As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
Apply the patch for the third time after fixing buildbot failures.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
(4) Add inline keyword to avoid duplicated symbols -- they will
be removed later when the class is changed to a template.
Differential Revision: https://reviews.llvm.org/D96455
Revert "[SampleFDO] Add missing #includes to unbreak modules build after D96455"
This reverts commit c73cbf218a.
Revert "[SampleFDO] Fix MSVC "namespace uses itself" warning (NFC)"
This reverts commit a23e6b321c.
Revert "[SampleFDO] Reapply: Refactor SampleProfile.cpp"
This reverts commit 6fd5ccff72.
Still seeing link failures when building llc (or other tools), due to
the new SampleProfileLoaderBaseImpl.h containing definitions that get
duplicated across multiple TU's.
```
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::findEquivalenceClasses(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::buildEdges(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::computeDominanceAndLoopInfo(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getFunctionLoc(llvm::Function&)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::getBlockWeight(llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockWeight(llvm::raw_ostream&, llvm::BasicBlock const*) const' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printBlockEquivalence(llvm::raw_ostream&, llvm::BasicBlock const*)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
duplicate symbol 'llvm::SampleProfileLoaderBaseImpl::printEdgeWeight(llvm::raw_ostream&, std::__1::pair<llvm::BasicBlock const*, llvm::BasicBlock const*>)' in:
tools/llc/CMakeFiles/llc.dir/llc.cpp.o
lib/libLLVMInstCombine.a(InstCombineVectorOps.cpp.o)
```
Reapply patch after fixing buildbot failure.
Refactor SampleProfile.cpp to use the core code in CodeGen.
The main changes are:
(1) Move SampleProfileLoaderBaseImpl class to a header file.
(2) Split SampleCoverageTracker to a head file and a cpp file.
(3) Move the common codes (common options and callsiteIsHot())
to the common cpp file.
Differential Revision: https://reviews.llvm.org/D96455
This patch changes costAndCollectOperands to use InstructionCost for
accumulated cost values.
isHighCostExpansion will return true if the cost has exceeded the budget.
Reviewed By: CarolineConcatto, ctetreau
Differential Revision: https://reviews.llvm.org/D92238
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).
Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.
(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9 and this
commit does not address that regression.)
RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.
Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.
The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.
- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
called "uniqued" (probably a better term would be "constant") because,
like `ConstantArray`, it's stored in uniquing tables. Once it's
constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
to change the operands after construction.
What should be done with distinct metadata when cloning functions within
the same module?
- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?
The answer depends on whether that metadata is effectively owned by a
function.
And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.
Effectively function-local metadata was introduced somewhere around
c10d0e5ccd, which made it illegal for two
functions to share a DISubprogram attachment.
When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.
Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
by the LLVMContext, global metadata owned by the Module, and local
metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
(only), perhaps by adding a bit to RemapFlag. Alternatively, split
out a separate function CloneFunctionMetadataInto to prime the
metadata map that callers are updated to call ahead of time as
appropriate.
Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
an enum called `CloneFunctionChangeType` that is one of
LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
invariant is now only active in the first two cases, where a function
is being cloned within a single module. That's necessary because this
code inhibits cloning of (some) "global" metadata that's effectively
owned by the module.
- The code maintaining the "all compile units must be explicitly
referenced by !llvm.dbg.cu" invariant is now only active in the
DifferentModule case, where a function is being cloned into a new
module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
uses LocalChangeOnly, since fa635d730f
only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.
Differential Revision: https://reviews.llvm.org/D96531
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Perform DSOLocal propagation within summary list of every GV. This
avoids the repeated query of this information during function
importing.
Differential Revision: https://reviews.llvm.org/D96398
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
This patch changes the VecDesc struct to use ElementCount
instead of an unsigned VF value, in preparation for
future work that adds support for vectorized versions of
math functions using scalable vectors. Since all I'm doing
in this patch is switching the type I believe it's a
non-functional change. I changed getWidestVF to now return
both the widest fixed-width and scalable VF values, but
currently the widest scalable value will be zero.
Differential Revision: https://reviews.llvm.org/D96011
This reverts commit b7d870eae7 and the
subsequent fix "[Polly] Fix build after AssumptionCache change (D96168)"
(commit e6810cab09).
It caused indeterminism in the output, such that e.g. the
polly-x86_64-linux buildbot failed accasionally.
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
PR49043 exposed a problem when it comes to RAUW llvm.assumes. While
D96106 would fix it for GVNSink, it seems a more general concern. To
avoid future problems this patch moves away from the vector of weak
reference model used in the assumption cache. Instead, we track the
llvm.assume calls with a callback handle which will remove itself from
the cache if the call is deleted.
Fixes PR49043.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96168
Summary:
This resolves an issue posted on Bugzilla. https://bugs.llvm.org/show_bug.cgi?id=48764
In this issue, the loop had multiple exit blocks, which resulted in the
function getExitBlock to return a nullptr, which resulted in hitting the assert.
This patch ensures that loops which only have one exit block as allowed to be
unrolled and jammed.
Reviewed By: Whitney, Meinersbur, dmgreen
Differential Revision: https://reviews.llvm.org/D95806
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.
The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.
This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCI-ish prep work, but the changes are a bit too involved for me to feel comfortable tagging the change that way.
Differential Revision: https://reviews.llvm.org/D94892
These attributes were all incorrect or inappropriate for LLVM to infer:
- inaccessiblememonly is generally wrong; user replacement operator new
can access memory that's visible to the caller, as can a new_handler
function.
- willreturn is generally wrong; a custom new_handler is not guaranteed
to terminate.
- noalias is inappropriate: Clang has a flag to determine whether this
attribute should be present and adds it itself when appropriate.
- noundef and nonnull on the return value should be specified by the
frontend on all 'operator new' functions if we want them, not here.
In any case, inferring attributes on functions declared 'nobuiltin' (as
these are when Clang emits them) seems questionable.
Several of the new attributes here were incorrect, and even the ones
that are generally correct were being added even to nobuiltin calls.
This reverts commit bb3f169b59.
Inlining sometimes maps different instructions to be inlined onto the same instruction.
We must ensure to only remap the noalias scopes once. Otherwise the scope might disappear (at best).
This patch ensures that we only replace scopes for which the mapping is known.
This approach is preferred over tracking which instructions we already handled in a SmallPtrSet,
as that one will need more memory.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95862
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.
There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.
Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.
Differential Revision: https://reviews.llvm.org/D95690
The reduction of a sanitizer build failure when enabling the dominance check (D95335) showed that loop peeling also needs to take care of scope duplication, just like loop unrolling (D92887).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95544
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
SimplifyCFG is an utility pass, and the fact that it does not
preserve DomTree's, forces it's users to somehow workaround that,
likely by not preserving DomTrees's themselves.
Indeed, simplifycfg pass didn't know how to preserve dominator tree,
it took me just under a month (starting with e113317958)
do rectify that, now it fully knows how to,
there's likely some problems with that still,
but i've dealt with everything i can spot so far.
I think we now can flip the switch.
Note that this is functionally an NFC change,
since this doesn't change the users to pass in the DomTree,
that is a separate question.
Reviewed By: kuhar, nikic
Differential Revision: https://reviews.llvm.org/D94827
This gives the user control over which expander to use, which in turn
allows the user to decide what to do with the expanded instructions.
Used in D75980.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D94295
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
The switch must set the predicate correctly; anything else
should lead to unreachable/assert.
I'm trying to fix FMF propagation here and the callers,
so this is a preliminary cleanup.
This patch fixes llvm-link crash when materializing global variable
with appending linkage and initializer that depends on another
global with appending linkage.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D95329
When LSR converts a branch on the pre-inc IV into a branch on the
post-inc IV, the nowrap flags on the addition may no longer be valid.
Previously, a poison result of the addition might have been ignored,
in which case the program was well defined. After branching on the
post-inc IV, we might be branching on poison, which is undefined behavior.
Fix this by discarding nowrap flags which are not present on the SCEV
expression. Nowrap flags on the SCEV expression are proven by SCEV
to always hold, independently of how the expression will be used.
This is essentially the same fix we applied to IndVars LFTR, which
also performs this kind of pre-inc to post-inc conversion.
I believe a similar problem can also exist for getelementptr inbounds,
but I was not able to come up with a problematic test case. The
inbounds case would have to be addressed in a differently anyway
(as SCEV does not track this property).
Fixes https://bugs.llvm.org/show_bug.cgi?id=46943.
Differential Revision: https://reviews.llvm.org/D95286
or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end annotates calls with attribute "clang.arc.rv"="retain"
or "clang.arc.rv"="claim", which indicates the call is implicitly
followed by a marker instruction and a retainRV/claimRV call that
consumes the call result. This is currently done only when the target
is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the
annotated calls in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the annotated
calls. It doesn't remove the attribute on the call since the backend
needs it to emit the marker instruction. The retainRV/claimRV calls
are emitted late in the pipeline to prevent optimization passes from
transforming the IR in a way that makes it harder for the ARC
middle-end passes to figure out the def-use relationship between the
call and the retainRV/claimRV calls (which is the cause of PR31925).
- The function inliner removes the autoreleaseRV call in the callee that
returns the result if nothing in the callee prevents it from being
paired up with the calls annotated with "clang.arc.rv"="retain/claim"
in the caller. If the call is annotated with "claim", a release call
is inserted since autoreleaseRV+claimRV is equivalent to a release. If
it cannot find an autoreleaseRV call, it tries to transfer the
attributes to a function call in the callee. This is important since
ARC optimizer can remove the autoreleaseRV call returning the callee
result, which makes it impossible to pair it up with the retainRV or
claimRV call in the caller. If that fails, it simply emits a retain
call in the IR if the call is annotated with "retain" and does nothing
if it's annotated with "claim".
- This patch teaches dead argument elimination pass not to change the
return type of a function if any of the calls to the function are
annotated with attribute "clang.arc.rv". This is necessary since the
pass can incorrectly determine nothing in the IR uses the function
return, which can happen since the front-end no longer explicitly
emits retainRV/claimRV calls in the IR, and change its return type to
'void'.
Future work:
- Use the attribute on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the attributes.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
In the cloning infrastructure, only track an MDNode mapping,
without explicitly storing the Metadata mapping, same as is done
during inlining. This makes things slightly simpler.
Similar to D92887, LoopRotation also needs duplicate the noalias scopes when rotating a `@llvm.experimental.noalias.scope.decl` across a block boundary.
This is based on the version from the Full Restrict paches (D68511).
The problem it fixes also showed up in Transforms/Coroutines/ex5.ll after D93040 (when enabling strict checking with -verify-noalias-scope-decl-dom).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94306
This is a fix for https://bugs.llvm.org/show_bug.cgi?id=39282. Compared to D90104, this version is based on part of the full restrict patched (D68484) and uses the `@llvm.experimental.noalias.scope.decl` intrinsic to track the location where !noalias and !alias.scope scopes have been introduced. This allows us to only duplicate the scopes that are really needed.
Notes:
- it also includes changes and tests from D90104
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D92887
Add an intrinsic type class to represent the
llvm.experimental.noalias.scope.decl intrinsic, to make code
working with it a bit nicer by hiding the metadata extraction
from view.
With the addition of the `willreturn` attribute, functions that may
not return (e.g. due to an infinite loop) are well defined, if they are
not marked as `willreturn`.
This patch updates `wouldInstructionBeTriviallyDead` to not consider
calls that may not return as dead.
This patch still provides an escape hatch for intrinsics, which are
still assumed as willreturn unconditionally. It will be removed once
all intrinsics definitions have been reviewed and updated.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94106
If i change it to AssertingVH instead, a number of existing tests fail,
which means we don't consistently remove from the set when deleting blocks,
which means newly-created blocks may happen to appear in that set
if they happen to occupy the same memory chunk as did some block
that was in the set originally.
There are many places where we delete blocks,
and while we could probably consistently delete from LoopHeaders
when deleting a block in transforms located in SimplifyCFG.cpp itself,
transforms located elsewhere (Local.cpp/BasicBlockUtils.cpp) also may
delete blocks, and it doesn't seem good to teach them to deal with it.
Since we at most only ever delete from LoopHeaders,
let's just delegate to WeakVH to do that automatically.
But to be honest, personally, i'm not sure that the idea
behind LoopHeaders is sound.
Insert a llvm.experimental.noalias.scope.decl intrinsic that identifies where a noalias argument was inlined.
This patch includes some refactorings from D90104.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93040
This builds on the restricted after initial revert form of D93906, and adds back support for breaking backedges of inner loops. It turns out the original invalidation logic wasn't quite right, specifically around the handling of LCSSA.
When breaking the backedge of an inner loop, we can cause blocks which were in the outer loop only because they were also included in a sub-loop to be removed from both loops. This results in the exit block set for our original parent loop changing, and thus a need for new LCSSA phi nodes.
This case happens when the inner loop has an exit block which is also an exit block of the parent, and there's a block in the child which reaches an exit to said block without also reaching an exit to the parent loop.
(I'm describing this in terms of the immediate parent, but the problem is general for any transitive parent in the nest.)
The approach implemented here involves a potentially expensive LCSSA rebuild. Perf testing during review didn't show anything concerning, but we may end up needing to revert this if anyone encounters a practical compile time issue.
Differential Revision: https://reviews.llvm.org/D94378
I have previously tried doing that in
b33fbbaa34 / d38205144f,
but eventually it was pointed out that the approach taken there
was just broken wrt how the uses of bonus instructions are updated
to account for the fact that they should now use either bonus instruction
or the cloned bonus instruction. In particluar, all that manual handling
of PHI nodes in successors was just wrong.
But, the fix is actually much much simpler than my initial approach:
just tell SSAUpdate about both instances of bonus instruction,
and let it deal with all the PHI handling.
Alive2 confirms that the reproducers from the original bugs (@pr48450*)
are now handled correctly.
This effectively reverts commit 59560e8589,
effectively relanding b33fbbaa34.
NewBonusInst just took name from BonusInst, so BonusInst has no name,
so BonusInst.getName() makes no sense.
So we need to ask NewBonusInst for the name.
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710
If the call result is unused, we should let it get DCEd rather
than replacing it. Also, don't try to replace an existing sincos
with another one (unless it's as part of combining sin and cos).
This avoids an infinite combine loop if the calls are not DCEd
as expected, which can happen with D94106 and lack of willreturn
annotation in hand-crafted IR.
I'm intentionally structuring it this way, so that the actual fold only
does the fold, and no legality/correctness checks, all of which must be
done by the caller. This allows for the fold code to be more compact
and more easily grokable.
Hoist the successor updating out of the code that deals with branch
weight updating, and hoist the 'has weights' check from the latter,
making code more consistent and easier to follow.
While we already ignore uncond branches, we could still potentially
end up with a conditional branches with identical destinations
due to the visitation order, or because we were called as an utility.
But if we have such a disguised uncond branch,
we still probably shouldn't deal with it here.
The case where BB ends with an unconditional branch,
and has a single predecessor w/ conditional branch
to BB and a single successor of BB is exactly the pattern
SpeculativelyExecuteBB() transform deals with.
(and in this case they both allow speculating only a single instruction)
Well, or FoldTwoEntryPHINode(), if the final block
has only those two predecessors.
Here, in FoldBranchToCommonDest(), only a weird subset of that
transform is supported, and it's glued on the side in a weird way.
In particular, it took me a bit to understand that the Cond
isn't actually a branch condition in that case, but just the value
we allow to speculate (otherwise it reads as a miscompile to me).
Additionally, this only supports for the speculated instruction
to be an ICmp.
So let's just unclutter FoldBranchToCommonDest(), and leave
this transform up to SpeculativelyExecuteBB(). As far as i can tell,
this shouldn't really impact optimization potential, but if it does,
improving SpeculativelyExecuteBB() will be more beneficial anyways.
Notably, this only affects a single test,
but EarlyCSE should have run beforehand in the pipeline,
and then FoldTwoEntryPHINode() would have caught it.
This reverts commit rL158392 / commit d33f4efbfd.
In https://llvm.org/PR48810 , we are crashing while trying to
propagate attributes from mempcpy (returns void*) to memcpy
(returns nothing - void).
We can avoid the crash by removing known incompatible
attributes for the void return type.
I'm not sure if this goes far enough (should we just drop all
attributes since this isn't the same function?). We also need
to audit other transforms in LibCallSimplifier to make sure
there are no other cases that have the same problem.
Differential Revision: https://reviews.llvm.org/D95088
This is related to D94982. We want to call these APIs from the Analysis
component, so we can't leave them under Transforms.
Differential Revision: https://reviews.llvm.org/D95079
Branch/assume conditions in PredicateInfo are currently handled in
a rather ad-hoc manner, with some arbitrary limitations. For example,
an `and` of two `icmp`s will be handled, but an `and` of an `icmp`
and some other condition will not. That also includes the case where
more than two conditions and and'ed together.
This patch makes the handling more general by looking through and/ors
up to a limit and considering all kinds of conditions (though operands
will only be taken for cmps of course).
Differential Revision: https://reviews.llvm.org/D94447
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.
This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.
Differential Revision: https://reviews.llvm.org/D94982
Loop peeling assumes that the loop's latch is a conditional branch. Add
a check to canPeel that explicitly checks for this, and testcases that
otherwise fail an assertion when trying to peel a loop whose back-edge
is a switch case or the non-unwind edge of an invoke.
Reviewed By: skatkov, fhahn
Differential Revision: https://reviews.llvm.org/D94995
D84108 exposed a bad interaction between inlining and loop-rotation
during regular LTO, which is causing notable regressions in at least
CINT2006/473.astar.
The problem boils down to: we now rotate a loop just before the vectorizer
which requires duplicating a function call in the preheader when compiling
the individual files ('prepare for LTO'). But this then prevents further
inlining of the function during LTO.
This patch tries to resolve this issue by making LoopRotate more
conservative with respect to rotating loops that have inline-able calls
during the 'prepare for LTO' stage.
I think this change intuitively improves the current situation in
general. Loop-rotate tries hard to avoid creating headers that are 'too
big'. At the moment, it assumes all inlining already happened and the
cost of duplicating a call is equal to just doing the call. But with LTO,
inlining also happens during full LTO and it is possible that a previously
duplicated call is actually a huge function which gets inlined
during LTO.
From the perspective of LV, not much should change overall. Most loops
calling user-provided functions won't get vectorized to start with
(unless we can infer that the function does not touch memory, has no
other side effects). If we do not inline the 'inline-able' call during
the LTO stage, we merely delayed loop-rotation & vectorization. If we
inline during LTO, chances should be very high that the inlined code is
itself vectorizable or the user call was not vectorizable to start with.
There could of course be scenarios where we inline a sufficiently large
function with code not profitable to vectorize, which would have be
vectorized earlier (by scalarzing the call). But even in that case,
there probably is no big performance impact, because it should be mostly
down to the cost-model to reject vectorization in that case. And then
the version with scalarized calls should also not be beneficial. In a way,
LV should have strictly more information after inlining and make more
accurate decisions (barring cost-model issues).
There is of course plenty of room for things to go wrong unexpectedly,
so we need to keep a close look at actual performance and address any
follow-up issues.
I took a look at the impact on statistics for
MultiSource/SPEC2000/SPEC2006. There are a few benchmarks with fewer
loops rotated, but no change to the number of loops vectorized.
Reviewed By: sanwou01
Differential Revision: https://reviews.llvm.org/D94232
This patch teaches SimplifyCFG::SimplifyBranchOnICmpChain to understand select form of
(x == C1 || x == C2 || ...) / (x != C1 && x != C2 && ...) and optimize them into switch if possible.
D93065 has more context about the transition, including links to the list of optimizations being updated.
Differential Revision: https://reviews.llvm.org/D93943
This patch adds the default value of 1 to drop_begin.
In the llvm codebase, 70% of calls to drop_begin have 1 as the second
argument. The interface similar to with std::next should improve
readability.
This patch converts a couple of calls to drop_begin as examples.
Differential Revision: https://reviews.llvm.org/D94858
This patch marks some library functions as willreturn. On the first pass, I
excluded most functions that interact with streams/the filesystem.
Along with willreturn, it also adds nounwind to a set of math functions.
There probably are a few additional attributes we can add for those, but
that should be done separately.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94684
When removing catchpad's from catchswitch, if that removes a successor,
we need to record that in DomTreeUpdater.
This fixes PostDomTree preservation failure in an existing test.
This appears to be the single issue that i see in my current test coverage.
DestBB might or might not already be a successor of SelectBB,
and it wasn't we need to ensure that we record the fact in DomTree.
The testcase used to crash in lazy domtree updater mode + non-per-function
domtree validity checks disabled.
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.
This is not nice, but it's the best transient solution possible,
and is better than just duplicating the whole function.
The problem is, this function is widely used,
and it is not at all obvious that all the users
could be painlessly switched to operate on DomTreeUpdater,
and somehow i don't feel like porting all those users first.
This function is one of last three that not operate on DomTreeUpdater.