 edge to Delta32ToGOT to avoid the ambiguity.
No test case yet -- I haven't figured out how to write a succinct test case
(this typically appears in CIEs in eh-frames).
It is fine to not implement and ignore linker relaxation for now, but
we need to check the alignment. Luckily, an alignment of only 2 bytes
is the most common case when interpreting C++ code in clang-repl, and
already guaranteed by the length of compressed instructions.
Differential Revision: https://reviews.llvm.org/D129159
Implements TLS descriptor relocations in JITLink ELF/AARCH64 backend and support the relevant runtime functions in ELFNixPlatform.
Unlike traditional TLS model, TLS descriptor model requires linker to return the "offset" from thread pointer via relocaiton not the actual pointer to thread local variable. There is no public libc api for adding new allocations to TLS block dynamically which thread pointer points to. So, we support this by taking delta from thread base pointer to the actual thread local variable in our allocated section.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D128601
Running iwyu-diff on LLVM codebase since fb67d683db detected a few
regressions, fixing them.
The impact on preprocessed output is negligible: -4k lines.
Logs enum name of unsupported relocation type. This also changes elf/x86 to use common util function (getELFRelocationTypeName) inside llvm object module.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127715
Implements R_AARCH64_MOVW_UABS_G*_NC fixup edges. These relocation entries can be generated when code is compiled without a PIC flag. With this patch, clang-repl can printf Hello World with ObjectLinkerLayer on aarch64 linux.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127585
Implements MoveWide16 generic edge kind that can be used to patch MOVZ/MOVK (imm16) instructions.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127584
Lift fixup functions from aarch64.cpp to aarch64.h so that they have better chance of getting inlined. Also, adds some comments documenting the purpose of functions.
Reviewed By: sgraenitz
Differential Revision: https://reviews.llvm.org/D127559
Unifies GOT/PLT table managers of ELF and MachO on aarch64 architecture. Additionally, it migrates table managers from PerGraphGOTAndPLTStubsBuilder to generic crtp TableManager.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127558
An API to wrap ExecutionSession::lookup, this allows C API clients to use async
lookup.
The immediate motivation for adding this is to simplify upcoming
definition-generator unit tests.
As we're adding more tests that need to convert between C and C++ flag values
this commit adds helper functions to support this. This patch also updates the
CAPIDefinitionGenerator to use these new utilities.
Implements eh frame handling by using generic EHFrame passes. The c++ exception handling works correctly with this change.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127063
Removes CodeAlignmentFactor and DataAlignmentFactor validation in EHFrameEdgeFixer. I observed some of aarch64 elf files generated by clang contains CIE record with code_alignment_factor = 4 or data_alignment_factor = -8. code_alignment_factor and data_alignment_factor are used by call fram instruction that should be correctled handled by libunwind.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127062
Implements Procedure Linkage Table (PLT) for ELF/AARCH64. The aarch64 linux calling convention also uses r16 as the intra-procedure-call scratch register same as MachO/ARM64. We can use the same stub sequence for this reason.
Also, BR regiseter doesn't touch X30 register. External function call by BL instruction (touched by CALL26 relocation) will set X30 to the original PC + 4, which is the intended behavior. External function call by B instruction (touched by JUMP26 relocation) doesn't requite to set X30, so the patch will be correct in this case too.
Reference: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#611general-purpose-registers
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127061
Implements R_AARCH64_JUMP26. We can use the same generic aarch64 Branch26 edge since B instruction and BL nstruction have the same sized&offseted immediate field, and the relocation address calculation is the same.
Reference: ELF for the ARM ® 64-bit Architecture Tabel 4-10, ARM Architecture Reference Manual ® ARMv8, for ARMv8-A architecture profile C6.2.24, C6.2.31
Reviewed By: sgraenitz
Differential Revision: https://reviews.llvm.org/D127059
This patch implements R_AARCH64_PREL64 and R_AARCH64_PREL32 relocations that is
used in eh frame pointers. The test case utlizes obj2yaml tool to create an
artifical eh frame that generates related relocation types.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127058
This patch implements two most commonly used Global Offset Table relocations in
ELF/AARCH64: R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC. It
implements the GOT table manager by extending the existing
PerGraphGOTAndPLTStubsBuilder. A future patch will unify this with the MachO
implementation to produce a generic aarch64 got table manager.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D127057
Implement R_AARCH64_ABS64 relocation entry. This relocation type is generated
when creating a static function pointer to symbol.
Reviewed By: lhames, sgraenitz
Differential Revision: https://reviews.llvm.org/D126658
Implement R_AARCH64_LDST*_ABS_LO12_NC relocaiton entries by reusing PageOffset21
generic relocation edge. The difference between MachO backend is that in ELF,
the shift value is explicitly given by relocation type. lld generates the
relocation type that matches with instruction bitwidth, so getting the shift
value implicitly from instruction bytes should be fine in typical use cases.
The separate isLoadStoreImm12 predicate will be used for validating ELF/aarch64
ldst relocation types.
Reviewed By: lhames, sgraenitz
Differential Revision: https://reviews.llvm.org/D126628
This patch moves the aarch64 fixup logic from the MachO/arm64 backend to
aarch64.h header so that it can be re-used in the ELF/aarch64 backend. This
significantly expands relocation support in the ELF/aarch64 backend.
Reviewed By: lhames, sgraenitz
Differential Revision: https://reviews.llvm.org/D126286
It's idiomatic to require that plugins (especially platform plugins) be
installed to handle special edge kinds. If the plugins are not installed and an
object is loaded that uses one of the special edge kinds then we want to error
out rather than asserting.
Adds support for pointer encodings commonly used in large/static models,
including non-pcrel, sdata/udata8, indirect, and omit.
Also refactors pointer-encoding handling to consolidate error generation inside
common functions, rather than callees of those functions.
This function had been assuming a 1-byte alignment, which isn't always correct.
This commit updates it to take the alignment from the __cstring section.
The key change is to the createContentBlock call, but the surrounding code is
updated with clearer debugging output to support the testcase (and any future
debugging work).
The sort should have been lexicographic, but wasn't. This resulted in us
choosing a common symbol at address zero over the intended target function,
leading to a crash.
This patch also moves sorting up to the start of the pass, which means that we
only need to hold on to the canonical symbol at each address rather than a list
of candidates.
With 229d576b31 the class EHFrameSplitter was renamed to DWARFRecordSectionSplitter. This change merely moves it to it's own .cpp/.h file
Differential Revision: https://reviews.llvm.org/D121721
EHFrameSplitter does the exact same work to split up the eh_frame as it would need for any section that follows the DWARF record, therefore this patch just changes the name of it to DWARFRecordSectionSplitter to be more general.
Differential Revision: https://reviews.llvm.org/D121486
This patch refactors the range checking function to make it compatible with all relocation types and supports range checking for R_RISCV_BRANCH. Moreover, it refactors the alignment check functions.
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D117946
This patch removes the unintended resolution of locally scoped absolute symbols
(which was causing unexpected definition errors).
It stops using the JITSymbolFlags::Absolute flag (it isn't set or used elsewhere,
and causes mismatch-flags asserts), and adds JITSymbolFlags::Exported to default
scoped absolute symbols.
Finally, we now set the scope of absolute symbols correctly in
MachOLinkGraphBuilder.
This patch supports the R_RISCV_JAL relocation.
Moreover, it will fix the extractBits function's behavior as it extracts Size + 1 bits.
In the test ELF_jal.s:
Before:
```
Hi: 4294836480
extractBits(Hi, 12, 8): 480
```
After:
```
Hi: 4294836480
extractBits(Hi, 12, 8): 224
```
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D117975
This patch supports the R_RISCV_JAL relocation.
Moreover, it will fix the extractBits function's behavior as it extracts Size + 1 bits.
In the test ELF_jal.s:
Before:
```
Hi: 4294836480
extractBits(Hi, 12, 8): 480
```
After:
```
Hi: 4294836480
extractBits(Hi, 12, 8): 224
```
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D117975
In D116573, the relocation behavior of R_RISCV_BRANCH didn't consider that branch instruction like 'bge' has a branch target address which is given as a PC-relative offset, sign-extend and multiplied by 2.
Although the target address is a 12-bits number, acctually its range is [-4096, 4094].
This patch fix it.
Differential Revision: https://reviews.llvm.org/D118151
Summary:
This is the first path to support more relocation types on aarch64.
The patch just uses the isInt<N> to replace fitsRangeSignedInt.
Test Plan:
check-all
Differential Revision: https://reviews.llvm.org/D118231
with fixes
This reapply `de872382951572b70dfaefe8d77eb98d15586115`, which was
reverted in `fdb6578514dd3799ad23c8bbb7699577c0fb414d`
Add `# REQUIRES: asserts` in test file `anonymous_symbol.s` to disable
this test for non-debug build
This patch supports R_RISCV_SET* and R_RISCV_32_PCREL relocations in JITLink.
Reviewed By: StephenFan
Differential Revision: https://reviews.llvm.org/D117082
In RISCV, temporary symbols will be used to generate dwarf, eh_frame sections..., and will be placed in object code's symbol table. However, LLVM does not use names on these temporary symbols. This patch add anonymous symbols in LinkGraph for these temporary symbols.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D116475
ELF object files can contain duplicated sections (thus section symbols
as well), espeically when comdats/section groups are present. This patch
adds support for generating LinkGraph from object files that have
duplicated section names. This is the first step to properly model
comdats/section groups.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D114753
This reapplies 253ce92844, which was reverted in
66b2ed477f due to bot failures.
I have added the `-phony-externals` option added, which should fix the
unresolved symbol errors.
This patch makes jitlink to report an out of range error when the fixup value out of range
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D107328
This is needed for DWARF eh-frame exception handling on AArch64.
https://github.com/llvm/llvm-project/issues/52921.
Original patch by David Nadlinger <code@klickverbot.at> (thanks David!),
testcase and comments added by me.
This consistent with ld64's treatment of the GOT, but the main aim here is a
short-term workaround for a bad interaction between stub code sequences and
memory layout: Stubs use LDRLiteral19 relocations to reference the GOT, but
BasicLayout currently puts RW- segments between R-- and R-X segments -- a large
RW- segment (or a large R-- for that matter) can cause the relocation to fail
with an out-of-range error.
Putting the GOT in R-X fixes this efficiently in practice. A more robust fix
will be to use a longer code sequence to materialize the GOT pointer and then
rewrite the stub to use a shorter sequence where possible.
The previous error message only provided the address of the anonymous symbol.
Knowing the containing section makes the error easier to diagnose at a glance.
runFinalizeActions takes an AllocActions vector and attempts to run its finalize
actions. If any finalize action fails then all paired dealloc actions up to the
failing pair are run, and the error(s) returned. If all finalize actions succeed
then a vector containing the dealloc actions is returned.
runDeallocActions takes a vector<WrapperFunctionCall> containing dealloc action
calls and runs them all, returning any error(s).
These helpers are intended to simplify the implementation of
JITLinkMemoryManager::InFlightAlloc::finalize and
JITLinkMemoryManager::deallocate overrides by taking care of execution (and
potential roll-back) of allocation actions.
This re-applies 133f86e954, which was reverted in
c5965a411c while I investigated bot failures.
The original failure contained an arithmetic conversion think-o (on line 419 of
EHFrameSupport.cpp) that could cause failures on 32-bit platforms. The issue
should be fixed in this patch.
This patch makes jitlink to report an out of range error when the fixup value out of range
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D107328
Address the advice proposed at patch D105429 . Use [Low, Low+size) to represent bits.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D107250
R_X86_64_PLT32 explicitly represents the '-4' PC-adjustment in the relocation's
addend, but JITLink's x86_64::Branch32PCRel includes the PC-adjustment
implicitly. We have been zeroing the addend to account for the difference, but
this breaks for branches to non-zero offsets past labels. This patch updates the
relocation parsing code to unconditionally adjust the offset by '+4' instead.
For branches directly to labels the result is still 0, for branches to offsets
past labels the result is the correct addend for x86_64::Branch32PCRel.
Size 0 sections can have symbols that have size 0. Build those sections
and symbols into the LinkGraph so they can be used properly if needed.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D114749
Add support for reading extended table in ELF object file. This allows
JITLink to support ELF object files with many sections.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D114747
Fix `splitBlock` so that it can handle the case when the block being
split has symbols span across the split boundary. This is an error
case in general but for EHFrame splitting on macho platforms, there is an
anonymous symbol that marks the entire block. Current implementation
will leave a symbol that is out of bound of the underlying block. Fix
the problem by dropping such symbols when the block is split.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D113912
This reapplies e1933a0488 (which was reverted in
f55ba3525e due to bot failures, e.g.
https://lab.llvm.org/buildbot/#/builders/117/builds/2768).
The bot failures were due to a missing symbol error: We use the input object's
mangling to decide how to mangle the debug-info registration function name. This
caused lookup of the registration function to fail when the input object
mangling didn't match the host mangling.
Disbaling the test on non-Darwin platforms is the easiest short-term solution.
I have filed https://llvm.org/PR52503 with a proposed longer term solution.
This commit adds a new plugin, GDBJITDebugInfoRegistrationPlugin, that checks
for objects containing debug info and registers any debug info found via the
GDB JIT registration API.
To enable this registration without redundantly representing non-debug sections
this plugin synthesizes a new embedded object within a section of the LinkGraph.
An allocation action is used to make the registration call.
Currently MachO only. ELF users can still use the DebugObjectManagerPlugin. The
two are likely to be merged in the near future.
Only search within the requested section, and allow one-past-then-end addresses.
This is needed to support section-end-address references to sections with no
symbols in them.
We need to skip the length field when generating error strings.
No test case: This hand-hacked deserializer should be removed in the near future
once JITLink can use generic ORC APIs (including SPS and WrapperFunction).
Alloc actions should return a CWrapperFunctionResult. JITLink does not have
access to this type yet, due to library layering issues, so add a cut-down
version with a fixme.
Enables the arm64 MachO platform, adds basic tests, and implements the
missing TLV relocations and runtime wrapper function. The TLV
relocations are just handled as GOT accesses.
rdar://84671534
Differential Revision: https://reviews.llvm.org/D112656
This lifts the global offset table and procedure linkage table builders out of
ELF_x86_64.h and into x86_64.h, renaming them with generic names
x86_64::GOTTableBuilder and x86_64::PLTTableBuilder. MachO_x86_64.cpp is updated
to use these classes instead of the older PerGraphGOTAndStubsBuilder tool.
Moves visitEdge into the TableManager derivatives, replacing the fixEdgeKind
methods in those classes. The visitEdge method takes on responsibility for
updating the edge target, as well as its kind.
This patch add a TableManager which reponsible for fixing edges that need entries to reference the target symbol and constructing such entries.
In the past, the PerGraphGOTAndPLTStubsBuilder pass was used to build GOT and PLT entry, and the PerGraphTLSInfoEntryBuilder pass was used to build TLSInfo entry. By generalizing the behavior of building entry, I added a TableManager which could be reused when built GOT, PLT and TLSInfo entries.
If this patch makes sense and can be accepted, I will apply the TableManager to other targets(MachO_x86_64, MachO_arm64, ELF_riscv), and delete the file PerGraphGOTAndPLTStubsBuilder.h
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D110383
Negative deltas for LDRLiteral19 have their high bits set. If these bits aren't
masked out then they will overwrite other instruction bits, leading to a bogus
encoding.
This long-standing relocation bug was exposed by e50aea58d5, "[JITLink][ORC]
Major JITLinkMemoryManager refactor.", which caused memory layouts to be
reordered, which in turn lead to a previously unseen negative delta. (Unseen
because LDRLiteral19s were only created in JITLink passes where they always
pointed at segments that were layed-out-after in the old layout).
No testcase yet: Our existing regression test infrastructure is good at checking
that operand bits are correct, but provides no easy way to test for bad opcode
bits. I'll have a think about the right way to approach this.
https://llvm.org/PR52153
Adds explicit narrowing casts to JITLinkMemoryManager.cpp.
Honors -slab-address option in llvm-jitlink.cpp, which was accidentally
dropped in the refactor.
This effectively reverts commit 6641d29b70.