Starting with Power 10 the instruction paddi is available to use.
The instruction allows for immediates that are 34 bits.
This patch adds exploitation of the paddi instruction to allow us
to materialize constants.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D93300
4c973ae implemented reduction of vector swap for lane-insensitive
operations. This commit fixes it for checking number of uses of the
vector operation.
If we encounter a degenerate select node where both operands are
the same, then we can continue negating the condition while swapping
operands, resulting in an infinite loop. Avoid this by bailing out
if both operands are the same.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49509.
Differential Revision: https://reviews.llvm.org/D98340
As we may overwrite inactive lanes of a caller-save-vgpr, we should
always save/restore the reserved vgpr for sgpr spill.
Reviewed by: arsenm
Differential Revision: https://reviews.llvm.org/D98319
We previously have lowering for:
vecreduce.add(zext(X)) to vecreduce.add(UDOT(zero, X, one))
This extends that to also handle:
vecreduce.add(mul(zext(X), zext(Y)) to vecreduce.add(UDOT(zero, X, Y))
It extends the existing code to optionally handle a mul with equal
extends.
Differential Revision: https://reviews.llvm.org/D97280
On riscv32, i64 isn't a legal scalar type but we would like to
support scalable vectors of i64.
This patch introduces a new node that can represent a splat made
of multiple scalar values. I've used this new node to solve the current
crashes we experience when getConstant is used after type legalization.
For RISCV, we are now default expanding SPLAT_VECTOR to SPLAT_VECTOR_PARTS
when needed and then handling the SPLAT_VECTOR_PARTS later during
LegalizeOps. I've remove the special case I previously put in for
ABS for D97991 as the default expansion is now able to succesfully
use getConstant.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98004
Currently we crash in type legalization any time an intrinsic
uses a scalar i64 on RV32.
This patch adds support for type legalizing this to prevent
crashing. I don't promise that it uses the best possible codegen
just that it is functional.
This first version handles 3 cases. vmv.v.x intrinsic, vmv.s.x
intrinsic and intrinsics that take a scalar input, splat it and
then do some operation.
For vmv.v.x we'll either rely on hardware sign extension for
constants or we'll convert it to multiple splats and bit
manipulation.
For vmv.s.x we use a really unoptimal sequence inspired by what
we do for an INSERT_VECTOR_ELT.
For the third case we'll either try to use the .vi form for
constants or convert to a complicated splat and bitmanip and use
the .vv form of the operation.
I've renamed the ExtendOperand field to SplatOperand now use it
specifically for the third case. The first two cases are handled
by custom lowering specifically for those intrinsics.
I haven't updated all tests yet, but I tried to cover a subset
that includes single-width, widening, and narrowing.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97895
The type legalizer will visit the result before the operands. To
avoid creating an illegal target specific node or falling back to
scalarization, we need to manually split vector operands.
This still doesn't handle the case of non-power of 2 operands
which need to be widened. I'm not sure the type legalizer is
ready for it. I think we would need to insert an
INSERT_SUBVECTOR with the power of 2 type we want, with an undef
first operand, and the non-power of 2 orignal operand as the vector
to insert. Then fill in the neutral elements into the elements the
padded elements. Alternatively we INSERT_SUBVECTOR into a neutral vector.
From there we carry on splitting if needed to get to a legal type
then do the target specific code.
The problem with this is the type legalizer doesn't know how to
widen an insert_subvector yet. We would need to add that including
the handling for a non-undef first vector.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98292
This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
D57708 changed SIInstrInfo::isReallyTriviallyReMaterializable to reject
V_MOVs with extra implicit operands, but it accidentally rejected all
V_MOVs because of their implicit use of exec. Fix it but avoid adding a
moderately expensive call to MI.getDesc().getNumImplicitUses().
In real graphics shaders this changes quite a few vgpr copies into move-
immediates, which is good for avoiding stalls on GFX10.
Differential Revision: https://reviews.llvm.org/D98347
Rename ELF specific variables, making it easier to add the XPLink
variables in future patches.
Reviewed By: abhina.sreeskantharajan, Kai
Differential Revision: https://reviews.llvm.org/D98199
This patch simplifies pattern (xxswap (vec-op (xxswap a) (xxswap b)))
into (vec-op a b) if vec-op is lane-insensitive. The motivating case
is ScalarToVector-VecOp-ExtractElement sequence on LE, but the
peephole itself is not related to endianness, so BE may also benefit
from this.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D97658
This pull request implements patterns to exploit the load rightmost vector
element instructions for loading element 0 on little endian PowerPC subtargets
into v8i16 and v16i8 vector registers for i16 and i8 data types.
Differential Revision: https://reviews.llvm.org/D94816#inline-921403
For <2 x s32>, we can use G_DUPLANE32, but with a <4 x s32> source. To make it
work, we can just widen the original source with a concat_vectors.
Doing this allows <2 x float> indexed fmul instruction selection patterns to
fire, which gives a nice 0.3% code size saving on Bullet with -Os.
Differential Revision: https://reviews.llvm.org/D98059
Refactor and add comments to explain where the magic numbers come from
in terms of the instruction cache line size. NFC.
Differential Revision: https://reviews.llvm.org/D98266
I've left mask registers to a future patch as we'll need
to convert them to full vectors, shuffle, and then truncate.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97609
AMDGPU target tries to handle the SGPR and VGPR spills in a
custom pass before the actual frame lowering pass. Once they
are handled and the respective frames are eliminated in the
custom pass, certain uses of them still remain. For instance,
the DBG_VALUE instructions inserted by the allocator alongside
the spill instruction will use the corresponding frame index.
They become dead later during PEI and causes a crash while trying to
replace the frame indices. We should possibly avoid this custom pass.
For now, replacing such dead references with null register value.
Reviewed By: arsenm, scott.linder
Differential Revision: https://reviews.llvm.org/D98038
I've included tests that require type legalization to split the
vector. The i64 version of these scalarizes on RV32 due to type
legalization visiting the result before the vector type. So we
have to abort our custom expansion to avoid creating target
specific nodes with an illegal type. Then type legalization ends
up scalarizing. We might be able to fix this by doing custom
splitting for large vectors in our handler to get down to a legal
type.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98102
Previously we set the value to -1, but the SEW information could
be useful for scheduling.
Reviewed By: frasercrmck, rogfer01
Differential Revision: https://reviews.llvm.org/D98062
The default fixed vector expansion uses sra+xor+add since it can't
see that smax is legal due to our custom handling. So we select
smax(X, sub(0, X)) manually.
Scalable vectors are able to use the smax expansion automatically
for most cases. It crashes in one case because getConstant can't build a
SPLAT_VECTOR for nxvXi64 when i64 scalars aren't legal. So
we manually emit a SPLAT_VECTOR_I64 for that case.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97991
As far as I know we're not enforcing the StdExtM must be enabled
to use the V extension. If we use an assert here and hit this
code in a release build we'll silently emit an invalid instruction.
By using a diagnostic we report the error to the user in release
builds. I think there may still be a later fatal error from
the code emitter though.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97970
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
Add a comment explaining how we lay out stack frames for ARM targets,
based on the existing one for AArch64. Also expand the comment to
explain reserved call frames for both architectures.
Differential revision: https://reviews.llvm.org/D98258
Some EVEX instructions should check the predicates when compress to VEX
encoding. For example, avx512vnni instructions. This is because avx512vnni
doesn't mean that avxvnni is supported on the target.
This patch moving the manually added check to .inc that generated by tablegen.
Differential Revision: https://reviews.llvm.org/D98011
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.
For example:
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E> ; index
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count
These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.
This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker and Cullen Rhodes.
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94708
The three bit nf is one less than the number of NFIELDS,
so we manually decrement 1 for VS1/2/4/8R & VL1/2/4/8R.
Reviewed By: craig.topper
Differential revision: https://reviews.llvm.org/D98185
This is already deprecated, so remove code working on this.
Also update the tests by using S_CBRANCH_EXECZ instead of SI_MASK_BRANCH.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D97545
Add support for the TLS general dynamic access model to assembly
files on AIX 64-bit.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D98078
Since P8 is the oldest machine supported by MASSV pass,
_massv place holder is removed and the oldest version of
MASSV functions is assumed. If the P9 vector specific is
detected in the compilation process, the P8 prefix will
be updated to P9.
Differential Revision: https://reviews.llvm.org/D98064
If we have
```
%vec = G_BUILD_VECTOR %reg, %reg, ..., %reg
```
Then lower it to
```
%vec = G_DUP %reg
```
Also update the selector to handle constant splats on G_DUP.
This will not combine when the splat is all zeros or ones. Tablegen-imported
patterns rely on these being G_BUILD_VECTOR.
Minor code size improvements on CTMark at -Os.
Also adds some utility functions to make it a bit easier to recognize splats,
and an AArch64-specific splat helper.
Differential Revision: https://reviews.llvm.org/D97731
- Add the M68k-specific MC layer implementation
- Add ELF support for M68k
- Add M68k-specifc CC and reloc
TODO: Currently AsmParser and disassembler are not implemented yet.
Please use this bug to track the status:
https://bugs.llvm.org/show_bug.cgi?id=48976
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88390
This `R_WASM_MEMORY_ADDR_SELFREL_I32` relocation represents an offset
between its relocating address and the symbol address. It's very similar
to `R_X86_64_PC32` but restricted to be used for only data segments.
```
S + A - P
```
A: Represents the addend used to compute the value of the relocatable
field.
P: Represents the place of the storage unit being relocated.
S: Represents the value of the symbol whose index resides in the
relocation entry.
Proposal: https://github.com/WebAssembly/tool-conventions/issues/162
Differential Revision: https://reviews.llvm.org/D96659
Adds support for the TLS general dynamic access model to
assembly files on AIX 32-bit.
To generate the correct code sequence when accessing a TLS variable
`v`, we first create two TOC entry nodes, one for the variable offset, one
for the region handle. These nodes are followed by a `PPCISD::TLSGD_AIX`
node (new node introduced by this patch).
The `PPCISD::TLSGD_AIX` node (`TLSGDAIX` pseudo instruction) is
expanded to 2 copies (to put the variable offset and region handle in
the right registers) and a call to `__tls_get_addr`.
This patch also changes the way TC entries are generated in asm files.
If the generated TC entry is for the region handle of a TLS variable,
we add the `@m` relocation and the `.` prefix to the entry name.
For example:
```
L..C0:
.tc .v[TC],v[TL]@m -> region handle
L..C1:
.tc v[TC],v[TL] -> variable offset
```
Reviewed By: nemanjai, sfertile
Differential Revision: https://reviews.llvm.org/D97948
- This patch adds in support to determine whether a particular label
is valid for the hlasm variant
- The label syntax being checked is that of an ordinary HLASM symbol
(Reference, Chapter 2 (Coding and Structure) - Terms, Literals and
Expressions - Terms - Symbols - Ordinary Symbol)
- To achieve this, the virtual function isLabel defined in
MCTargetAsmParser.h is made use of
- The isLabel function is overridden in SystemZAsmParser for the
hlasm variant, and the syntax is checked appropriately
- Things remain unchanged for the att variant
- Further patches will add in support to emit the label. These future
patches will make use of this isLabel function
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D97748
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
This changes the target data layout to make stack align to 16 bytes
on Power10. Before this change, stack was being aligned to 32 bytes.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D96265
While working on adding fixed-length vectors to the calling convention,
it was necessary to be able to query for a fixed-length vector container
type without access to an instance of SelectionDAG.
This patch modifies the "main" getContainerForFixedLengthVector function
to use an instance of TargetLowering rather than SelectionDAG, and
preserves the SelectionDAG overload as a wrapper.
An additional non-static version of the function was also added to
simplify the common case in RISCVTargetLowering.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97925
A setcc can be created during LegalizeDAG after select_cc has been
created. This combine will enable us to fold these late setccs.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D98132
This pattern occurs when lowering for overflow operations
introduce an xor after select_cc has already been formed.
I had to rework another combine that looked for select_cc of an xor
with 1. That xor will now get combined away so we just need to
look for the RHS of the select_cc being 1.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D98130
Patch adds support for passing vector call operands to variadic
functions. Arguments which are fixed shadow GPRs and stack space even
when they are passed in vector registers, while arguments passed through
ellipses are passed in properly aligned GPRs if available and on the
stack once all GPR arguments registers are consumed.
Differential Revision: https://reviews.llvm.org/D97956
That review is extracted from D69372.
It fixes https://bugs.llvm.org/show_bug.cgi?id=42219 bug.
For the noimplicitfloat mode, the compiler mustn't generate
floating-point code if it was not asked directly to do so.
This rule does not work with variable function arguments currently.
Though compiler correctly guards block of code, which copies xmm vararg
parameters with a check for %al, it does not protect spills for xmm registers.
Thus, such spills are generated in non-protected areas and could break code,
which does not expect floating-point data. The problem happens in -O0
optimization mode. With this optimization level there is used
FastRegisterAllocator, which spills virtual registers at basic block boundaries.
Register Allocator does not protect spills with additional control-flow modifications.
Thus to resolve that problem, it is suggested to not copy incoming physical
registers into virtual registers. Instead, store incoming physical xmm registers
into the memory from scratch.
Differential Revision: https://reviews.llvm.org/D80163
gfx1030 added a new way to implement readcyclecounter using the
SHADER_CYCLES hardware register, but the s_memtime instruction still
exists, so the MC layer should still accept it and the
llvm.amdgcn.s.memtime intrinsic should still work.
Differential Revision: https://reviews.llvm.org/D97928
This patch adds support for the default AltiVec ABI for AIX.
Vector registers 20 through 31 are marked as reserved and cannot
be used in the default ABI. This patch adds handling for this case
and also remove the default AltiVec ABI errors.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D96351
Copy-paste P9 insns were added back in 2016,
however, looks like the opcodes has changed in ISA3.1.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D97416
Some BPF programs compiled on s390 fail to load, because s390
arch-specific linux headers contain float and double types. At the
moment there is no BTF_KIND for floats and doubles, so the release
version of LLVM ends up emitting type id 0 for them, which the
in-kernel verifier does not accept.
Introduce support for such types to libbpf by representing them using
the new BTF_KIND_FLOAT.
Reviewed By: yonghong-song
Differential Revision: https://reviews.llvm.org/D83289
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d0.
Same as other memory instructions, ds instructions add latency even if
exec is zero. Jumping over them if exec=0 is cheaper than executing
them.
With this change, the branch instruction that skips over a basic block
if exec=0 is not removed when the block contains a ds instruction.
Differential Revision: https://reviews.llvm.org/D97922
Recommit bf5a582650. Depends on
4c8fb7ddd6 which was reverted.
RegBankSelect creates zext and trunc when it selects banks for uniform i1.
Add zext_trunc_fold from generic combiner to post RegBankSelect combiner.
Differential Revision: https://reviews.llvm.org/D95432
This pass runs in any situations but we skip it when it is not O0 and the
function doesn't have optnone attribute. With -O0, the def of shape to amx
intrinsics is near the amx intrinsics code. We are not able to find a
point which post-dominate all the shape and dominate all amx intrinsics.
To decouple the dependency of the shape, we transform amx intrinsics
to scalar operation, so that compiling doesn't fail. In long term, we
should improve fast register allocation to allocate amx register.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D93594
By implementing the method "unsigned RISCVTTIImpl::getRegisterBitWidth(bool Vector)",
fixed-length vectorization is enabled when possible. Without this method, the
"#pragma clang loop" directive is needed to enable vectorization(or the cost model
may inform LLVM that "Vectorization is possible but not beneficial").
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97549
Lorenz Bauer from Cloudflare tried to use "const struct <name>"
as the type for __builtin_btf_type_id(*(const struct <name>)0, 1)
relocation and hit a llvm BPF fatal error.
https://lore.kernel.org/bpf/a3782f71-3f6b-1e75-17a9-1827822c2030@fb.com/
...
fatal error: error in backend: Empty type name for BTF_TYPE_ID_REMOTE reloc
Currently, we require the debuginfo type itself must have a name.
In this case, the debuginfo type is "const" which points to "struct <name>".
The "const" type does not have a name, hence the above fatal error
will be triggered.
Let us permit "const" and "volatile" type modifiers. We skip modifiers
in some other cases as well like structure member type tracing.
This can aviod the above fatal error.
Differential Revision: https://reviews.llvm.org/D97986
This is included from IR files, and IR doesn't/can't depend on Analysis
(because Analysis depends on IR).
Also fix the implementation - don't use non-member static in headers, as
it leads to ODR violations, inaccurate "unused function" warnings, etc.
And fix the header protection macro name (we don't generally include
"LIB" in the names, so far as I can tell).
This is actually two changes. One is to avoid copies when fp values are fed into
a build_vector, without being able to tell from the opcode.
The other is that build_vectors are also marked as only defining FP, since they
produce vector results.
Differential Revision: https://reviews.llvm.org/D97968
This is a case D97677 missed. When taking out remaining BBs that are
reachable from already-taken-out exceptions (because they are not
subexcptions but unwind destinations), I assumed the remaining BBs are
not EH pads, but they can be. For example,
```
try {
try {
throw 0;
} catch (int) { // (a)
}
} catch (int) { // (b)
}
try {
foo();
} catch (int) { // (c)
}
```
In this code, (b) is the unwind destination of (a) so its exception is
taken out of (a)'s exception, But even though the next try-catch is not
inside the first two-level try-catches, because the first try always
throws, its continuation BB is unreachable and the whole rest of the
function is dominated by EH pad (a), including EH pad (c). So after we
take out of (b)'s exception out of (a)'s, we also need to take out (c)'s
exception out of (a)'s, because (c) is reachable from (b).
This adds one more step before what we did for remaining BBs in D97677;
it traverses EH pads first to take subexceptions out of their incorrect
parent exception. It's the same thing as D97677, but because we can do
this before we add BBs to exceptions' sets, we don't need to fix sets
and only need to fix parent exception pointers.
Other changes are variable name changes (I changed `WE` -> `SrcWE`,
`UnwindWE` -> `DstWE` for clarity), some comment changes, and a drive-by
fix in a bug in a `LLVM_DEBUG` print statement.
Fixes https://github.com/emscripten-core/emscripten/issues/13588.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D97929
Background:
Wasm EH, while using Windows EH (catchpad/cleanuppad based) IR, uses
Itanium-based libraries and ABIs with some modifications.
`__clang_call_terminate` is a wrapper generated in Clang's Itanium C++
ABI implementation. It contains this code, in C-style pseudocode:
```
void __clang_call_terminate(void *exn) {
__cxa_begin_catch(exn);
std::terminate();
}
```
So this function is a wrapper to call `__cxa_begin_catch` on the
exception pointer before termination.
In Itanium ABI, this function is called when another exception is thrown
while processing an exception. The pointer for this second, violating
exception is passed as the argument of this `__clang_call_terminate`,
which calls `__cxa_begin_catch` with that pointer and calls
`std::terminate` to terminate the program.
The spec (https://libcxxabi.llvm.org/spec.html) for `__cxa_begin_catch`
says,
```
When the personality routine encounters a termination condition, it
will call __cxa_begin_catch() to mark the exception as handled and then
call terminate(), which shall not return to its caller.
```
In wasm EH's Clang implementation, this function is called from
cleanuppads that terminates the program, which we also call terminate
pads. Cleanuppads normally don't access the thrown exception and the
wasm backend converts them to `catch_all` blocks. But because we need
the exception pointer in this cleanuppad, we generate
`wasm.get.exception` intrinsic (which will eventually be lowered to
`catch` instruction) as we do in the catchpads. But because terminate
pads are cleanup pads and should run even when a foreign exception is
thrown, so what we have been doing is:
1. In `WebAssemblyLateEHPrepare::ensureSingleBBTermPads()`, we make sure
terminate pads are in this simple shape:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
```
2. In `WebAssemblyHandleEHTerminatePads` pass at the end of the
pipeline, we attach a `catch_all` to terminate pads, so they will be in
this form:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
catch_all
call @std::terminate()
unreachable
```
In `catch_all` part, we don't have the exception pointer, so we call
`std::terminate()` directly. The reason we ran HandleEHTerminatePads at
the end of the pipeline, separate from LateEHPrepare, was it was
convenient to assume there was only a single `catch` part per `try`
during CFGSort and CFGStackify.
---
Problem:
While it thinks terminate pads could have been possibly split or calls
to `__clang_call_terminate` could have been duplicated,
`WebAssemblyLateEHPrepare::ensureSingleBBTermPads()` assumes terminate
pads contain no more than calls to `__clang_call_terminate` and
`unreachable` instruction. I assumed that because in LLVM very limited
forms of transformations are done to catchpads and cleanuppads to
maintain the scoping structure. But it turned out to be incorrect;
passes can merge cleanuppads into one, including terminate pads, as long
as the new code has a correct scoping structure. One pass that does this
I observed was `SimplifyCFG`, but there can be more. After this
transformation, a single cleanuppad can contain any number of other
instructions with the call to `__clang_call_terminate` and can span many
BBs. It wouldn't be practical to duplicate all these BBs within the
cleanuppad to generate the equivalent `catch_all` blocks, only with
calls to `__clang_call_terminate` replaced by calls to `std::terminate`.
Unless we do more complicated transformation to split those calls to
`__clang_call_terminate` into a separate cleanuppad, it is tricky to
solve.
---
Solution (?):
This CL just disables the generation and use of `__clang_call_terminate`
and calls `std::terminate()` directly in its place.
The possible downside of this approach can be, because the Itanium ABI
intended to "mark" the violating exception handled, we don't do that
anymore. What `__cxa_begin_catch` actually does is increment the
exception's handler count and decrement the uncaught exception count,
which in my opinion do not matter much given that we are about to
terminate the program anyway. Also it does not affect info like stack
traces that can be possibly shown to developers.
And while we use a variant of Itanium EH ABI, we can make some
deviations if we choose to; we are already different in that in the
current version of the EH spec we don't support two-phase unwinding. We
can possibly consider a more complicated transformation later to
reenable this, but I don't think that has high priority.
Changes in this CL contains:
- In Clang, we don't generate a call to `wasm.get.exception()` intrinsic
and `__clang_call_terminate` function in terminate pads anymore; we
simply generate calls to `std::terminate()`, which is the default
implementation of `CGCXXABI::emitTerminateForUnexpectedException`.
- Remove `WebAssembly::ensureSingleBBTermPads() function and
`WebAssemblyHandleEHTerminatePads` pass, because terminate pads are
already `catch_all` now (because they don't need the exception
pointer) and we don't need these transformations anymore.
- Change tests to use `std::terminate` directly. Also removes tests that
tested `LateEHPrepare::ensureSingleBBTermPads` and
`HandleEHTerminatePads` pass.
- Drive-by fix: Add some function attributes to EH intrinsic
declarations
Fixes https://github.com/emscripten-core/emscripten/issues/13582.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97834
The hazard where a VMEM reads an SGPR written by a VALU counts as a data
dependency hazard, so no nops are required on GFX10. Tested with Vulkan
CTS on GFX10.1 and GFX10.3.
Differential Revision: https://reviews.llvm.org/D97926
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This patch adds the cost model for experimental.vector.reverse
with scalable vector types: nxv16i1, nxv8i1, nxv4i1 and nxv2i1.
These types are missing from the previous cost model patch D95603.
The cost model for experimental.vector.reverse with 1 bit mask is used by
loop vectorization in the patch D95363
Differential Revision: https://reviews.llvm.org/D97758
Patch adds support for passing vector arguments to variadic functions.
Arguments which are fixed shadow GPRs and stack space even when they are
passed in vector registers, while arguments passed through ellipses are
passed in(properly aligned GPRs if available and on the stack once all
GPR arguments registers are consumed.
Differential Revision: https://reviews.llvm.org/D97485
RegBankSelect creates zext and trunc when it selects banks for uniform i1.
Add zext_trunc_fold from generic combiner to post RegBankSelect combiner.
Differential Revision: https://reviews.llvm.org/D95432
This patch is a large number of small changes that should hopefully not
affect the generated machine code but are still important to get right
so that the machine verifier won't complain about them.
The llvm/test/CodeGen/AVR/pseudo/*.mir changes are also necessary
because without the liveins the used registers are considered undefined
by the machine verifier and it will complain about them.
Differential Revision: https://reviews.llvm.org/D97172
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
llvm-objdump only uses one MCInstrAnalysis object, so if ARM and Thumb
code is mixed in one object, or if an object is disassembled without
explicitly setting the triple to match the ISA used, then branch and
call targets will be printed incorrectly.
This could be fixed by creating two MCInstrAnalysis objects in
llvm-objdump, like we currently do for SubtargetInfo. However, I don't
think there's any reason we need two separate sub-classes of
MCInstrAnalysis, so instead these can be merged into one, and the ISA
determined by checking the opcode of the instruction.
Differential revision: https://reviews.llvm.org/D97766
This patch adds a pipeline to support in-order CPUs such as ARM
Cortex-A55.
In-order pipeline implements a simplified version of Dispatch,
Scheduler and Execute stages as a single stage. Entry and Retire
stages are common for both in-order and out-of-order pipelines.
Differential Revision: https://reviews.llvm.org/D94928
Generalize the shuffle(not(x)) -> not(shuffle(x)) fold to handle any binop with 0/-1.
Hopefully we can further generalize to help push target unary/binary shuffles through binops similar to what we do in DAGCombiner::visitVECTOR_SHUFFLE
This patch addresses a compiler crash resulting from passing a
fixed-length type to one that expects scalable vector types. An
assertion was added to prevent this regressing in the future.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97868
This patch fixes up one case where the fixed-length-vector VL was
dropped (falling back to VLMAX) when inserting vector elements, as the
code would lower via ISD::INSERT_VECTOR_ELT (at index 0) which loses the
fixed-length vector information.
To this end, a custom node, VMV_S_XF_VL, was introduced to carry the VL
operand through to the final instruction. This node wraps the RVV
vmv.s.x and vmv.s.f instructions, which were being selected by
insert_vector_elt anyway.
There should be no observable difference in scalable-vector codegen.
There is still one outstanding drop from fixed-length VL to VLMAX, when
an i64 element is inserted into a vector on RV32; the splat (which is
custom legalized) has no notion of the original fixed-length vector
type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97842
This adds some simple known bits handling for the three CSINC/NEG/INV
instructions. From the operands known bits we can compute the common
bits of the first operand and incremented/negated/inverted second
operand. The first, especially CSINC ZR, ZR, comes up fair amount in the
tests. The others are more rare so a unit test for them is added.
Differential Revision: https://reviews.llvm.org/D97788
Make sure we preserve info about passed arguments as implicit uses, to
make sure later passes still have access to this information.
This fixes a mis-compile where the machine-combiner would pick an
incorrect free register.
Even though the implementation in emitAtomicCmpSwapW() was correct, it made
Valgrind report an error. Instead of using a RISBG on CmpVal, an LL[CH]R can
be made on the OldVal, and the problem is avoided.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D97604
This is a NFC with respect to the generated code. But it fixes a crash
when using -debug, because of the position in the enum CALL_RVMARKER
nodes were treated as memops. That caused a crash when printing
CALL_RVMARKER nodes.
Honor always_inline attribute when processing -amdgpu-inline-max-bb.
It was lost during the ports of the heuristic. There is no reason
to honor inline hint, but not always inline.
Differential Revision: https://reviews.llvm.org/D97790
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
Some instructions (especially mov+pop instructions) were setting the
wrong operands. For example, the pop instruction had the register set as
a source operand while it is a destination operand (the value is loaded
into the register).
I have found these issues using the machine verifier and using manual
code inspection.
Differential Revision: https://reviews.llvm.org/D97159
The previous expansion used SBCI, which is incorrect because the NEGW
pseudo instruction accepts a DREGS operand (2xGPR8) and SBCI only allows
LD8 registers. One solution could be to correct the NEGW pseudo
instruction, but another solution is to use a different instruction
(sbc) that does accept a GPR8 register and therefore allows more freedom
to the register allocator.
The output now matches avr-gcc for the following code:
int foo(int n) {
return -n;
}
I've found this issue using the machine instruction verifier: it was
complaining about the wrong register class in NEGWRd.mir.
Differential Revision: https://reviews.llvm.org/D97131
These aliases are sometimes used in assembly code and make the code more
readable. They are supported by avr-gcc too.
Differential Revision: https://reviews.llvm.org/D96492
Refactor insertion of the asserting ops. This enables using them for
AMDGPU.
This code should essentially be the same for every target. Mips, X86
and ARM all have different code there now, but this seems to be an
accident. The assignment functions are called with different types
than they would be in the DAG, so this is all likely an assortment of
hacks to get around that.
* Add amdgcn_strict_wqm intrinsic.
* Add a corresponding STRICT_WQM machine instruction.
* The semantic is similar to amdgcn_strict_wwm with a notable difference that not all threads will be forcibly enabled during the computations of the intrinsic's argument, but only all threads in quads that have at least one thread active.
* The difference between amdgc_wqm and amdgcn_strict_wqm, is that in the strict mode an inactive lane will always be enabled irrespective of control flow decisions.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96258
* Introduce the new intrinsic amdgcn_strict_wwm
* Deprecate the old intrinsic amdgcn_wwm
The change is done for consistency as the "strict"
prefix will become an important, distinguishing factor
between amdgcn_wqm and amdgcn_strictwqm in the future.
The "strict" prefix indicates that inactive lanes do not
take part in control flow, specifically an inactive lane
enabled by a strict mode will always be enabled irrespective
of control flow decisions.
The amdgcn_wwm will be removed, but doing so in two steps
gives users time to switch to the new name at their own pace.
Reviewed By: critson
Differential Revision: https://reviews.llvm.org/D96257
While the underlying instruction is called image_msaa_load,
the resource must be x component only.
Rename the intrinsic for clarity.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D97829
In some rare circumstances we can be using an undef register for a
compare. When folded into a CBZ/CBNZ the undef flags are lost, leading
to machine verifier problems. This propagates the existing flags to the
new instruction.
The WebAssembly text and binary formats have different operand orders
for the "type" and "table" fields of call_indirect (and
return_call_indirect). In LLVM we use the binary order for the MCInstr,
but when we produce or consume the text format we should use the text
order. For compilation units targetting WebAssembly 1.0 (without the
reference types feature), we omit the table operand entirely.
Differential Revision: https://reviews.llvm.org/D97761
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.
This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).
This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
This fixes two bugs in `WebAssemblyExceptionInfo` grouping, created by
D97247. These two bugs are not easy to split into two different CLs,
because tests that fail for one also tend to fail for the other.
- In D97247, when fixing `ExceptionInfo` grouping by taking out
the unwind destination' exception from the unwind src's exception, we
just iterated the BBs in the function order, but this was incorrect;
this changes it to dominator tree preorder. Please refer to the
comments in the code for the reason and an example.
- After this subexception-taking-out fix, there still can be remaining
BBs we have to take out. When Exception B is taken out of Exception A
(because EHPad B is the unwind destination of EHPad A), there can
still be BBs within Exception A that are reachable from Exception B,
which also should be taken out. Please refer to the comments in the
code for more detailed explanation on why this can happen. To make
this possible, this splits `WebAssemblyException::addBlock` into two
parts: adding to a set and adding to a vector. We need to iterate on
BBs within a `WebAssemblyException` to fix this, so we add BBs to sets
first. But we add BBs to vectors later after we fix all incorrectness
because deleting BBs from vectors is expensive. I considered removing
the vector from `WebAssemblyException`, but it was not easy because
this class has to maintain a similar interface with `MachineLoop` to
be wrapped into a single interface `SortRegion`, which is used in
CFGSort.
Other misc. drive-by fixes:
- Make `WebAssemblyExceptionInfo` do not even run when wasm EH is not
used or the function doesn't have any EH pads, not to waste time
- Add `LLVM_DEBUG` lines for easy debugging
- Fix `preds` comments in cfg-stackify-eh.ll
- Fix `__cxa_throw`'s signature in cfg-stackify-eh.ll
Fixes https://github.com/emscripten-core/emscripten/issues/13554.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97677
Andrei Matei reported a llvm11 core dump for his bpf program
https://bugs.llvm.org/show_bug.cgi?id=48578
The core dump happens in LiveVariables analysis phase.
#4 0x00007fce54356bb0 __restore_rt
#5 0x00007fce4d51785e llvm::LiveVariables::HandleVirtRegUse(unsigned int,
llvm::MachineBasicBlock*, llvm::MachineInstr&)
#6 0x00007fce4d519abe llvm::LiveVariables::runOnInstr(llvm::MachineInstr&,
llvm::SmallVectorImpl<unsigned int>&)
#7 0x00007fce4d519ec6 llvm::LiveVariables::runOnBlock(llvm::MachineBasicBlock*, unsigned int)
#8 0x00007fce4d51a4bf llvm::LiveVariables::runOnMachineFunction(llvm::MachineFunction&)
The bug can be reproduced with llvm12 and latest trunk as well.
Futher analysis shows that there is a bug in BPF peephole
TRUNC elimination optimization, which tries to remove
unnecessary TRUNC operations (a <<= 32; a >>= 32).
Specifically, the compiler did wrong transformation for the
following patterns:
%1 = LDW ...
%2 = SLL_ri %1, 32
%3 = SRL_ri %2, 32
... %3 ...
%4 = SRA_ri %2, 32
... %4 ...
The current transformation did not check how many uses of %2
and did transformation like
%1 = LDW ...
... %1 ...
%4 = SRL_ri %2, 32
... %4 ...
and pseudo register %2 is used by not defined and
caused LiveVariables analysis core dump.
To fix the issue, when traversing back from SRL_ri to SLL_ri,
check to ensure SLL_ri has only one use. Otherwise, don't
do transformation.
Differential Revision: https://reviews.llvm.org/D97792
To do this while supporting the existing functionality in SelectionDAG of using
PGO info, we add the ProfileSummaryInfo and LazyBlockFrequencyInfo analysis
dependencies to the instruction selector pass.
Then, use the predicate to generate constant pool loads for f32 materialization,
if we're targeting optsize/minsize.
Differential Revision: https://reviews.llvm.org/D97732
Instead of converting the 0 into a ZR reg during lowering, do that with
tablegen by matching the zero immediate. This when combined with other
optimizations is more likely to use ZR and helps keep the DAG more
easily optimizable. It should not otherwise effect code generation.
When a large "irregular" (e.g. i96) integer call argument is converted to
indirect, 64-bit parts are stored to the stack. The full stack space
(e.g. i128) was not allocated prior to this patch, but rather just the exact
space of the original type. This caused neighboring values on the stack to be
overwritten.
Thanks to Josh Stone for reporting this.
Review: Ulrich Weigand
Fixes https://bugs.llvm.org/show_bug.cgi?id=49322
Differential Revision: https://reviews.llvm.org/D97514
Make OMod explicit instead of implied by HasModifiers in the
operand list. Requires explicitly setting HasOMod=1 for
irregular OMod usage in instruction V_CVT_{U,I}*
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D97587
Change-Id: I230e1476f529e816eec60e242531f23a99e3839f
This patch enables support for lowering INSERT_VECTOR_ELT on
fixed-length vector types. The strategy follows that for scalable vector
types.
This patch also includes a quick fix to prevent the compiler infinitely
looping between lowering BUILD_VECTOR as VECTOR_SHUFFLE and back again.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97698
The default expansion of CONCAT_VECTORS goes through the stack. This
patch avoids that penalty by custom-lowering CONCAT_VECTORS to a series
of INSERT_SUBVECTOR nodes. Futher optimizations are possible, but this
is a good start.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97692
-amdgpu-inline-max-bb option could lead to a suboptimal
codegen preventing inlining of really simple functions
including pure wrapper calls. Relax the cutoff by allowing
to call a function with a single block on the grounds
that it will not increase total number of blocks after
inlining.
Differential Revision: https://reviews.llvm.org/D97744
Currently ARM backend validates the range of branch targets before the
layout of fragments is finalized. This causes build failure if symbolic
expressions are used, with the exception of a single symbolic value.
For example, "b.w ." works but "b.w . + 2" currently fails to
assemble. This fixes the issue by delaying this check (in
ARMAsmParser::validateInstruction) of b.w instructions until the symbol
expressions are resolved (in ARMAsmBackend::adjustFixupValue).
Link:
https://github.com/ClangBuiltLinux/linux/issues/1286
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97568
Remove a rule which allows larger scalar types than the destination vector
element type.
This appears to be irrelevant now that we have G_BUILD_VECTOR_TRUNC. Plus,
making a G_BUILD_VECTOR which satisfies this introduces a verifier failure
anyway.
Differential Revision: https://reviews.llvm.org/D97727
def of the adrp before the ldr.
Apparently this pass used to have liveness analysis but it was removed for
scompile time reasons. This workaround prevents the LOH from being emitted
unless the ADD and LDR are adjacent.
Fixes https://github.com/JuliaLang/julia/issues/39820
Differential Revision: https://reviews.llvm.org/D97571
- This patch adds in the distinction between jg[*] and jl[*] pc-relative
mnemonics based on the variant/dialect.
- Under the hlasm variant, we use the jl[*] family of mnemonics and under
the att (GNU as) variant, we use the jg[*] family of mnemonics.
- jgnop which was added in https://reviews.llvm.org/D92185, is now restricted
to att variant. jlnop is introduced and restricted to hlasm variant.
- The br[*]l additional mnemonics are mapped to either jl[*]/jg[*] based on
the variant.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D97581