value profile annotated after inlining.
In https://reviews.llvm.org/D96806 and https://reviews.llvm.org/D97350, we
use the magic number -1 in the value profile to avoid repeated indirect call
promotion to the same target for an indirect call. Function updateIDTMetaData
is used to mark an target as being promoted in the value profile with the
magic number. updateIDTMetaData is also used to update the value profile
when an indirect call is inlined and new inline instance profile should be
applied. For the second case, currently updateIDTMetaData mixes up the
existing value profile of the indirect call with the new profile, leading
to the problematic senario that a target count is larger than the total count
in the value profile.
The patch fixes the problem. When updateIDTMetaData is used to update the
value profile after inlining, all the values in the existing value profile
will be dropped except the values with the magic number counts.
Differential Revision: https://reviews.llvm.org/D98835
Not doing it here can lead to subtle bugs - the analysis results are
associated by the Function object's address. Nothing stops the memory
allocator from allocating new functions at the same address.
For ThinLTO's prelink compilation, we need to put external inline candidates into an import list attached to function's entry count metadata. This enables ThinLink to treat such cross module callee as hot in summary index, and later helps postlink to import them for profile guided cross module inlining.
For AutoFDO, the import list is retrieved by traversing the nested inlinee functions. For CSSPGO, since profile is flatterned, a few things need to happen for it to work:
- When loading input profile in extended binary format, we need to load all child context profile whose parent is in current module, so context trie for current module includes potential cross module inlinee.
- In order to make the above happen, we need to know whether input profile is CSSPGO profile before start reading function profile, hence a flag for profile summary section is added.
- When searching for cross module inline candidate, we need to walk through the context trie instead of nested inlinee profile (callsite sample of AutoFDO profile).
- Now that we have more accurate counts with CSSPGO, we swtiched to use entry count instead of total count to decided if an external callee is potentially beneficial to inline. This make it consistent with how we determine whether call tagert is potential inline candidate.
Differential Revision: https://reviews.llvm.org/D98590
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94125
Splitting this out as the change is non-trivial: The way this code
handled pointer types doesn't really make sense, as GEPs can only
apply an offset to the outermost pointer, but can't drill down
into interior pointer types (which would require dereferencing
memory).
Instead give special treatment to the first (pointer) index.
I've hardcoded it to zero as that's the only way the function is
used right now, but handling non-zero indexes would be
straightforward.
The original goal here was to have an element type for CreateGEP.
For CGSCC inline, we need to scale down a function's branch weights and entry counts when thee it's inlined at a callsite. This is done through updateCallProfile. Additionally, we also scale the weigths for the inlined clone based on call site count in updateCallerBFI. Neither is needed for inlining during sample profile loader as it's using context profile that is separated from inlinee's own profile. This change skip the inlinee profile scaling for sample loader inlining.
Differential Revision: https://reviews.llvm.org/D98187
This patch makes uses of the context bridges introduced in D83299 to make
AAValueConstantRange call site specific.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83744
now -funique-internal-linkage-name flag is available, and we want to flip
it on by default since it is beneficial to have separate sample profiles
for different internal symbols with the same name. As a preparation, we
want to avoid regression caused by the flip.
When we flip -funique-internal-linkage-name on, the profile is collected
from binary built without -funique-internal-linkage-name so it has no uniq
suffix, but the IR in the optimized build contains the suffix. This kind of
mismatch may introduce transient regression.
To avoid such mismatch, we introduce a NameTable section flag indicating
whether there is any name in the profile containing uniq suffix. Compiler
will decide whether to keep uniq suffix during name canonicalization
depending on the NameTable section flag. The flag is only available for
extbinary format. For other formats, by default compiler will keep uniq
suffix so they will only experience transient regression when
-funique-internal-linkage-name is just flipped.
Another type of regression is caused by places where we miss to call
getCanonicalFnName. Those places are fixed.
Differential Revision: https://reviews.llvm.org/D96932
For CS profile, the callsite count of previously inlined callees is populated with the entry count of the callees. Therefore when trying to get a weight for calliste probe after inlinining, the callsite count should always be used. The same fix has already been made for non-probe case.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D98094
We have the `enable-loopinterchange` option in legacy pass manager but not in NPM.
Add `LoopInterchange` pass to the optimization pipeline (at the same position as before)
when `enable-loopinterchange` is turned on.
Reviewed By: aeubanks, fhahn
Differential Revision: https://reviews.llvm.org/D98116
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
sample loader pass.
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
to prevent repeated indirect call promotion for the same indirect call
and the same target, we used zero-count value profile to indicate an
indirect call has been promoted for a certain target. We removed
PromotedInsns cache in the same patch. However, there was a problem in
that patch described below, and that problem led me to add PromotedInsns
back as a mitigation in
https://reviews.llvm.org/rG4ffad1fb489f691825d6c7d78e1626de142f26cf.
When we get value profile from metadata by calling getValueProfDataFromInst,
we need to specify the maximum possible number of values we expect to read.
We uses MaxNumPromotions in the last patch so the maximum number of value
information extracted from metadata is MaxNumPromotions. If we have many
values including zero-count values when we write the metadata, some of them
will be dropped when we read them because we only read MaxNumPromotions
values. It will allow repeated indirect call promotion again. We need to
make sure if there are values indicating promoted targets, those values need
to be saved in metadata with higher priority than other values.
The patch fixed that problem. We change to use -1 to represent the count
of a promoted target instead of 0 so it is easier to sort the values.
When we prepare to update the metadata in updateIDTMetaData, we will sort
the values in the descending count order and extract only MaxNumPromotions
values to write into metadata. Since -1 is the max uint64_t number, if we
have equal to or less than MaxNumPromotions of -1 count values, they will
all be kept in metadata. If we have more than MaxNumPromotions of -1 count
values, we will only save MaxNumPromotions such values maximally. In such
case, we have logic in place in doesHistoryAllowICP to guarantee no more
promotion in sample loader pass will happen for the indirect call, because
it has been promoted enough.
With this change, now we can remove PromotedInsns without problem.
Differential Revision: https://reviews.llvm.org/D97350
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
In SanitizerCoverage, the metadata sections (`__sancov_guards`,
`__sancov_cntrs`, `__sancov_bools`) are referenced by functions. After
inlining, such a `__sancov_*` section can be referenced by more than one
functions, but its sh_link still refers to the original function's section.
(Note: a SHF_LINK_ORDER section referenced by a section other than its linked-to
section violates the invariant.)
If the original function's section is discarded (e.g. LTO internalization +
`ld.lld --gc-sections`), ld.lld may report a `sh_link points to discarded section` error.
This above reasoning means that `!associated` is not appropriate to be called by
an inlinable function. Non-interposable functions are inline candidates, so we
have to drop `!associated`. A `__sancov_pcs` is not referenced by other sections
but is expected to parallel a metadata section, so we have to make sure the two
sections are retained or discarded at the same time. A section group does the
trick. (Note: we have a module ctor, so `getUniqueModuleId` guarantees to
return a non-empty string, and `GetOrCreateFunctionComdat` guarantees to return
non-null.)
For interposable functions, we could keep using `!associated`, but
LTO can change the linkage to `internal` and allow such functions to be inlinable,
so we have to drop `!associated`, too. To not interfere with section
group resolution, we need to use the `noduplicates` variant (section group flag 0).
(This allows us to get rid of the ModuleID parameter.)
In -fno-pie and -fpie code (mostly dso_local), instrumented interposable
functions have WeakAny/LinkOnceAny linkages, which are rare. So the
section group header overload should be low.
This patch does not change the object file output for COFF (where `!associated` is ignored).
Reviewed By: morehouse, rnk, vitalybuka
Differential Revision: https://reviews.llvm.org/D97430
This patch makes SampleProfileLoaderBaseImpl a template class so it
can be used in CodeGen transformation.
Noticeable changes:
* use one template parameter and use IRTraits to get other used
types an type specific functions.
* remove the temporary "inline" keywords in previous refactor
patch.
* change the template function findEquivalencesFor to a regular
function. This function has a single caller with type of
PostDominatorTree. It's simpler to use the type directly
because MachinePostDominatorTree is not a derived type of
template DominatorTreeBase.
Differential Revision: https://reviews.llvm.org/D96981
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Depends on D97128 (which added a new SmallVecImpl overload for collectUsedGlobalVariables).
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97139
Iterating on `SmallPtrSet<GlobalValue *, 8>` with more than 8 elements
is not deterministic. Use a SmallVector instead because `Used` is guaranteed to contain unique elements.
While here, decrease inline element counts from 8 to 4. The number of
`llvm.used`/`llvm.compiler.used` elements is usually 0 or 1. For full
LTO/hybrid LTO, the number may be large, so we need to be careful.
According to tejohnson's analysis https://reviews.llvm.org/D97128#2582399 , 4 is
good for a large project with WholeProgramDevirt, when available_externally
vtables are placed in the llvm.compiler.used set.
Differential Revision: https://reviews.llvm.org/D97128
The fix in 3c4c205060 caused an assert in
the case of a pure virtual base class. In that case, the vTableFuncs
list on the summary will be empty, so we were hitting the new assert
that the linkage type was not available_externally.
In the case of pure virtual, we do not want to assert, and additionally
need to set VS so that we don't treat it conservatively and quit the
analysis of the type id early.
This exposed a pre-existing issue where we were not updating the vcall
visibility on pure virtual functions when whole program visibility was
specified. We were skipping updating the visibility on any global vars
that didn't have any vTableFuncs, which meant all pure virtual were not
updated, and the later analysis would block any devirtualization of
calls that had a type id used on those pure virtual vtables (see the
handling in the other code modified in this patch). Simply remove that
check. It will mean that we may update the vcall visibility on global
vars that aren't vtables, but that setting is ignored for any global
vars that didn't have type metadata anyway.
Added a new test case that asserted without removing the assert, and
that requires the other fixes in this patch (updateVCallVisibilityInIndex
and not skipping all vtables without virtual funcs) to get a successful
devirtualization with index-only WPD. I added cases to test hybrid and
regular LTO for completeness, although those already worked without the
fixes here.
With this final fix, a clang multistage bootstrap with WPD builds and
runs all tests successfully.
Differential Revision: https://reviews.llvm.org/D97126
Currently, if there is a module that contains a strong definition of
a global variable and a module that has both a weak definition for
the same global and a reference to it, it may result in an undefined symbol error
while linking with ThinLTO.
It happens because:
* the strong definition become internal because it is read-only and can be imported;
* the weak definition gets replaced by a declaration because it's non-prevailing;
* the strong definition failed to be imported because the destination module
already contains another definition of the global yet this def is non-prevailing.
The patch adds a check to computeImportForReferencedGlobals() that allows
considering a global variable for being imported even if the module contains
a definition of it in the case this def has an interposable linkage type.
Note that currently the check is based only on the linkage type
(and this seems to be enough at the moment), but it might be worth to account
the information whether the def is prevailing or not.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95943
Refines the fix in 3c4c205060 to only
put globals whose defs were cloned into the split regular LTO module
on the cloned llvm*.used globals. This avoids an issue where one of the
attached values was a local that was promoted in the original module
after the module was cloned. We only need to have the values defined in
the new module on those globals.
Fixes PR49251.
Differential Revision: https://reviews.llvm.org/D97013
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
We use 0 count value profile to memorize which target has been promoted
and prevent repeated ICP for the same target, so we delete PromotedInsns.
However, I found the implementation in the patch has some shortcomings
to be fixed otherwise there will still be repeated ICP. So I add
PromotedInsns back temorarily. Will remove it after I get a thorough fix.
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.
Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.
Differential Revision: https://reviews.llvm.org/D94376
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
Found a problem in indirect call promotion in sample loader pass. Currently
if an indirect call is promoted for a target, and if the parent function is
inlined into some other function, the indirect call can be promoted for the
same target again. That is redundent which can harm performance and can cause
excessive compile time in some extreme case.
The patch fixes the issue. If a target is promoted for an indirect call, the
patch will write ICP metadata with the target call count being set to 0.
In the later ICP in sample profile loader, if it sees a target has 0 count
for an indirect call, it knows the target has been promoted and won't do
indirect call promotion for the indirect call.
The fix brings 0.1~0.2% performance on our search benchmark.
Differential Revision: https://reviews.llvm.org/D96806
With CSSPGO all indirect call targets are counted torwards the original indirect call site in the profile, including both inlined and non-inlined targets. Therefore no need to look for callee entry counts. This also fixes the issue where callee entry count doesn't match callsite count due to the nature of CS sampling.
I'm also cleaning up the orginal code that called `findIndirectCallFunctionSamples` just to compute the sum, the return value of which was disgarded.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D96990
This adds an internal option -wholeprogramdevirt-check which if enabled
will guard each devirtualization with a runtime check against the
expected target, and an invocation of a debug trap if the check fails.
This is useful for debugging WPD failures involving undefined behavior
(e.g. casting to another class type not in the inheritance chain).
Differential Revision: https://reviews.llvm.org/D95969
Apply the patch for the third time after fixing buildbot failures.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
(4) Add inline keyword to avoid duplicated symbols -- they will
be removed later when the class is changed to a template.
Differential Revision: https://reviews.llvm.org/D96455
Adds a lld test for a case that the handling added for dynamically
exported symbols in 1487747e99 already
fixes. Because isExportDynamic returns true when the symbol is
SharedKind with default visibility, it will treat as dynamically
exported and block devirtualization when the definition of a vtable
comes from a shared library. This is desireable as it is dangerous to
devirtualize in that case, since there could be hidden overrides in the
shared library. Typically that happens when the shared library header
contains available externally definitions, which applications can
override. An example is std::error_category, which is overridden in LLVM
and causing failures after a self build with WPD enabled, because
libstdc++ contains hidden overrides of the virtual base class methods.
The regular LTO case in the new test already worked, but there are
2 fixes in this patch needed for the index-only case and the hybrid
LTO case. For the index-only case, WPD should not simply ignore
available externally vtables. A follow on fix will be made to clang to
emit type metadata for those vtables, which the new test is modeling.
For the hybrid case, we need to ensure when the module is split that any
llvm.*used globals are cloned to the regular LTO split module so
available externally vtable definitions are not prematurely deleted.
Another follow on fix will add the equivalent gold test, which requires
a small fix to the plugin to treat symbols in dynamic libraries the same
way lld already is.
Differential Revision: https://reviews.llvm.org/D96721
Revert "[SampleFDO] Add missing #includes to unbreak modules build after D96455"
This reverts commit c73cbf218a.
Revert "[SampleFDO] Fix MSVC "namespace uses itself" warning (NFC)"
This reverts commit a23e6b321c.
Revert "[SampleFDO] Reapply: Refactor SampleProfile.cpp"
This reverts commit 6fd5ccff72.
Still seeing link failures when building llc (or other tools), due to
the new SampleProfileLoaderBaseImpl.h containing definitions that get
duplicated across multiple TU's.
```
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::findEquivalenceClasses(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::buildEdges(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getFunctionLoc(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getBlockWeight(llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockWeight(llvm::raw_ostream&, llvm::BasicBlock const*) const' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockEquivalence(llvm::raw_ostream&, llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printEdgeWeight(llvm::raw_ostream&, std::__1::pair<llvm::BasicBlock const*, llvm::BasicBlock const*>)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
```
Reapply patch after fixing buildbot failure.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
This reverts commit 310b35304c.
The build is broken with -DBUILD_SHARED_LIBS=ON :
lib/ProfileData/CMakeFiles/LLVMProfileData.dir/SampleProfileLoaderBaseUtil.cpp.o: In function `llvm::sampleprofutil::callsiteIsHot(llvm::sampleprof::FunctionSamples const*, llvm::ProfileSummaryInfo*, bool)':
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x1a): undefined reference to `llvm::ProfileSummaryInfo::isColdCount(unsigned long) const'
SampleProfileLoaderBaseUtil.cpp:(.text._ZN4llvm14sampleprofutil13callsiteIsHotEPKNS_10sampleprof15FunctionSamplesEPNS_18ProfileSummaryInfoEb+0x28): undefined reference to `llvm::ProfileSummaryInfo::isHotCount(unsigned long) const'
...
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531