DependentScopeDeclRefExpr support storing templateids. Unite the common
code paths between ActOnDeclarationNameExpr and ActOnTemplateIdExpr.
This gets us to a point where we don't need to store function templates in
the AST using TemplateNames, which is critical to ripping out OverloadedFunction.
Also resolves a few FIXMEs.
llvm-svn: 89785
operand of an addressof operator, and so we should not treat it as an abstract
member-pointer expression and therefore suppress the implicit member access.
This is really a well-formedness constraint on expressions: a DeclRefExpr of
a FieldDecl or a non-static CXXMethodDecl (or template thereof, or unresolved
collection thereof) should not be allowed in an arbitrary location in the AST.
Arguably it shouldn't be allowed anywhere and we should have a different expr
node type for this. But unfortunately we don't have a good way of enforcing
this kind of constraint right now.
llvm-svn: 89578
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
appropriate lookup and simply can't resolve the referrent yet, and
"dependent scope" expressions, where we can't do the lookup yet because the
entity we need to look into is a dependent type.
llvm-svn: 89402
two classes, one for typenames and one for values; this seems to have some
support from Doug if not necessarily from the extremely-vague-on-this-point
standard. Track the location of the 'typename' keyword in a using-typename
decl. Make a new lookup result for unresolved values and deal with it in
most places.
llvm-svn: 89184
LookupResult RAII powers to diagnose ambiguity in the results. Other diagnostics
(e.g. access control and deprecation) will be moved to automatically trigger
during lookup as part of this same mechanism.
This abstraction makes it much easier to encapsulate aliasing declarations
(e.g. using declarations) inside the lookup system: eventually, lookup will
just produce the aliases in the LookupResult, and the standard access methods
will naturally strip the aliases off.
llvm-svn: 89027
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
llvm-svn: 88969
1. For
A f() {
return A();
}
we were incorrectly calling the A destructor on the returned object.
2. For
void f(A);
void g() {
A a;
f(a);
}
we were incorrectly not calling the copy constructor.
llvm-svn: 87082
handling template template parameters properly. This refactoring:
- Parses template template arguments as id-expressions, representing
the result of the parse as a template name (Action::TemplateTy)
rather than as an expression (lame!).
- Represents all parsed template arguments via a new parser-specific
type, ParsedTemplateArgument, which stores the kind of template
argument (type, non-type, template) along with all of the source
information about the template argument. This replaces an ad hoc
set of 3 vectors (one for a void*, which was either a type or an
expression; one for a bit telling whether the first was a type or
an expression; and one for a single source location pointing at
the template argument).
- Moves TemplateIdAnnotation into the new Parse/Template.h. It never
belonged in the Basic library anyway.
llvm-svn: 86708
* If the unsigned type is smaller than the signed type, never warn, because
its value will not change when zero-extended to the larger type.
* If we're testing for (in)equality, and the unsigned value is an integer
constant whose sign bit is not set, never warn, because even though the
signed value might change, it can't affect the result of the equality.
Also make the comparison test cases much more rigorous, and have them expose
the subtle differences between C and C++ here.
llvm-svn: 86242
get_origin->x
where get_origin is actually a function and the user has forgotten the
parentheses. Instead of giving a lame note for the fix-it, give a
full-fledge error, early, then build the call expression to try to
recover.
llvm-svn: 86238
always zero in this context" warning logic. Also, make the diagnostic
itself more precise when referring to pointer values ("NULL" vs. "zero").
llvm-svn: 86143
DiagnoseSignCompare into Sema::CheckSignCompare and call it from more places.
Add some enumerator tests. These seem to expose some oddities in the
types we're converting C++ enumerators to; in particular, they're converting
to unsigned before int, which seems to contradict 4.5 [conv.prom] p2.
Note to self: stop baiting Doug in my commit messages.
llvm-svn: 86128
still be dependent or invoke an overloaded operator. Previously, we
only supported builtin operators.
BinaryOperator/CompoundAssignOperator didn't have this issue because
we always built a CXXOperatorCallExpr node, even when name lookup
didn't find any functions to save until instantiation time. Now, that
code builds a BinaryOperator or CompoundAssignOperator rather than a
CXXOperatorCallExpr, to save some space.
llvm-svn: 86087
appears in a deprecated context. In the new strategy, we emit the warnings
as usual unless we're currently parsing a declaration, where "declaration" is
restricted to mean a decl group or a few special cases in Objective C. If
we *are* parsing a declaration, we queue up the deprecation warnings until
the declaration has been completely parsed, and then emit them only if the
decl is not deprecated.
We also standardize the bookkeeping for deprecation so as to avoid special cases.
llvm-svn: 85998
"->" with a use of ParseUnqualifiedId. Collapse
ActOnMemberReferenceExpr, ActOnDestructorReferenceExpr (both of them),
ActOnOverloadedOperatorReferenceExpr,
ActOnConversionOperatorReferenceExpr, and
ActOnMemberTemplateIdReferenceExpr into a single, new action
ActOnMemberAccessExpr that does the same thing more cleanly (and can
keep more source-location information).
llvm-svn: 85930
yet another copy of the unqualified-id parsing code.
Also, use UnqualifiedId to simplify the Action interface for building
id-expressions. ActOnIdentifierExpr, ActOnCXXOperatorFunctionIdExpr,
ActOnCXXConversionFunctionExpr, and ActOnTemplateIdExpr have all been
removed in favor of the new ActOnIdExpression action.
llvm-svn: 85904
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
llvm-svn: 85500
so that we maintain better source information after template argument
deduction and overloading resolves down to a specific
declaration. Found and dealt with a few more cases that
FixOverloadedFunctionReference didn't cope with.
(Finally) added a test case that puts together this change with the
DeclRefExpr change to (optionally) include nested-name-specifiers and
explicit template argument lists.
llvm-svn: 84974
qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
to all callers. Switch a few other users of CK_Unknown to proper cast
kinds.
Note that there are still some situations where we end up with
CK_Unknown; they're pretty easy to find with grep. There
are still a few missing conversion kinds, specifically
pointer/int/float->bool and the various combinations of real/complex
float/int->real/complex float/int.
llvm-svn: 84623
what we found when we looked into <blah>", where <blah> is a
DeclContext*. We can now format DeclContext*'s in nice ways, e.g.,
"namespace N", "the global namespace", "'class Foo'".
This is part of PR3990, but we're not quite there yet.
llvm-svn: 84028
conditions. Add a fixit to insert the parentheses. Also fix a very minor
possible memory leak in 'for' conditions.
Fixes PR 4876 and rdar://problem/7289172
llvm-svn: 83907
struct B;
B f();
void g() {
f();
}
We now get
t.cpp:6:3: error: calling 'f' with incomplete return type 'struct B'
f();
^~~
t.cpp:3:3: note: 'f' declared here
B f();
^
t.cpp:1:8: note: forward declaration of 'struct B'
struct B;
^
llvm-svn: 83692
track of the kind of specialization or instantiation. Also, check the
scope of the specialization and ensure that a specialization
declaration without an initializer is not a definition.
llvm-svn: 83533
specialization kind is TSK_ImplicitInstantiation. Previously, we would
end up implicitly instantiating functions that had explicit
specialization declarations or explicit instantiation declarations
(with no corresponding definitions).
llvm-svn: 83511
overload candidates (but not the built-in ones). We still rely on the
underlying built-in semantic analysis to produce the initial
diagnostic, then print the candidates following that diagnostic.
One side advantage of this approach is that we can perform more validation
of C++'s operator overloading with built-in candidates vs. the
semantic analysis for those built-in operators: when there are no
viable candidates, we know to expect an error from the built-in
operator handling code. Otherwise, we are not modeling the built-in
semantics properly within operator overloading. This is checked as:
assert(Result.isInvalid() &&
"C++ binary operator overloading is missing
candidates!");
if (Result.isInvalid())
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
The assert() catches cases where we're wrong in a +Asserts build. The
"if" makes sure that, if this happens in a production clang
(-Asserts), we still build the proper built-in operator and continue
on our merry way. This is effectively what happened before this
change, but we've added the assert() to catch more flies.
llvm-svn: 83175
value-dependent. Audit (and fixed) all calls to
Expr::isNullPointerConstant() to provide the correct behavior with
value-dependent expressions. Fixes PR5041 and a crash in libstdc++
<locale>.
In the same vein, properly compute value- and type-dependence for
ChooseExpr. Fixes PR4996.
llvm-svn: 82748
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
notation. There is still an issue accessing field of a 'Class''s isa
in legacy code using dot field access notation (as noted in the test case)
but unrelated to this patch.
llvm-svn: 82555
opening parentheses and after each comma. We gather the set of visible
overloaded functions, perform "partial" overloading based on the set
of arguments that we have thus far, and return the still-viable
results sorted by the likelihood that they will be the best candidate.
Most of the changes in this patch are a refactoring of the overloading
routines for a function call, since we needed to separate out the
notion of building an overload set (common to code-completion and
normal semantic analysis) and then what to do with that overload
set. As part of this change, I've pushed explicit template arguments
into a few more subroutines.
There is still much more work to do in this area. Function templates
won't be handled well (unless we happen to deduce all of the template
arguments before we hit the completion point), nor will overloaded
function-call operators or calls to member functions.
llvm-svn: 82549
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501