Commit Graph

405 Commits

Author SHA1 Message Date
Yonghong Song 379d908848 BPF: provide better error message for unsupported atomic operations
Currently, BPF backend does not support all variants of
  atomic_load_{add,and,or,xor}, atomic_swap and atomic_cmp_swap
For example, it only supports 32bit (with alu32 mode) and 64bit
operations for atomic_load_{and,or,xor}, atomic_swap and
atomic_cmp_swap. Due to historical reason, atomic_load_add is
always supported with 32bit and 64bit.

If user used an unsupported atomic operation, currently,
codegen selectiondag cannot find bpf support and will issue
a fatal error. This is not user friendly as user may mistakenly
think this is a compiler bug.

This patch added Custom rule for unsupported atomic operations
and will emit better error message during ReplaceNodeResults()
callback. The following is an example output.

  $ cat t.c
  short sync(short *p) {
    return  __sync_val_compare_and_swap (p, 2, 3);
  }
  $ clang -target bpf -O2 -g -c t.c
  t.c:2:11: error: Unsupported atomic operations, please use 64 bit version
    return  __sync_val_compare_and_swap (p, 2, 3);
            ^
  fatal error: error in backend: Cannot select: t19: i64,ch =
    AtomicCmpSwap<(load store seq_cst seq_cst 2 on %ir.p)> t0, t2,
    Constant:i64<2>, Constant:i64<3>, t.c:2:11
    t2: i64,ch = CopyFromReg t0, Register:i64 %0
      t1: i64 = Register %0
    t11: i64 = Constant<2>
    t10: i64 = Constant<3>
  In function: sync
  PLEASE submit a bug report ...

Fatal error will still happen since we did not really do proper
lowering for these unsupported atomic operations. But we do get
a much better error message.

Differential Revision: https://reviews.llvm.org/D98471
2021-03-11 19:19:00 -08:00
Ilya Leoshkevich a7137b238a [BPF] Add support for floats and doubles
Some BPF programs compiled on s390 fail to load, because s390
arch-specific linux headers contain float and double types. At the
moment there is no BTF_KIND for floats and doubles, so the release
version of LLVM ends up emitting type id 0 for them, which the
in-kernel verifier does not accept.

Introduce support for such types to libbpf by representing them using
the new BTF_KIND_FLOAT.

Reviewed By: yonghong-song

Differential Revision: https://reviews.llvm.org/D83289
2021-03-05 15:10:11 +01:00
Yonghong Song 9c0274cdea BPF: permit type modifiers for __builtin_btf_type_id() relocation
Lorenz Bauer from Cloudflare tried to use "const struct <name>"
as the type for __builtin_btf_type_id(*(const struct <name>)0, 1)
relocation and hit a llvm BPF fatal error.
   https://lore.kernel.org/bpf/a3782f71-3f6b-1e75-17a9-1827822c2030@fb.com/

   ...
   fatal error: error in backend: Empty type name for BTF_TYPE_ID_REMOTE reloc

Currently, we require the debuginfo type itself must have a name.
In this case, the debuginfo type is "const" which points to "struct <name>".
The "const" type does not have a name, hence the above fatal error
will be triggered.

Let us permit "const" and "volatile" type modifiers. We skip modifiers
in some other cases as well like structure member type tracing.
This can aviod the above fatal error.

Differential Revision: https://reviews.llvm.org/D97986
2021-03-04 16:27:23 -08:00
Yonghong Song 51cdb780db BPF: Fix a bug in peephole TRUNC elimination optimization
Andrei Matei reported a llvm11 core dump for his bpf program
   https://bugs.llvm.org/show_bug.cgi?id=48578
The core dump happens in LiveVariables analysis phase.
  #4 0x00007fce54356bb0 __restore_rt
  #5 0x00007fce4d51785e llvm::LiveVariables::HandleVirtRegUse(unsigned int,
      llvm::MachineBasicBlock*, llvm::MachineInstr&)
  #6 0x00007fce4d519abe llvm::LiveVariables::runOnInstr(llvm::MachineInstr&,
      llvm::SmallVectorImpl<unsigned int>&)
  #7 0x00007fce4d519ec6 llvm::LiveVariables::runOnBlock(llvm::MachineBasicBlock*, unsigned int)
  #8 0x00007fce4d51a4bf llvm::LiveVariables::runOnMachineFunction(llvm::MachineFunction&)
The bug can be reproduced with llvm12 and latest trunk as well.

Futher analysis shows that there is a bug in BPF peephole
TRUNC elimination optimization, which tries to remove
unnecessary TRUNC operations (a <<= 32; a >>= 32).
Specifically, the compiler did wrong transformation for the
following patterns:
   %1 = LDW ...
   %2 = SLL_ri %1, 32
   %3 = SRL_ri %2, 32
   ... %3 ...
   %4 = SRA_ri %2, 32
   ... %4 ...

The current transformation did not check how many uses of %2
and did transformation like
   %1 = LDW ...
   ... %1 ...
   %4 = SRL_ri %2, 32
   ... %4 ...
and pseudo register %2 is used by not defined and
caused LiveVariables analysis core dump.

To fix the issue, when traversing back from SRL_ri to SLL_ri,
check to ensure SLL_ri has only one use. Otherwise, don't
do transformation.

Differential Revision: https://reviews.llvm.org/D97792
2021-03-02 13:03:42 -08:00
Yonghong Song 6d102f15a3 BPF: Add LLVMTransformUtils in CMakefile LINK_COMPONENTS
Commit 1959ead525 ("BPF: Implement TTI.getCmpSelInstrCost()
properly") introduced a dependency on LLVMTransformUtils
library. Let us encode this dependency explicitly in
CMakefile to avoid build error.
2021-02-25 15:43:25 -08:00
Yonghong Song 1959ead525 BPF: Implement TTI.getCmpSelInstrCost() properly
The Select insn in BPF is expensive as BPF backend
needs to resolve with conditionals.  This patch set
the getCmpSelInstrCost() to SCEVCheapExpansionBudget
for Select insn to prevent some Select insn related
optimizations.

This change is motivated during bcc code review for
   https://github.com/iovisor/bcc/pull/3270
where IndVarSimplifyPass eventually caused generating
the following asm code:
  ;       for (i = 0; (i < VIRTIO_MAX_SGS) && (i < num); i++) {
      14:       16 05 40 00 00 00 00 00 if w5 == 0 goto +64 <LBB0_6>
      15:       bc 51 00 00 00 00 00 00 w1 = w5
      16:       04 01 00 00 ff ff ff ff w1 += -1
      17:       67 05 00 00 20 00 00 00 r5 <<= 32
      18:       77 05 00 00 20 00 00 00 r5 >>= 32
      19:       a6 01 01 00 05 00 00 00 if w1 < 5 goto +1 <LBB0_4>
      20:       b7 05 00 00 06 00 00 00 r5 = 6
  00000000000000a8 <LBB0_4>:
      21:       b7 02 00 00 00 00 00 00 r2 = 0
      22:       b7 01 00 00 00 00 00 00 r1 = 0
  ;       for (i = 0; (i < VIRTIO_MAX_SGS) && (i < num); i++) {
      23:       7b 1a e0 ff 00 00 00 00 *(u64 *)(r10 - 32) = r1
      24:       7b 5a c0 ff 00 00 00 00 *(u64 *)(r10 - 64) = r5
Note that insn #15 has w1 = w5 and w1 is refined later but r5(w5) is
eventually saved on stack at insn #24 for later use. This cause
later verifier failures.

With this change, IndVarSimplifyPass won't do the above
transformation any more.

Differential Revision: https://reviews.llvm.org/D97479
2021-02-25 14:48:53 -08:00
Juneyoung Lee e4d751c271 Update BPFAdjustOpt.cpp to accept select form of or as well
This is a minor pattern-match update to BPFAdjustOpt.cpp to accept
not only 'or i1 a, b' but also 'select i1 a, i1 true, i1 b'.
This resolves regression after SimplifyCFG's creating select form
of and/or instead (https://reviews.llvm.org/D95026).
This is a small change, and currently such select form isn't created
or doesn't reach to the late pipeline (because InstCombine eagerly
folds it into and/or i1), so I chose to commit without a review process.
2021-02-20 18:29:58 +09:00
Yonghong Song 74975d35b4 BPF: Add LLVMAnalysis in CMakefile LINK_COMPONENTS
buildbot reported a build error like below:
  BPFTargetMachine.cpp:(.text._ZN4llvm19TargetTransformInfo5ModelINS_10BPFTTIImplEED2Ev
    [_ZN4llvm19TargetTransformInfo5ModelINS_10BPFTTIImplEED2Ev]+0x14):
    undefined reference to `llvm::TargetTransformInfo::Concept::~Concept()'
  lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFTargetMachine.cpp.o:
    In function `llvm::TargetTransformInfo::Model<llvm::BPFTTIImpl>::~Model()':

Commit a260ae7160 ("BPF: Implement TTI.IntImmCost() properly")
added TargetTransformInfo to BPF, which requires LLVMAnalysis
dependence. In certain cmake configurations, lacking explicit
LLVMAnalysis dependency may cause compilation error.
Similar to other targets, this patch added LLVMAnalysis
in CMakefile LINK_COMPONENTS explicitly.
2021-02-11 10:24:22 -08:00
Craig Topper 5744502a13 [TargetLowering][RISCV][AArch64][PowerPC] Enable BuildUDIV/BuildSDIV on illegal types before type legalization if we can find a larger legal type that supports MUL.
If we wait until the type is legalized, we'll lose information
about the orginal type and need to use larger magic constants.
This gets especially bad on RISCV64 where i64 is the only legal
type.

I've limited this to simple scalar types so it only works for
i8/i16/i32 which are most likely to occur. For more odd types
we might want to do a small promotion to a type where MULH is legal
instead.

Unfortunately, this does prevent some urem/srem+seteq matching since
that still require legal types.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D96210
2021-02-11 09:43:13 -08:00
Yonghong Song a260ae7160 BPF: Implement TTI.IntImmCost() properly
This patch implemented TTI.IntImmCost() properly.
Each BPF insn has 32bit immediate space, so for any immediate
which can be represented as 32bit signed int, the cost
is technically free. If an int cannot be presented as
a 32bit signed int, a ld_imm64 instruction is needed
and a TCC_Basic is returned.

This change is motivated when we observed that
several bpf selftests failed with latest llvm trunk, e.g.,
  #10/16 strobemeta.o:FAIL
  #10/17 strobemeta_nounroll1.o:FAIL
  #10/18 strobemeta_nounroll2.o:FAIL
  #10/19 strobemeta_subprogs.o:FAIL
  #96 snprintf_btf:FAIL

The reason of the failure is due to that
SpeculateAroundPHIsPass did aggressive transformation
which alters control flow for which currently verifer
cannot handle well. In llvm12, SpeculateAroundPHIsPass
is not called.

SpeculateAroundPHIsPass relied on TTI.getIntImmCost()
and TTI.getIntImmCostInst() for profitability
analysis. This patch implemented TTI.getIntImmCost()
properly for BPF backend which also prevented
transformation which caused the above test failures.

Differential Revision: https://reviews.llvm.org/D96448
2021-02-11 08:35:25 -08:00
Kazu Hirata 8ed1636184 [llvm] Use isa instead of dyn_cast (NFC) 2021-01-29 23:23:37 -08:00
Kazu Hirata 7dc3575ef2 [llvm] Remove redundant return and continue statements (NFC)
Identified with readability-redundant-control-flow.
2021-01-14 20:30:34 -08:00
Kazu Hirata 8a20e2b3d3 [llvm] Use Optional::getValueOr (NFC) 2021-01-12 21:43:50 -08:00
Kazu Hirata 985f899bf2 [Target] Use llvm::append_range (NFC) 2021-01-03 09:57:43 -08:00
Kazu Hirata b557c32ae9 [MemorySSA, BPF] Use isa instead of dyn_cast (NFC) 2020-12-31 09:39:13 -08:00
Yonghong Song 286daafd65 [BPF] support atomic instructions
Implement fetch_<op>/fetch_and_<op>/exchange/compare-and-exchange
instructions for BPF.  Specially, the following gcc intrinsics
are implemented.
  __sync_fetch_and_add (32, 64)
  __sync_fetch_and_sub (32, 64)
  __sync_fetch_and_and (32, 64)
  __sync_fetch_and_or  (32, 64)
  __sync_fetch_and_xor (32, 64)
  __sync_lock_test_and_set (32, 64)
  __sync_val_compare_and_swap (32, 64)

For __sync_fetch_and_sub, internally, it is implemented as
a negation followed by __sync_fetch_and_add.
For __sync_lock_test_and_set, despite its name, it actually
does an atomic exchange and return the old content.
  https://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Atomic-Builtins.html

For intrinsics like __sync_{add,sub}_and_fetch and
__sync_bool_compare_and_swap, the compiler is able to generate
codes using __sync_fetch_and_{add,sub} and __sync_val_compare_and_swap.

Similar to xadd, atomic xadd, xor and xxor (atomic_<op>)
instructions are added for atomic operations which do not
have return values. LLVM will check the return value for
__sync_fetch_and_{add,and,or,xor}.
If the return value is used, instructions atomic_fetch_<op>
will be used. Otherwise, atomic_<op> instructions will be used.

All new instructions only support 64bit and 32bit with alu32 mode.
old xadd instruction still supports 32bit without alu32 mode.

For encoding, please take a look at test atomics_2.ll.

Differential Revision: https://reviews.llvm.org/D72184
2020-12-03 07:38:00 -08:00
Arthur Eubanks 92a67e131f [BPF][NewPM] Port bpf-adjust-opt to NPM and add it to pipeline
Reviewed By: yonghong-song

Differential Revision: https://reviews.llvm.org/D91990
2020-11-26 10:11:26 -08:00
Florian Hahn b2f4c5fddc
[AsmWriter] Factor out mnemonic generation to accessible getMnemonic.
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).

Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.

Reviewed By: Paul-C-Anagnostopoulos

Differential Revision: https://reviews.llvm.org/D90039
2020-11-17 09:47:38 +00:00
Yonghong Song 4369223ea7 BPF: make __builtin_btf_type_id() return 64bit int
Linux kernel recently added support for kernel modules
  https://lore.kernel.org/bpf/20201110011932.3201430-5-andrii@kernel.org/

In such cases, a type id in the kernel needs to be presented
as (btf id for modules, btf type id for this module).
Change __builtin_btf_type_id() to return 64bit value
so libbpf can do the above encoding.

Differential Revision: https://reviews.llvm.org/D91489
2020-11-16 07:08:41 -08:00
serge-sans-paille 9218ff50f9 llvmbuildectomy - replace llvm-build by plain cmake
No longer rely on an external tool to build the llvm component layout.

Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.

These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.

Differential Revision: https://reviews.llvm.org/D90848
2020-11-13 10:35:24 +01:00
Arthur Eubanks ab0ddbc38a Reland [NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback
This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D90777
2020-11-04 13:11:40 -08:00
Arthur Eubanks 9173b5a99d Revert "[NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback"
This reverts commit 7a83aa0520.

Causing buildbot failures.
2020-11-04 12:57:32 -08:00
Arthur Eubanks 7a83aa0520 [NewPM] Add OptimizationLevel param to registerPipelineStartEPCallback
This allows targets to skip optional optimization passes at -O0.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D90777
2020-11-04 12:53:30 -08:00
Jameson Nash a0ad066ce4 make the AsmPrinterHandler array public
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.

Replaces https://reviews.llvm.org/D74158

Differential Revision: https://reviews.llvm.org/D89613
2020-11-03 10:02:09 -05:00
Jameson Nash 4242df1470 Revert "make the AsmPrinterHandler array public"
I messed up one of the tests.
2020-10-16 17:22:07 -04:00
Jameson Nash ac2def2d8d make the AsmPrinterHandler array public
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.

Differential Revision: https://reviews.llvm.org/D74158
2020-10-16 16:27:31 -04:00
Arthur Eubanks 2218e6d0a8 [BPF] Make BPFAbstractMemberAccessPass required
Or else on optnone functions we get the following during instruction selection:
  fatal error: error in backend: Cannot select: intrinsic %llvm.preserve.struct.access.index

Currently the -O0 pipeline doesn't properly run passes registered via
TargetMachine::registerPassBuilderCallbacks(), so don't add that RUN
line yet. That will be fixed after this.

Reviewed By: yonghong-song

Differential Revision: https://reviews.llvm.org/D89083
2020-10-09 11:26:37 -07:00
Yonghong Song 3161172168 BPF: fix incorrect DAG2DAG load optimization
Currently, bpf backend Instruction section DAG2DAG phase has
an optimization to replace loading constant struct memeber
or array element with direct values. The reason is that these
locally defined struct or array variables may have their
initial values stored in a readonly section and early bpf
ecosystem is not able to handle such cases.

Bpf ecosystem now can not only handle readonly sections,
but also global variables. global variable can also have
initialized data and global variable may or may not be constant,
i.e., global variable data can be put in .data section or .rodata
section. This exposed a bug in DAG2DAG Load optimization
as it did not check whether the global variable is constant
or not.

This patch fixed the bug by checking whether global variable,
representing the initial data, is constant or not and will not
do optimization if it is not a constant.

Another bug is also fixed in this patch to check whether
the load is simple (not volatile/atomic) or not. If it is
not simple, we will not do optimization. To summary for
globals:
   - struct t var = { ... } ;  // no load optimization
   - const struct t var = { ... }; // load optimization is possible
   - volatile const struct t var = { ... }; // no load optimization

Differential Revision: https://reviews.llvm.org/D89021
2020-10-07 19:08:40 -07:00
Yonghong Song ddf1864ace BPF: add AdjustOpt IR pass to generate verifier friendly codes
Add an IR phase right before main module optimization.
This is to modify IR to restrict certain downward optimizations
in order to generate verifier friendly code.
  > prevent certain instcombine optimizations, handling both
    in-block/cross-block instcombines.
  > avoid speculative code motion if the variable used in
    condition is also used in the later blocks.

Internally, a bpf IR builtin
  result = __builtin_bpf_passthrough(seq_num, result)
is used to enforce ordering. This builtin is only used
during target independent IR optimizations and it will
be removed at the beginning of target dependent IR
optimizations.

For example, removing the following workaround,
  --- a/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
  +++ b/tools/testing/selftests/bpf/progs/test_sysctl_loop1.c
  @@ -47,7 +47,7 @@ int sysctl_tcp_mem(struct bpf_sysctl *ctx)
          /* a workaround to prevent compiler from generating
           * codes verifier cannot handle yet.
           */
  -       volatile int ret;
  +       int ret;
this patch is able to generate code which passed the verifier.

To disable optimization, users need to use "opt" command like below:
  clang -target bpf -O2 -S -emit-llvm -Xclang -disable-llvm-passes test.c
  // disable icmp serialization
  opt -O2 -bpf-disable-serialize-icmp test.ll | llvm-dis > t.ll
  // disable avoid-speculation
  opt -O2 -bpf-disable-avoid-speculation test.ll | llvm-dis > t.ll
  llc t.ll

Differential Revision: https://reviews.llvm.org/D85570
2020-10-07 08:49:10 -07:00
Yonghong Song edd71db38b BPF: avoid duplicated globals for CORE relocations
This patch fixed two issues related with relocation globals.
In LLVM, if a global, e.g. with name "g", is created and
conflict with another global with the same name, LLVM will
rename the global, e.g., with a new name "g.2". Since
relocation global name has special meaning, we do not want
llvm to change it, so internally we have logic to check
whether duplication happens or not. If happens, just reuse
the previous global.

The first bug is related to non-btf-id relocation
(BPFAbstractMemberAccess.cpp). Commit 54d9f743c8
("BPF: move AbstractMemberAccess and PreserveDIType passes
to EP_EarlyAsPossible") changed ModulePass to FunctionPass,
i.e., handling each function at a time. But still just
one BPFAbstractMemberAccess object is created so module
level de-duplication still possible. Commit 40251fee00
("[BPF][NewPM] Make BPFTargetMachine properly adjust NPM optimizer
pipeline") made a change to create a BPFAbstractMemberAccess
object per function so module level de-duplication is not
possible any more without going through all module globals.
This patch simply changed the map which holds reloc globals
as class static, so it will be available to all
BPFAbstractMemberAccess objects for different functions.

The second bug is related to btf-id relocation
(BPFPreserveDIType.cpp). Before Commit 54d9f743c8, the pass
is a ModulePass, so we have a local variable, incremented for
each instance, and works fine. But after Commit 54d9f743c8,
the pass becomes a FunctionPass. Local variable won't work
properly since different functions will start with the same
initial value. Fix the issue by change the local count variable
as static, so it will be truely unique across the whole module
compilation.

Differential Revision: https://reviews.llvm.org/D88942
2020-10-06 22:37:49 -07:00
Arthur Eubanks 40251fee00 [BPF][NewPM] Make BPFTargetMachine properly adjust NPM optimizer pipeline
This involves porting BPFAbstractMemberAccess and BPFPreserveDIType to
NPM, then adding them BPFTargetMachine::registerPassBuilderCallbacks
(the NPM equivalent of adjustPassManager()).

Reviewed By: yonghong-song, asbirlea

Differential Revision: https://reviews.llvm.org/D88855
2020-10-06 07:42:32 -07:00
Yonghong Song 54d9f743c8 BPF: move AbstractMemberAccess and PreserveDIType passes to EP_EarlyAsPossible
Move abstractMemberAccess and PreserveDIType passes as early as
possible, right after clang code generation.

Currently, compiler may transform the above code
  p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
  p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
  a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
  if (a) {
    p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
    p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
    bpf_probe_read(buf, buf_size, p2);
  }
to
  p1 = llvm.bpf.builtin.preserve.struct.access(base, 0, 0);
  p2 = llvm.bpf.builtin.preserve.struct.access(p1, 1, 2);
  a = llvm.bpf.builtin.preserve_field_info(p2, EXIST);
  if (a) {
    bpf_probe_read(buf, buf_size, p2);
  }
and eventually assembly code looks like
  reloc_exist = 1;
  reloc_member_offset = 10; //calculate member offset from base
  p2 = base + reloc_member_offset;
  if (reloc_exist) {
    bpf_probe_read(bpf, buf_size, p2);
  }
if during libbpf relocation resolution, reloc_exist is actually
resolved to 0 (not exist), reloc_member_offset relocation cannot
be resolved and will be patched with illegal instruction.
This will cause verifier failure.

This patch attempts to address this issue by do chaining
analysis and replace chains with special globals right
after clang code gen. This will remove the cse possibility
described in the above. The IR typically looks like
  %6 = load @llvm.sk_buff:0:50$0:0:0:2:0
  %7 = bitcast %struct.sk_buff* %2 to i8*
  %8 = getelementptr i8, i8* %7, %6
for a particular address computation relocation.

But this transformation has another consequence, code sinking
may happen like below:
  PHI = <possibly different @preserve_*_access_globals>
  %7 = bitcast %struct.sk_buff* %2 to i8*
  %8 = getelementptr i8, i8* %7, %6

For such cases, we will not able to generate relocations since
multiple relocations are merged into one.

This patch introduced a passthrough builtin
to prevent such optimization. Looks like inline assembly has more
impact for optimizaiton, e.g., inlining. Using passthrough has
less impact on optimizations.

A new IR pass is introduced at the beginning of target-dependent
IR optimization, which does:
  - report fatal error if any reloc global in PHI nodes
  - remove all bpf passthrough builtin functions

Changes for existing CORE tests:
  - for clang tests, add "-Xclang -disable-llvm-passes" flags to
    avoid builtin->reloc_global transformation so the test is still
    able to check correctness for clang generated IR.
  - for llvm CodeGen/BPF tests, add "opt -O2 <ir_file> | llvm-dis" command
    before "llc" command since "opt" is needed to call newly-placed
    builtin->reloc_global transformation. Add target triple in the IR
    file since "opt" requires it.
  - Since target triple is added in IR file, if a test may produce
    different results for different endianness, two tests will be
    created, one for bpfeb and another for bpfel, e.g., some tests
    for relocation of lshift/rshift of bitfields.
  - field-reloc-bitfield-1.ll has different relocations compared to
    old codes. This is because for the structure in the test,
    new code returns struct layout alignment 4 while old code
    is 8. Align 8 is more precise and permits double load. With align 4,
    the new mechanism uses 4-byte load, so generating different
    relocations.
  - test intrinsic-transforms.ll is removed. This is used to test
    cse on intrinsics so we do not lose metadata. Now metadata is attached
    to global and not instruction, it won't get lost with cse.

Differential Revision: https://reviews.llvm.org/D87153
2020-09-28 16:56:22 -07:00
Simon Pilgrim 95ca3aacf0 BTFDebug.h - reduce MachineInstr.h include to forward declaration. NFCI. 2020-09-07 17:51:13 +01:00
Craig Topper c7a0b2684f [X86][MC][Target] Initial backend support a tune CPU to support -mtune
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.

This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.

One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.

I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.

Differential Revision: https://reviews.llvm.org/D85165
2020-08-14 15:31:50 -07:00
Yonghong Song c50f5dece9 BPF: fix libLLVMBPFCodeGen.so build failure
Buildbot reported a build failure when building shared
library libLLVMBPFCodeGen.so with unknown reference to
"createCFGSimplificationPass".

Commit 87cba43402 ("BPF: add a SimplifyCFG IR pass during
generic Scalar/IPO optimization") added an IR pass SimplifyCFG
by BPF target. The commit called function
createCFGSimplificationPass() defined in "Scalar" library.
Add this library in Target/BPF/LLVMBuild.txt so
shared library build can succeed.
2020-08-06 15:27:15 -07:00
Yonghong Song 87cba43402 BPF: add a SimplifyCFG IR pass during generic Scalar/IPO optimization
The following bpf linux kernel selftest failed with latest
llvm:
  $ ./test_progs -n 7/10
  ...
  The sequence of 8193 jumps is too complex.
  verification time 126272 usec
  stack depth 320
  processed 114799 insns (limit 1000000)
  ...
  libbpf: failed to load object 'pyperf600_nounroll.o'
  test_bpf_verif_scale:FAIL:110
  #7/10 pyperf600_nounroll.o:FAIL
  #7 bpf_verif_scale:FAIL

After some investigation, I found the following llvm patch
  https://reviews.llvm.org/D84108
is responsible. The patch disabled hoisting common instructions
in SimplifyCFG by default. Later on, the code changes and a
SimplifyCFG phase with hoisting on cannot do the work any more.

A test is provided to demonstrate the problem.
The IR before simplifyCFG looks like:
  for.cond:
    %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
    %cmp = icmp ult i32 %i.0, 6
    br i1 %cmp, label %for.body, label %for.cond.cleanup

  for.cond.cleanup:
    %2 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
    %cmp2 = icmp eq i8* %2, null
    %conv = zext i1 %cmp2 to i32
    call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %1) #3
    call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %0) #3
    ret i32 %conv

  for.body:
    %3 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
    %tobool.not = icmp eq i8* %3, null
    br i1 %tobool.not, label %for.inc, label %land.lhs.true

The first two insns of `for.cond.cleanup` and `for.body`, load and
icmp, can be hoisted to `for.cond` block. With Patch D84108, the
optimization is delayed. But unfortunately, later on loop rotation
added addition phi nodes to `for.body` and hoisting cannot
be done any more.

Note such a hoisting is beneficial to bpf programs as
bpf verifier does path sensitive analysis and verification.
The hoisting preverts reloading from stack which will assume
conservative value and increase exploited insns. In this case,
it caused verifier failure.

To fix this problem, I added an IR pass from bpf target
to performance additional simplifycfg with hoisting common inst
enabled.

Differential Revision: https://reviews.llvm.org/D85434
2020-08-06 13:16:00 -07:00
Yonghong Song 00602ee7ef BPF: simplify IR generation for __builtin_btf_type_id()
This patch simplified IR generation for __builtin_btf_type_id().
For __builtin_btf_type_id(obj, flag), previously IR builtin
looks like
   if (obj is a lvalue)
     llvm.bpf.btf.type.id(obj.ptr, 1, flag)  !type
   else
     llvm.bpf.btf.type.id(obj, 0, flag)  !type
The purpose of the 2nd argument is to differentiate
   __builtin_btf_type_id(obj, flag) where obj is a lvalue
vs.
   __builtin_btf_type_id(obj.ptr, flag)

Note that obj or obj.ptr is never used by the backend
and the `obj` argument is only used to derive the type.
This code sequence is subject to potential llvm CSE when
  - obj is the same .e.g., nullptr
  - flag is the same
  - metadata type is different, e.g., typedef of struct "s"
    and strust "s".
In the above, we don't want CSE since their metadata is different.

This patch change IR builtin to
   llvm.bpf.btf.type.id(seq_num, flag)  !type
and seq_num is always increasing. This will prevent potential
llvm CSE.

Also report an error if the type name is empty for
remote relocation since remote relocation needs non-empty
type name to do relocation against vmlinux.

Differential Revision: https://reviews.llvm.org/D85174
2020-08-04 16:29:42 -07:00
Yonghong Song 6d218b4adb BPF: support type exist/size and enum exist/value relocations
Four new CO-RE relocations are introduced:
  - TYPE_EXISTENCE: whether a typedef/record/enum type exists
  - TYPE_SIZE: the size of a typedef/record/enum type
  - ENUM_VALUE_EXISTENCE: whether an enum value of an enum type exists
  - ENUM_VALUE: the enum value of an enum type

These additional relocations will make CO-RE bpf programs
more adaptive for potential kernel internal data structure
changes.

Differential Revision: https://reviews.llvm.org/D83878
2020-08-04 12:35:39 -07:00
Fangrui Song 40da58a04b [MC] Default MCAsmBackend::mayNeedRelaxation() to false 2020-08-02 22:13:59 -07:00
Kazu Hirata 902cbcd59e Use llvm::is_contained where appropriate (NFC)
Summary:
This patch replaces std::find with llvm::is_contained where
appropriate.

Reviewers: efriedma, nhaehnle

Reviewed By: nhaehnle

Subscribers: arsenm, jvesely, nhaehnle, hiraditya, rogfer01, kerbowa, llvm-commits, vkmr

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D84489
2020-07-27 10:20:44 -07:00
Simon Pilgrim 0128b9505c Revert rG5dd566b7c7b78bd- "PassManager.h - remove unnecessary Function.h/Module.h includes. NFCI."
This reverts commit 5dd566b7c7.

Causing some buildbot failures that I'm not seeing on MSVC builds.
2020-07-24 13:02:33 +01:00
Simon Pilgrim 5dd566b7c7 PassManager.h - remove unnecessary Function.h/Module.h includes. NFCI.
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.

This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
2020-07-24 12:40:50 +01:00
Yuanfang Chen ca1e69a675 [NFC] remove unused includes of SelectionDAGISel.h 2020-07-20 10:43:29 -07:00
Simon Pilgrim 017e5c949b MCFixup.h - remove unnecessary MCExpr.h include. NFCI.
Move the include down to files that actually depend on MCExpr definitions.

Also exposes an implicit dependency on MCContext in AVRAsmBackend.h
2020-07-20 15:17:19 +01:00
Yonghong Song 0e347c0ff0 BPF: generate .rodata BTF datasec for certain initialized local var's
Currently, BTF datasec type for .rodata is generated only if there are
user-defined readonly global variables which have debuginfo generated.

Certain readonly global variables may be generated from initialized
local variables. For example,
  void foo(const void *);
  int test() {
    const struct {
      unsigned a[4];
      char b;
    } val = { .a = {2, 3, 4, 5}, .b = 6 };
    foo(&val);
    return 0;
  }

The clang will create a private linkage const global to store
the initialized value:
  @__const.test.val = private unnamed_addr constant %struct.anon
      { [4 x i32] [i32 2, i32 3, i32 4, i32 5], i8 6 }, align 4

This global variable eventually is put in .rodata ELF section.

If there is .rodata ELF section, libbpf expects a BTF .rodata
datasec as well even though it may be empty meaning there are no
global readonly variables with proper debuginfo. Martin reported
a bug where without this empty BTF .rodata datasec, the bpftool
gen will exit with an error.

This patch fixed the issue by generating .rodata BTF datasec
if there exists local var intial data which will result in
.rodata ELF section.

Differential Revision: https://reviews.llvm.org/D84002
2020-07-17 09:45:57 -07:00
Logan Smith a19461d9e1 [NFC] Add 'override' keyword where missing in include/ and lib/.
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.

Differential Revision: https://reviews.llvm.org/D83709
2020-07-14 09:47:29 -07:00
Yonghong Song 152a9fef1b BPF: permit .maps section variables with typedef type
Currently, llvm when see a global variable in .maps section,
it ensures its type must be a struct type. Then pointee
will be further evaluated for the structure members.
In normal cases, the pointee type will be skipped.

Although this is what current all bpf programs are doing,
but it is a little bit restrictive. For example, it is legitimate
for users to have:
typedef struct { int key_size; int value_size; } __map_t;
__map_t map __attribute__((section(".maps")));

This patch lifts this restriction and typedef of
a struct type is also allowed for .maps section variables.
To avoid create unnecessary fixup entries when traversal
started with typedef/struct type, the new implementation
first traverse all map struct members and then traverse
the typedef/struct type. This way, in internal BTFDebug
implementation, no fixup entries are generated.

Two new unit tests are added for typedef and const
struct in .maps section. Also tested with kernel bpf selftests.

Differential Revision: https://reviews.llvm.org/D83638
2020-07-12 09:42:25 -07:00
Yonghong Song 3eacfdc72f [BPF] Fix a BTF gen bug related to a pointer struct member
Currently, BTF generation stops at pointer struct members
if the pointee type is a struct. This is to avoid bloating
generated BTF size. The following is the process to
correctly record types for these pointee struct types.
  - During type traversal stage, when a struct member, which
    is a pointer to another struct, is encountered,
    the pointee struct type, keyed with its name, is
    remembered in a Fixup map.
  - Later, when all type traversal is done, the Fixup map
    is scanned, based on struct name matching, to either
    resolve as pointing to a real already generated type
    or as a forward declaration.

Andrii discovered a bug if the struct member pointee struct
is anonymous. In this case, a struct with empty name is
recorded in Fixup map, and later it happens another anonymous
struct with empty name is defined in BTF. So wrong type
resolution happens.

To fix the problem, if the struct member pointee struct
is anonymous, pointee struct type will be generated in
stead of being put in Fixup map.

Differential Revision: https://reviews.llvm.org/D82976
2020-07-01 09:55:01 -07:00
Guillaume Chatelet 0f9d623b63 [Alignment][NFC] Use Align for BPFAbstractMemberAccess::RecordAlignment
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82962
2020-07-01 16:23:52 +00:00
Yonghong Song 7f6bc84a97 [BPF] Fix a bug for __builtin_preserve_field_info() processing
Andrii discovered a problem where a simple case similar to below
will generate wrong relocation kind:
  enum { FIELD_EXISTENCE = 2, };
  struct s1 { int a1; };
  int test() {
    struct s1 *v = 0;
    return __builtin_preserve_field_info(v[0], FIELD_EXISTENCE);
  }
The expected relocation kind should be FIELD_EXISTENCE, but
recorded reloc kind in the final object file is FIELD_BYTE_OFFSET,
which is incorrect.

This exposed a bug in generating access strings from intrinsics.
The current access string generation has two steps:
  step 1: find the base struct/union type,
  step 2: traverse members in the base type.

The current implementation relies on at lease one member access
in step 2 to get the correct relocation kind, which is true
in typical cases. But if there is no member accesses, the current
implementation falls to the default info kind FIELD_BYTE_OFFSET.
This is incorrect, we should still record the reloc kind
based on the user input. This patch fixed this issue by properly
recording the reloc kind in such cases.

Differential Revision: https://reviews.llvm.org/D82932
2020-06-30 23:45:37 -07:00