The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The inliner requires two additions:
fixupAssignments - Update inlined instructions' DIAssignID metadata so that
inlined DIAssignID attachments are unique to the inlined instance.
trackInlinedStores - Treat inlined stores to caller-local variables
(i.e. callee stores to argument pointers that point to the caller's allocas) as
assignments. Track them using trackAssignments, which is the same method as is
used by the AssignmentTrackingPass. This means that we're able to detect stale
memory locations due to DSE after inlining. Because the stores are only tracked
_after_ inlining, any DSE or movement of stores _before_ inlining will not be
accounted for. This is an accepted limitation mentioned in the RFC.
One change is also required:
Update CloneBlock to preserve debug use-before-defs. Otherwise the assignments
will be dropped due to having the intrinsic operands replaced with empty
metadata (see use-before-def.ll in this patch and this related discourse post.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133318
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Update simplifycfg:
sinkLastInstruction - preserve debug use-before-defs.
SpeculativelyExecuteBB - replace the value component of dbg.assign intrinsics
when stores are hoisted and merged using a select, and don't delete them.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133310
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Update the RemoveRedundantDbgInstrs utility to avoid sometimes losing
information when deleting dbg.assign intrinsics.
removeRedundantDbgInstrsUsingBackwardScan - treat dbg.assign intrinsics that
are not linked to any instruction just like dbg.values. That is, in a block of
contiguous debug intrinsics, delete all other than the last definition for a
fragment. Leave linked dbg.assign intrinsics in place.
removeRedundantDbgInstrsUsingForwardScan - Don't delete linked dbg.assign
intrinsics and don't delete the next intrinsic found even if it would otherwise
be eligible for deletion.
remomveUndefDbgAssignsFromEntryBlock - Delete undef and unlinked dbg.assign
intrinsics encountered in the entry block that come before non-undef
non-unlinked intrinsics for the same variable.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133294
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The changes for assignment tracking in mem2reg don't require much of a
deviation from existing behaviour. dbg.assign intrinsics linked to an alloca
are treated much in the same way as dbg.declare users of an alloca, except that
we don't insert dbg.value intrinsics to describe assignments when there is
already a dbg.assign intrinsic present, e.g. one linked to a store that is
going to be removed.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133295
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Plumb in salvaging for the address part of dbg.assign intrinsics.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133293
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add method:
Instruction::mergeDIAssignID(
ArrayRef<const Instruction* > SourceInstructions)
which merges the DIAssignID metadata attachments on `SourceInstructions` and
`this` and replaces uses of the original IDs with the new shared one.
This is used when stores are merged, for example sinking stores out of a
if-diamond CFG or vectorizing contiguous stores.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133291
Reverted in b22d80dc6a.
Move getDebugValueLoc so that it can be accessed from DebugInfo.h for the
Assignment Tracking patch stack and remove redundant parameter Src.
Reviewed By: jryans
Differential Revision: https://reviews.llvm.org/D132357
This reverts commit 80378a4ca7.
I am reverting this patch because I need to revert 171f7024cc and without reverting this patch, reverting 171f7024cc causes conflicts.
Patch 171f7024cc introduced a cyclic dependancy in the module build.
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/48197/consoleFull#-69937453049ba4694-19c4-4d7e-bec5-911270d8a58c
In file included from <module-includes>:1:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/Argument.h:18:10: fatal error: cyclic dependency in module 'LLVM_IR': LLVM_IR -> LLVM_intrinsic_gen -> LLVM_IR
^
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
While building module 'LLVM_IR' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:
In file included from <module-includes>:12:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/DebugInfo.h:24:10: fatal error: could not build module 'LLVM_intrinsic_gen'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
In file included from <module-includes>:15:
In file included from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCContext.h:23:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:10: fatal error: could not build module 'LLVM_IR'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:10: fatal error: could not build module 'LLVM_MC'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
4 errors generated.
Move getDebugValueLoc so that it can be accessed from DebugInfo.h for the
Assignment Tracking patch stack and remove redundant parameter Src.
Reviewed By: jryans
Differential Revision: https://reviews.llvm.org/D132357
It is possible that we can do better on some of these transforms
by passing some subset of attributes, but we were not doing that
in any of the changed code. So it's better to give that a name
to indicate we're clearing attributes or make that more obvious
by using the default-constructed empty list.
This switches everything to use the memory attribute proposed in
https://discourse.llvm.org/t/rfc-unify-memory-effect-attributes/65579.
The old argmemonly, inaccessiblememonly and inaccessiblemem_or_argmemonly
attributes are dropped. The readnone, readonly and writeonly attributes
are restricted to parameters only.
The old attributes are auto-upgraded both in bitcode and IR.
The bitcode upgrade is a policy requirement that has to be retained
indefinitely. The IR upgrade is mainly there so it's not necessary
to update all tests using memory attributes in this patch, which
is already large enough. We could drop that part after migrating
tests, or retain it longer term, to make it easier to import IR
from older LLVM versions.
High-level Function/CallBase APIs like doesNotAccessMemory() or
setDoesNotAccessMemory() are mapped transparently to the memory
attribute. Code that directly manipulates attributes (e.g. via
AttributeList) on the other hand needs to switch to working with
the memory attribute instead.
Differential Revision: https://reviews.llvm.org/D135780
SpeculativelyExecuteBB(), which converts a branch + phi structure
into a select, currently bails out if the block contains an assume
(because it is not speculatable).
Adjust the fold to ignore ephemeral values (i.e. assumes and values
only used in assumes) for cost modelling purposes, and drop them
when performing the fold.
Theoretically, we could try to preserve the assume information by
generating a assume(br_cond || assume_cond) style assume, but this
is very unlikely to to be useful (because we don't do anything
useful with assumes of this form) and it would make things
substantially more complicated once we take operand bundle assumes
into account (which don't really support a || operation).
I'd prefer not to do that without good motivation.
Differential Revision: https://reviews.llvm.org/D137339
Using a DebugVariable as the set key rather than std::pair<DIVariable *,
DIExpression *> ensures we don't accidently confuse multiple instances of
inlined variables.
Reviewed By: jryans
Differential Revision: https://reviews.llvm.org/D133303
Use DL-aware ConstantFoldCompareInstOperands() API instead of
ConstantExpr API. The practical effect of this is that SCCP can
now fold comparisons that require DL.
Relative to the previous attempt, this also updates the
ValueLattice unit tests.
-----
Resolve the TODO about incorrect getCompare() behavior. This can
be made more precise (e.g. by materializing the undef value and
performing constant folding on it), but for now just return an
unknown result to fix the correctness issue.
This should be NFC in terms of user-visible behavior, because the
only user of this method (SCCP) was already guarding against
UndefValue results.
Resolve the TODO about incorrect getCompare() behavior. This can
be made more precise (e.g. by materializing the undef value and
performing constant folding on it), but for now just return an
unknown result.
The existing way of creating the predicate in the guard blocks uses
a boolean value per outgoing block. This increases the number of live
booleans as the number of outgoing blocks increases. The new way added
in this change is to store one integer to represent the outgoing block
we want to branch to, then at each guard block, an integer equality
check is performed to decide which a specific outgoing block is taken.
Using an integer reduces the number of live values and decreases
register pressure especially in cases where there are a large number
of outgoing blocks. The integer based approach is used when the
number of outgoing blocks crosses a threshold, which is currently set
to 32.
Patch by Ruiling Song.
Differential review: https://reviews.llvm.org/D127831
The `FunctionSpecialization` pass needs loop analysis results for its
cost function. For this purpose, it computes the `DominatorTree` and
`LoopInfo` for a function in `getSpecializationBonus`. This function,
however, is called O(number of call sites x number of arguments), but
the DominatorTree/LoopInfo can be computed just once.
This patch plugs into the PassManager infrastructure to obtain
LoopInfo for a function and removes ad-hoc computation from
`getSpecializatioBonus`.
Reviewed By: ChuanqiXu, labrinea
Differential Revision: https://reviews.llvm.org/D136332
This reverts commit bd7949bcd8.
Revert this patch since reviwers have different opinions regarding
the approach in post-commit review.
Will open RFC for further discussion.
Differential Revision: https://reviews.llvm.org/D132408
This teaches the SCCP Solver how to constant fold more intrinsics. Constant
folding appears to be just as good as D115737 but much, much lower in code
change impact as suggested by nikic.
The constrained floating-point intrinsics all take at least one metadata
argument and were the motivation for the change.
Differential Revision: https://reviews.llvm.org/D136466
Additional SCEV verification highlighted a case where the cached loop
dispositions where incorrect after simplifying a condition in IndVars
and moving the user in LoopDeletion. Fix it by invalidating ICmp and all
its users.
Fixes#58515.
This implements IR and bitcode support for the memory attribute,
as specified in https://reviews.llvm.org/D135597.
The new attribute is not used for anything yet (and as such, the
old memory attributes are unaffected).
Differential Revision: https://reviews.llvm.org/D135592
Currently, compiling a program with the `-pg` flag will result in an
undefined symbol error for `.mcount`. This revision fixes the call to
use `__mcount`, which requires a pointer argument to a pointer-sized
object (unique per inserted call) on AIX.
This is only a partial fix. This patch should fix the `-pg` flag's
behaviour on AIX to work with code you are compiling, but it will not
link against standard libraries with `mcount` instrumentation calls. The
next step is to add profiled libraries to the linker search paths in the
Clang driver for the AIX toolchain when linking with `-pg`.
Differential Review: https://reviews.llvm.org/D135384
Followup to D135962 to rename remaining uses of
FunctionModRefBehavior to MemoryEffects. Does not touch API names
yet, but also updates variables names FMRB/MRB to ME, to match the
new type name.
When SimplifyLibCalls fail to optimize printf and sprintf it add
NoUndef/NonNull/Dereferenceable attributes. This patch add the same attributes
if SimplifyLibCalls optimize printf/sprintf into the integer only
iprintf/siprintf.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D136140
When unrolling, the exit values in LCSSA phis will get updated.
Invalidate cached SCEV values for those phis in case SCEV looked through
a exit phi.
Fixes#58340.
makeLoopInvariant may recursively move its operands to make them
invariant, before moving the passed in instruction. Those recursively
moved instructions are currently missed when invalidating block and loop
dispositions.
To address this, move the invalidation code to Loop::makeLoopInvariant.
Fixes#58314.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D135909
Extend forgetBlockAndLoopDisposition to allow clearing information for a
single value. This can be useful when only a single value is changed,
e.g. because the instruction is moved.
We also need to clear the cached values for all SCEV users, because they
may depend on the starting value's disposition.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134614
Loop peeling currently requires that a) the latch is exiting
b) a branch and c) other exits are unreachable/deopt. This patch
removes all of these limitations, and adds the necessary branch
weight updating support. It essentially works the same way as
before with latch -> exiting terminator and
loop trip count -> per exit trip count.
It's worth noting that there are still other limitations in
profitability heuristics: This patch enables peeling of loops to
make conditions invariant (which is pretty much always highly
profitable if possible), while peeling to make loads dereferenceable
still checks that non-latch exits are unreachable and PGO-based
peeling has even more conditions. Those checks could be relaxed
later if we consider those cases profitable.
The motivation for this change is that loops using iterator adaptors
in Rust often optimize very badly, and end up with a loop phi of the
form phi(true, false) in the final result. Peeling eliminates that
phi and conditions based on it, which enables a lot of follow-on
simplification.
Differential Revision: https://reviews.llvm.org/D134803