This change implements new DAG notes GLOBAL_GET/GLOBAL_SET, and
lowering methods for load and stores of reference types from IR
globals. Once the lowering creates the new nodes, tablegen pattern
matches those and converts them to Wasm global.get/set.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D95425
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds support for WebAssembly globals in LLVM IR, representing
them as pointers to global values, in a non-default, non-integral
address space. Instruction selection legalizes loads and stores to
these pointers to new WebAssemblyISD nodes GLOBAL_GET and GLOBAL_SET.
Once the lowering creates the new nodes, tablegen pattern matches those
and converts them to Wasm global.get/set of the appropriate type.
Based on work by Paulo Matos in https://reviews.llvm.org/D95425.
Reviewed By: pmatos
Differential Revision: https://reviews.llvm.org/D101608
The WebAssembly SIMD intrinsics in wasm_simd128.h generally try not to require
any particular alignment for memory operations to be maximally flexible. For
builtin memory access functions and their corresponding LLVM IR intrinsics,
there's no way to set the expected alignment, so the best we can do is set the
alignment to 1 in the backend. This change means that the alignment hints in the
emitted code will no longer be incorrect when users use the intrinsics to access
unaligned data.
Differential Revision: https://reviews.llvm.org/D101850
We previously had an ISel pattern for i64x2.abs, but because the ISDNode was not
marked legal for v2i64, the instruction was not being selected.
Differential Revision: https://reviews.llvm.org/D101803
Previously we used an i32 constant to store the saturation width, but i32 isn't
legal on RISCV64. This wasn't a big deal to fix, but it is extra work for the
type legalizer.
This patch uses a VTSDNode to store the type similar to SEXT_INREG. This makes
it opaque to the type legalizer.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D101262
This CL
1. Creates Utils/ directory under lib/Target/WebAssembly
2. Moves existing WebAssemblyUtilities.cpp|h into the Utils/ directory
3. Creates Utils/WebAssemblyTypeUtilities.cpp|h and put type
declarataions and type conversion functions scattered in various
places into this single place.
It has been suggested several times that it is not easy to share utility
functions between subdirectories (AsmParser, DIsassembler, MCTargetDesc,
...). Sometimes we ended up [[ https://reviews.llvm.org/D92840#2478863 | duplicating ]] the same function because of
this.
There are already other targets doing this: AArch64, AMDGPU, and ARM
have Utils/ subdirectory under their target directory.
This extracts the utility functions into a single directory Utils/ and
make them sharable among all passes in WebAssembly/ and its
subdirectories. Also I believe gathering all type-related conversion
functionalities into a single place makes it more usable. (Actually I
was working on another CL that uses various type conversion functions
scattered in multiple places, which became the motivation for this CL.)
Reviewed By: dschuff, aardappel
Differential Revision: https://reviews.llvm.org/D100995
af7925b4dd added a custom DAG combine for recognizing fp-to-ints of
extract_subvectors that could be lowered to f64x2.convert_low_i32x4_{s,u}
instructions. This commit extends the combines to recognize equivalent
extract_subvectors of fp-to-ints as well.
Differential Revision: https://reviews.llvm.org/D100790
Use the target-independent @llvm.fptosi and @llvm.fptoui intrinsics instead.
This includes removing the instrinsics for i32x4.trunc_sat_zero_f64x2_{s,u},
which are now represented in IR as a saturating truncation to a v2i32 followed by
a concatenation with a zero vector.
Differential Revision: https://reviews.llvm.org/D100596
Removes the builtins and intrinsics used to opt in to using these instructions
and replaces them with normal ISel patterns now that they are no longer
prototypes.
Differential Revision: https://reviews.llvm.org/D100402
Add a custom DAG combine and ISD opcode for detecting patterns like
(uint_to_fp (extract_subvector ...))
before the extract_subvector is expanded to ensure that they will ultimately
lower to f64x2.convert_low_i32x4_{s,u} instructions. Since these instructions
are no longer prototypes and can now be produced via standard IR, this commit
also removes the target intrinsics and builtins that had been used to prototype
the instructions.
Differential Revision: https://reviews.llvm.org/D100425
Now that these instructions are no longer prototypes, we do not need to be
careful about keeping them opt-in and can use the standard LLVM infrastructure
for them. This commit removes the bespoke intrinsics we were using to represent
these operations in favor of the corresponding target-independent intrinsics.
The clang builtins are preserved because there is no standard way to easily
represent these operations in C/C++.
For consistency with the scalar codegen in the Wasm backend, the intrinsic used
to represent {f32x4,f64x2}.nearest is @llvm.nearbyint even though
@llvm.roundeven better captures the semantics of the underlying Wasm
instruction. Replacing our use of @llvm.nearbyint with use of @llvm.roundeven is
left to a potential future patch.
Differential Revision: https://reviews.llvm.org/D100411
When lowering a BUILD_VECTOR SDNode, we choose among various possible vector
creation instructions in an attempt to minimize the total number of instructions
used. We previously considered using swizzles, consts, and splats, and this
patch adds shuffles as well. A common pattern that now lowers to shuffles is
when two 64-bit vectors are concatenated. Previously, concatenations generally
lowered to sequences of extract_lane and replace_lane instructions when they
could have been a single shuffle.
Differential Revision: https://reviews.llvm.org/D100018
Removes the prototype builtin and intrinsic for i64x2.eq and implements that
instruction as well as the other i64x2 comparison instructions in the final SIMD
spec. Unsigned comparisons were not included in the final spec, so they still
need to be scalarized via a custom lowering.
Differential Revision: https://reviews.llvm.org/D99623
Updates the names (e.g. widen => extend, saturate => sat) and opcodes of all
SIMD instructions to match the finalized SIMD spec. Deliberately does not change
the public interface in wasm_simd128.h yet; that will require more care.
Depends on D98466.
Differential Revision: https://reviews.llvm.org/D98676
Removes the instruction definitions, intrinsics, and builtins for qfma/qfms,
signselect, and prefetch instructions, which were not included in the final
WebAssembly SIMD spec.
Depends on D98457.
Differential Revision: https://reviews.llvm.org/D98466
Now that the WebAssembly SIMD specification is finalized and engines are
generally up-to-date, there is no need for a separate target feature for gating
SIMD instructions that engines have not implemented. With this change,
v128.const is now enabled by default with the simd128 target feature.
Differential Revision: https://reviews.llvm.org/D98457
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via TABLE_NUMBER
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
Differential Revision: https://reviews.llvm.org/D90948
If the reference-types feature is enabled, call_indirect will explicitly
reference its corresponding function table via `TABLE_NUMBER`
relocations against a table symbol.
Also, as before, address-taken functions can also cause the function
table to be created, only with reference-types they additionally cause a
symbol table entry to be emitted.
We abuse the used-in-reloc flag on symbols to indicate which tables
should end up in the symbol table. We do this because unfortunately
older wasm-ld will carp if it see a table symbol.
Differential Revision: https://reviews.llvm.org/D90948
This reverts commit 418df4a6ab.
This change broke emscripten tests, I believe because it started
generating 5-byte a wide table index in the call_indirect instruction.
Neither v8 nor wabt seem to be able to handle that. The spec
currently says that this is single 0x0 byte and:
"In future versions of WebAssembly, the zero byte occurring in the
encoding of the call_indirectcall_indirect instruction may be used to
index additional tables."
So we need to revisit this change. For backwards compat I guess
we need to guarantee that __indirect_function_table is always at
address zero. We could also consider making this a single-byte
relocation with and assert if have more than 127 tables (for now).
Differential Revision: https://reviews.llvm.org/D95005
This patch changes to make call_indirect explicitly refer to the
corresponding function table, residualizing TABLE_NUMBER relocs against
it.
With this change, wasm-ld now sees all references to tables, and can
link multiple tables.
Differential Revision: https://reviews.llvm.org/D90948
This implements basic instructions for the new spec.
- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
- `catch` needs a custom routine for the same reason `throw` needs one,
to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
and Change code that compares an instruction's opcode with `catch` to
use that function.
- LateEHPrepare
- Previously in LateEHPrepare we added `catch` instruction to both
`catchpad`s (for user catches) and `cleanuppad`s (for destructors).
In the new version `catch` is generated from `llvm.catch` intrinsic
in instruction selection phase, so we only need to add `catch_all`
to the beginning of cleanup pads.
- `catch` is generated from instruction selection, but we need to
hoist the `catch` instruction to the beginning of every EH pad,
because `catch` can be in the middle of the EH pad or even in a
split BB from it after various code transformations.
- Removes `addExceptionExtraction` function, which was used to
generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
function on the new instruction causes crashes, and the new version
will be added in a later CL, whose contents will be completely
different. So deleting the whole function will make the diff easier to
read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
`br_on_exn` instructions from the tests and FileCheck lines.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94040
Clang generates `wasm.get.exception` and `wasm.get.ehselector`
intrinsics, which respectively return a caught exception value (a
pointer to some C++ exception struct) and a selector (an integer value
that tells which C++ `catch` clause the current exception matches, or
does not match any).
WasmEHPrepare is a pass that does some IR-level preparation before
instruction selection. Previously one of things we did in this pass was
to convert `wasm.get.exception` intrinsic calls to
`wasm.extract.exception` intrinsics. Their semantics were the same
except `wasm.extract.exception` did not have a token argument. We
maintained these two separate intrinsics with the same semantics because
instruction selection couldn't handle token arguments. This
`wasm.extract.exception` intrinsic was later converted to
`extract_exception` instruction in instruction selection, which was a
pseudo instruction to implement `br_on_exn`. Because `br_on_exn` pushed
an extracted value onto the value stack after the `end` instruction of a
`block`, but LLVM does not have a way of modeling that kind of behavior,
so this pseudo instruction was used to pull an extracted value out of
thin air, like this:
```
block $l0
...
br_on_exn $cpp_exception $l0
...
end
extract_exception ;; pushes values onto the stack
```
In the new spec, we don't need this pseudo instruction anymore because
`catch` itself returns a value and we don't have `br_on_exn` anymore. In
the spec `catch` returns multiple values (like `br_on_exn`), but here we
assume it only returns a single i32, which is sufficient to support C++.
So this renames `wasm.get.exception` intrinsic to `wasm.catch`. Because
this CL does not yet contain instruction selection for `wasm.catch`
intrinsic, all `RUN` lines in exception.ll, eh-lsda.ll, and
cfg-stackify-eh.ll, and a single `RUN` line in wasm-eh.cpp (which is an
end-to-end test from C++ source to assembly) fail. So this CL
temporarily disables those `RUN` lines, and for those test files without
any valid remaining `RUN` lines, adds a dummy `RUN` line to make them
pass. These tests will be reenabled in later CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94039
For wasm-ld table linking work to proceed, object files should indicate
if they use an indirect function table. In the future this will be done
by the usual symbols and relocations mechanism, but until that support
lands in the linker, the presence of an `__indirect_function_table` in
the object file's import section shows that the object file needs an
indirect function table.
Prior to https://reviews.llvm.org/D91637, this condition was met by all
object files residualizing an `__indirect_function_table` import.
Since https://reviews.llvm.org/D91637, the intention has been that only
those object files needing an indirect function table would have the
`__indirect_function_table` import. However, we missed the case of
object files which use the table via `call_indirect` but which
themselves do not declare any indirect functions.
This changeset makes it so that when we lower a call to `call_indirect`,
that we ensure that a `__indirect_function_table` symbol is present and
that it will be propagated to the linker.
A followup patch will revise this mechanism to make an explicit link
between `call_indirect` and its associated indirect function table; see
https://reviews.llvm.org/D90948.
Differential Revision: https://reviews.llvm.org/D92840
I'm not why it was added to DAGToDAG oringally but it seems
to make sense alongside the non-TLS version: LowerGlobalAddress
Differential Revision: https://reviews.llvm.org/D91432
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
This reverts commit 432e4e56d3, which reverted 542523a61a. Two issues from
the original commit have been fixed. First, MSVC does not like when std::array
is initialized with only single braces, so this commit switches to using the
more portable double braces. Second, there was a subtle endianness bug that
prevented the original commit from working correctly on big-endian machines,
which has been fixed by switching to using endianness-agnostic bit twiddling
instead of type punning.
Differential Revision: https://reviews.llvm.org/D88773
v128.const was recently implemented in V8, but until it rolls into Chrome
stable, we can't enable it in the WebAssembly backend without breaking origin
trial users. So far we have been lowering build_vectors that would otherwise
have been lowered to v128.const to splats followed by sequences of replace_lane
instructions to initialize each lane individually. That produces large and
inefficient code, so this patch introduces new logic to lower integer vector
constants to a single i64x2.splat where possible, with at most a single
i64x2.replace_lane following it if necessary.
Adapted from a patch authored by @omnisip.
Differential Revision: https://reviews.llvm.org/D88591
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
Fixes PR47375, in which an assertion was triggering because
WebAssemblyTargetLowering::isVectorLoadExtDesirable was improperly
assuming the use of simple value types.
Differential Revision: https://reviews.llvm.org/D87110
The officially specified abbreviation for WebAssembly is Wasm and the
spec explicitly calls out WASM as being an incorrect spelling. This
patch fixes a few comments and error messages to use the
spec-compliant abbreviation.
Differential Revision: https://reviews.llvm.org/D85764
Specified in https://github.com/WebAssembly/simd/pull/237, these
instructions load the first vector lane from memory and zero the other
lanes. Since these instructions are not officially part of the SIMD
proposal, they are only available on an opt-in basis via LLVM
intrinsics and clang builtin functions. If these instructions are
merged to the proposal, this implementation will change so that the
instructions will be generated from normal IR. At that point the
intrinsics and builtin functions would be removed.
This PR also changes the opcodes for the experimental f32x4.qfm{a,s}
instructions because their opcodes conflicted with those of the
v128.load{32,64}_zero instructions. The new opcodes were chosen to
match those used in V8.
Differential Revision: https://reviews.llvm.org/D84820
Instead, pattern match extends of extract_subvectors to generate
widening operations. Since extract_subvector is not a legal node, this
is implemented via a custom combine that recognizes extract_subvector
nodes before they are legalized. The combine produces custom ISD nodes
that are later pattern matched directly, just like the intrinsic was.
Also removes the clang builtins for these operations since the
instructions can now be generated from portable code sequences.
Differential Revision: https://reviews.llvm.org/D84556
Rather than expanding truncating stores so that vectors are stored one
lane at a time, lower them to a sequence of instructions using
narrowing operations instead, when possible. Since the narrowing
operations have saturating semantics, but truncating stores require
truncation, mask the stored value to manually truncate it before
narrowing. Also, since narrowing is a binary operation, pass in the
original vector as the unused second argument.
Differential Revision: https://reviews.llvm.org/D84377
Accounting for the fact that Wasm function indices are 32-bit, but in wasm64 we want uniform 64-bit pointers.
Includes reloc types for 64-bit table indices.
Differential Revision: https://reviews.llvm.org/D83729
Although the SIMD spec proposal does not specifically include a
select instruction, the select instruction in MVP WebAssembly is
polymorphic over the selected types, so it is able to work on v128
values when they are enabled. This patch introduces a new variant of
the select instruction for each legal vector type. Additional ISel
patterns are adapted from the SELECT_I32 and SELECT_I64 patterns.
Depends on D83736.
Differential Revision: https://reviews.llvm.org/D83737
We were previously expanding vselect and matching on the expansion to
generate bitselects, but in some cases the expansion would be further
combined and a bitselect would not get generated. This patch improves
codegen in those cases by legalizing vselect and lowering it to
v128.bitselect. The old pattern that matches the expansion is still
useful for lowering IR that already uses the expansion rather than a
select operation.
Differential Revision: https://reviews.llvm.org/D83734
This patch builds on 0d7286a652 by simplifying the code for detecting
splat values and adding new tests demonstrating the lowering of
splatted absolute value shift amounts, which are common in code
generated by Halide. The lowering is very bad right now, but
subsequent patches will improve it considerably. The tests will be
useful for evaluating the improvements in those patches.
Reviewed By: aheejin
Differential Revision: https://reviews.llvm.org/D83493
Since WebAssembly's vector shift instructions take a scalar shift
amount rather than a vector shift amount, we have to check in ISel
that the vector shift amount is a splat. Previously, we were checking
explicitly for splat BUILD_VECTOR nodes, but this change uses the
standard utilities for detecting splat values that can handle more
complex splat patterns. Since the C++ ISel lowering is now more
general than the ISel patterns, this change also simplifies shift
lowering by using the C++ lowering for all SIMD shifts rather than
mixing C++ and normal pattern-based lowering.
This change improves ISel for shifts to the point that the
simd-shift-unroll.ll regression test no longer tests the code path it
was originally meant to test. The bug corresponding to that regression
test is no longer reproducible with its original reported reproducer,
so rather than try to fix the regression test, this change just
removes it.
Differential Revision: https://reviews.llvm.org/D83278
Summary:
Since the br_table instruction takes an i32, switches over i64s (and
larger integers) must use the i32.wrap_i64 instruction to truncate the
table index. This truncation makes numbers just over 2^32
indistinguishable from small numbers, so it was a miscompilation to
omit the range check preceding these br_tables. This change fixes the
problem by skipping the "fixing" of the br_table when the range check
is an i64 instruction.
Fixes PR46447.
Reviewers: aheejin, dschuff, kripken
Reviewed By: kripken
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83017
Summary:
Unlike normal traps, debug traps are allowed to return and can have
additional instructions in the same basic block. Without explicit
backend support for debug traps, they are lowered in ISel as normal
traps. Since normal traps are lowered in the WebAssembly backend to
the UNREACHABLE instruction, which is a terminator, using debug traps
could lead to invalid MBBs when there are additional instructions
after the trap. This patch fixes the issue by lowering debug traps to
a new version of the UNREACHABLE instruction, DEBUG_UNREACHABLE, that
is not a terminator.
An alternative approach would have been to make UNREACHABLE not a
terminator, but that breaks a large number of tests. In particular, it
would require removing the traps inserted after noreturn calls to
@llvm.wasm.throw because otherwise the terminator throw would be
followed by a non-terminator UNREACHABLE and we would be back to
having invalid MBBs. Overall the approach in this patch seems simpler.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81055
Summary:
The code previously assumed that the index of a vector extract was
constant, but this was not always true. This patch fixes the problem
by bailing out of the lowering if the index is nonconstant and also
replaces `static_cast`s in the lowering function with `cast`s because
the latter contain type-checking asserts that would make similar
issues easier to find and debug.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81025
This reverts commit 755a895915.
Although I was not able to reproduce any test failures locally,
aheejin was able to reproduce them and found a fix, applied here.
Summary:
Jump tables for most targets cannot handle out of range indices by
themselves, so LLVM emits range checks to guard the jump
tables. WebAssembly, on the other hand, implements jump tables using
the br_table instruction, which takes a default branch target as an
operand, making the range checks redundant. This patch introduces a
new MachineFunction pass in the WebAssembly backend to find and
eliminate the redundant range checks.
Reviewers: aheejin, dschuff
Subscribers: mgorny, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80863
Summary:
The code previously assumed the source of the bitcast in the combined
pattern was a vector type, but this is not always true. This patch
adds a check to avoid an assertion failure in that case.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80164
Summary:
This reflects changes in the spec proposal made since basic arithmetic
was first implemented.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80174
Summary:
This new custom DAG combine fixes a codegen issue with the
wasm_simd128.h intrinsics. Clang lowers the
return (v128_t)(__f32x4){__a, __a, __a, __a};
body of f32x4_splat to a splat shuffle of a bitcasted vector, as seen
in the new simd-shuffle-bitcast.ll test. The bitcast interfered with
the target-independent DAG combine that combines splat shuffles into
BUILD_VECTOR nodes, so this patch introduces a new custom DAG combine
to hoist the bitcast out of the shuffle, allowing the
target-independent combine to work as intended.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80021
Summary:
Move instructions that have recently been implemented in V8 from the
`unimplemented-simd128` target feature to the `simd128` target
feature. The updated instructions match the update at
https://github.com/WebAssembly/simd/pull/223.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D79973
Summary:
Although using `__builtin_shufflevector` and the `shufflevector`
instruction works fine, they are not opaque to the optimizer. As a
result, DAGCombine can potentially reduce the number of shuffles and
change the shuffle masks. This is unexpected behavior for users of the
WebAssembly SIMD intrinsics who have crafted their shuffles to
optimize the code generated by engines. This patch solves the problem
by adding a new shuffle intrinsic that is opaque to the optimizers in
line with the decision of the WebAssembly SIMD contributors at
https://github.com/WebAssembly/simd/issues/196#issuecomment-622494748. In
the future we may implement custom DAG combines to properly optimize
shuffles and replace this solution.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D66983
Summary:
As described in https://github.com/WebAssembly/simd/pull/209. This is
the final reorganization of the SIMD opcode space before
standardization. It has been landed in concert with corresponding
changes in other projects in the WebAssembly SIMD ecosystem.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79224
Summary:
Swift ABI is based on basic C ABI described here https://github.com/WebAssembly/tool-conventions/blob/master/BasicCABI.md
Swift Calling Convention on WebAssembly is a little deffer from swiftcc
on another architectures.
On non WebAssembly arch, swiftcc accepts extra parameters that are
attributed with swifterror or swiftself by caller. Even if callee
doesn't have these parameters, the invocation succeed ignoring extra
parameters.
But WebAssembly strictly checks that callee and caller signatures are
same. https://github.com/WebAssembly/design/blob/master/Semantics.md#calls
So at WebAssembly level, all swiftcc functions end up extra arguments
and all function definitions and invocations explicitly have additional
parameters to fill swifterror and swiftself.
This patch support signature difference for swiftself and swifterror cc
is swiftcc.
e.g.
```
declare swiftcc void @foo(i32, i32)
@data = global i8* bitcast (void (i32, i32)* @foo to i8*)
define swiftcc void @bar() {
%1 = load i8*, i8** @data
%2 = bitcast i8* %1 to void (i32, i32, i32)*
call swiftcc void %2(i32 1, i32 2, i32 swiftself 3)
ret void
}
```
For swiftcc, emit additional swiftself and swifterror parameters
if there aren't while lowering. These additional parameters are added
for both callee and caller.
They are necessary to match callee and caller signature for direct and
indirect function call.
Differential Revision: https://reviews.llvm.org/D76049
Summary:
These were merged to the SIMD proposal in
https://github.com/WebAssembly/simd/pull/128.
Depends on D76397 to avoid merge conflicts.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76399
Summary:
Using the default DAG.UnrollVectorOp on v16i8 and v8i16 vectors
results in i8 or i16 nodes being inserted into the SelectionDAG. Since
those are illegal types, this causes a legalization assertion failure
for some code patterns, as uncovered by PR45178. This change unrolls
shifts manually to avoid this issue by adding and using a new optional
EVT argument to DAG.ExtractVectorElements to control the type of the
extract_element nodes.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76043
Summary:
Removes patterns that were not doing useful work, changes the
default extract instructions to be the unsigned versions now that
they are enabled by default, fixes PR44988, and adds tests for
sext_inreg lowering.
Reviewers: aheejin
Reviewed By: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75005
Summary:
Extends the multivalue call infrastructure to tail calls, removes all
legacy calls specialized for particular result types, and removes the
CallIndirectFixup pass, since all indirect call arguments are now
fixed up directly in the post-insertion hook.
In order to keep supporting pretty-printed defs and uses in test
expectations, MCInstLower now inserts an immediate containing the
number of defs for each call and call_indirect. The InstPrinter is
updated to query this immediate if it is present and determine which
MCOperands are defs and uses accordingly.
Depends on D72902.
Reviewers: aheejin
Subscribers: dschuff, mgorny, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74192
Summary:
Unlike normal calls, call_indirects have immediate arguments that
caused a MachineVerifier failure without a small tweak to loosen the
verifier's requirements for variadicOpsAreDefs instructions.
One nice thing about the new call_indirects is that they do not need
to participate in the PCALL_INDIRECT mechanism because their post-isel
hook handles moving the function pointer argument and adding the flags
and typeindex arguments itself.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74191
This reverts commit 649aba93a2, now that
the approach started there has been shown to be workable in the patch
series culminating in https://reviews.llvm.org/D74192.
Summary:
Also make return calls terminator instructions so epilogues are
inserted before them rather than after them. Together, these changes
make WebAssembly's tail call optimization more stack-safe.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73943
Summary:
This reverts commit 3ef169e586. The
purpose of this commit was to allow stack machines to perform
instruction selection for instructions with variadic defs. However,
MachineInstrs fundamentally cannot support variadic defs right now, so
this change does not turn out to be useful.
Depends on D73927.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73928
Summary:
This reverts commit 28857d14a8. This
commit worked toward a solution that did not turn out to be feasible
because MachineInstrs cannot contain an arbitrary number of defs.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73927
Summary:
Moves a batch of instructions from unimplemented-simd128 to simd128
because they have recently become available in V8.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73926
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
This adds basic support for the Swift calling convention with WebAssembly
targets.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D71823
Summary:
Multivalue calls both take and return an arbitrary number of
arguments, but ISel only supports one or the other in a single
instruction. To get around this, calls are modeled as two pseudo
instructions during ISel. These pseudo instructions, CALL_PARAMS and
CALL_RESULTS, are recombined into a single CALL MachineInstr in a
custom emit hook.
RegStackification and the MC layer will additionally need to be made
aware of multivalue calls before the tests will produce correct
output.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71496
Summary:
WebAssembly is unique among upstream targets in that it does not at
any point use physical registers to store values. Instead, it uses
virtual registers to model positions in its value stack. This means
that some target-independent lowering activities that would use
physical registers need to use virtual registers instead for
WebAssembly and similar downstream targets. This CL generalizes the
existing `usesPhysRegsForPEI` lowering hook to
`usesPhysRegsForValues` in preparation for using it in more places.
One such place is in InstrEmitter for instructions that have variadic
defs. On register machines, it only makes sense for these defs to be
physical registers, but for WebAssembly they must be virtual registers
like any other values. This CL changes InstrEmitter to check the new
target lowering hook to determine whether variadic defs should be
physical or virtual registers.
These changes are necessary to support a generalized CALL instruction
for WebAssembly that is capable of returning an arbitrary number of
arguments. Fully implementing that instruction will require additional
changes that are described in comments here but left for a follow up
commit.
Reviewers: aheejin, dschuff, qcolombet
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71484
Summary:
The instructions were originally implemented via builtins and
intrinsics so users would have to explicitly opt-in to using
them. This was useful while were validating whether these instructions
should have been merged into the spec proposal. Now that they have
been, we can use normal codegen patterns, so the intrinsics and
builtins are no longer useful.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71500
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
This reverts commit e5cae5692b, which
reverted 11850a6305. The original revert
was done because of breakage that was actually in a separate commit,
2ab1b8c1ec, which was also reverted and
has since been fixed and relanded.
This reverts commit 2ab1b8c1ec, it is
causing build failures on numerous bots, including
sanitizer-x86_64-linux-bootstrap-ubsan. My previous revert was for the
wrong commit.
Summary:
Fixes an ISel failure when a splatted load is used more than once. The
failure was due to the hacks we were doing in ISel lowering to
preserve the original load as the operand of a LOAD_SPLAT node. The
fix is to properly lower the splatted use of the load to a separate
LOAD_SPLAT node.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69640
Summary:
The SIMD spec does not include i64x2 comparisons, so they need to be
expanded. Using setOperationAction to expand them also causes f64x2
comparisons to be expanded, so setCondCodeAction needs to be used
instead. But since there are no legal condition codes, the legalizer
does not know how to expand the comparisons. We therefore manually
unroll the operation, taking care to fill each lane with -1 or 0
rather than 1 or 0 for consistency with the other vector comparisons.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69604
Summary:
This is necessary and sufficient to get simple cases of multiple
return working with multivalue enabled. More complex cases will
require block and loop signatures to be generalized to potentially be
type indices as well.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68684
llvm-svn: 374235
Summary:
Adds the new v8x16.swizzle SIMD instruction as specified at
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#swizzling-using-variable-indices.
In addition to adding swizzles as a candidate lowering in
LowerBUILD_VECTOR, also rewrites and simplifies the lowering to
minimize the number of replace_lanes necessary rather than trying to
minimize code size. This leads to more uses of v128.const instead of
splats, which is expected to increase performance.
The new code will be easier to tune once V8 implements all the vector
construction operations, and it will also be easier to add new
candidate instructions in the future if necessary.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68527
llvm-svn: 374188
Summary:
Adds the new load_splat instructions as specified at
https://github.com/WebAssembly/simd/blob/master/proposals/simd/SIMD.md#load-and-splat.
DAGISel does not allow matching multiple copies of the same load in a
single pattern, so we use a new node in WebAssemblyISD to wrap loads
that should be splatted.
Depends on D67783.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67784
llvm-svn: 372655