These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.
This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.
Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.
Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
We have the `enable-loopinterchange` option in legacy pass manager but not in NPM.
Add `LoopInterchange` pass to the optimization pipeline (at the same position as before)
when `enable-loopinterchange` is turned on.
Reviewed By: aeubanks, fhahn
Differential Revision: https://reviews.llvm.org/D98116
GVN basically doesn't handle phi nodes at all. This is for a reason - we can't value number their inputs since the predecessor blocks have probably not been visited yet.
However, it also creates a significant pass ordering problem. As it stands, instcombine and simplifycfg ends up implementing CSE of phi nodes. This means that for any series of CSE opportunities intermixed with phi nodes, we end up having to alternate instcombine/simplifycfg and gvn to make progress.
This patch handles the simplest case by simply preprocessing the phi instructions in a block, and CSEing them if they are syntactically identical. This turns out to be powerful enough to handle many cases in a single invocation of GVN since blocks which use the cse'd phi results are visited after the block containing the phi. If there's a CSE opportunity in one the phi predecessors required to recognize the phi CSE opportunity, that will require a second iteration on the function. (Still within a single run of gvn though.)
Compile time wise, this could go either way. On one hand, we're potentially causing GVN to iterate over the function more. On the other, we're cutting down on iterations between two passes and potentially shrinking the IR aggressively. So, a bit unclear what to expect.
Note that this does still rely on instcombine to canonicalize block order of the phis, but that's a one time transformation independent of the values incoming to the phi.
Differential Revision: https://reviews.llvm.org/D98080
The last two operands to a gc.relocate represent indices into the associated gc.statepoint's gc bundle list. (Effectively, gc.relocates are projections from the gc.statepoints multiple return values.)
We can use this to recognize when two gc.relocates are equivalent (and can be CSEd), even when the indices are non-equal. This is particular useful when considering a chain of multiple statepoints as it lets us eliminate all duplicate gc.relocates in a single pass.
Differential Revision: https://reviews.llvm.org/D97974
(Note: Part of the reviewed change was split and landed as f352463a)
For some reason, we had been marking gc.relocates as reading memory. There's no known reason for this, and I suspect it to be a legacy of very early implementation conservatism. gc.relocate and gc.result are simply projections of the return values from the associated statepoint. Note that the LangRef has always declared them readnone.
The EarlyCSE change is simply moving the special casing from readonly to readnone handling.
As noted by the test diffs, this does allow some additional CSE when relocates are separated by stores, but since we generate gc.relocates in batches, this is unlikely to help anything in practice.
This was reviewed as part of https://reviews.llvm.org/D97974, but split at reviewer request before landing. The motivation is to enable the GVN changes in that patch.
If we have a value live over a call which is used for deopt at the call, we know that the value must be a base pointer. We can avoid potentially inserting IR to materialize a base for this value.
In it's current form, this is mostly a compile time optimization. Building the base pointer graph (and then optimizing it away again) is a relatively expensive operation. We also sometimes end up with better codegen in practice - due to failures in optimizing away the inserted base pointer propogation - but those are optimization bugs we're fixing concurrently.
The alternative to this would be to extend the base pointer inference with the ability to generally reuse multiple-base input instructions (phis and selects). That's somewhat invasive and complicated, so we're defering it a bit longer.
Differential Revision: https://reviews.llvm.org/D97885
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
There are certain loops like this below:
for (int i = 0; i < n; i++) {
a[i] = b[i] + 1;
*inv = a[i];
}
that can only be vectorised if we are able to extract the last lane of the
vectorised form of 'a[i]'. For fixed width vectors this already works since
we know at compile time what the final lane is, however for scalable vectors
this is a different story. This patch adds support for extracting the last
lane from a scalable vector using a runtime determined lane value. I have
added support to VPIteration for runtime-determined lanes that still permit
the caching of values. I did this by introducing a new class called VPLane,
which describes the lane we're dealing with and provides interfaces to get
both the compile-time known lane and the runtime determined value. Whilst
doing this work I couldn't find any explicit tests for extracting the last
lane values of fixed width vectors so I added tests for both scalable and
fixed width vectors.
Differential Revision: https://reviews.llvm.org/D95139
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
sample loader pass.
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
to prevent repeated indirect call promotion for the same indirect call
and the same target, we used zero-count value profile to indicate an
indirect call has been promoted for a certain target. We removed
PromotedInsns cache in the same patch. However, there was a problem in
that patch described below, and that problem led me to add PromotedInsns
back as a mitigation in
https://reviews.llvm.org/rG4ffad1fb489f691825d6c7d78e1626de142f26cf.
When we get value profile from metadata by calling getValueProfDataFromInst,
we need to specify the maximum possible number of values we expect to read.
We uses MaxNumPromotions in the last patch so the maximum number of value
information extracted from metadata is MaxNumPromotions. If we have many
values including zero-count values when we write the metadata, some of them
will be dropped when we read them because we only read MaxNumPromotions
values. It will allow repeated indirect call promotion again. We need to
make sure if there are values indicating promoted targets, those values need
to be saved in metadata with higher priority than other values.
The patch fixed that problem. We change to use -1 to represent the count
of a promoted target instead of 0 so it is easier to sort the values.
When we prepare to update the metadata in updateIDTMetaData, we will sort
the values in the descending count order and extract only MaxNumPromotions
values to write into metadata. Since -1 is the max uint64_t number, if we
have equal to or less than MaxNumPromotions of -1 count values, they will
all be kept in metadata. If we have more than MaxNumPromotions of -1 count
values, we will only save MaxNumPromotions such values maximally. In such
case, we have logic in place in doesHistoryAllowICP to guarantee no more
promotion in sample loader pass will happen for the indirect call, because
it has been promoted enough.
With this change, now we can remove PromotedInsns without problem.
Differential Revision: https://reviews.llvm.org/D97350
This is included from IR files, and IR doesn't/can't depend on Analysis
(because Analysis depends on IR).
Also fix the implementation - don't use non-member static in headers, as
it leads to ODR violations, inaccurate "unused function" warnings, etc.
And fix the header protection macro name (we don't generally include
"LIB" in the names, so far as I can tell).
This code assumed that FP math was only permissable if it was
fully "fast", so it hard-coded "fast" when creating new instructions.
The underlying code already allows matching recurrences/reductions
that are only "reassoc", so this change should prevent the potential
miscompile seen in the test diffs (we created "fast" ops even though
none existed in the original code).
I don't know if we need to create the temporary IRBuilder objects
used here, so that could be follow-up clean-up.
There's an open question about whether we should require "nsz" in
addition to "reassoc" here. InstCombine uses that combo for its
reassociative folds, but I think codegen is not as strict.
This enhances the auto-init remark with information about the variable
that is auto-initialized.
This is based of debug info if available, or alloca names (mostly for
development purposes).
```
auto-init.c:4:7: remark: Call to memset inserted by -ftrivial-auto-var-init. Memory operation size: 4096 bytes.Variables: var (4096 bytes). [-Rpass-missed=annotation-remarks]
int var[1024];
^
```
This allows to see things like partial initialization of a variable that
the optimizer won't be able to completely remove.
Differential Revision: https://reviews.llvm.org/D97734
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This patch updates the scope line to point to the suspend point. This
makes the first address in the function point to the first source line
in the resume function rather than the function declaration. Without
this the line table "jumps" from the beginning of the function to the
suspend point at the beginning.
rdar://73386346
Differential Revision: https://reviews.llvm.org/D97345
For logical or/and reductions we emit regular intrinsics @llvm.vector.reduce.or/and.vxi1 calls.
These intrinsics are not effective for the logical or/and reductions,
especially if the optimizer is able to emit short circuit versions of
the scalar or/and instructions and vector code gets less effective than
the scalar version.
Instead, or reduction for i1 can be represented as:
```
%val = bitcast <ReduxWidth x i1> to iReduxWidth
%res = cmp ne iReduxWidth %val, 0
```
and reduction for i1 can be represented as:
```
%val = bitcast <ReduxWidth x i1> to iReduxWidth
%res = cmp eq iReduxWidth %val, 11111
```
This improves perfromance of the vector code significantly and make it
to outperform short circuit scalar code.
Part of D57059.
Differential Revision: https://reviews.llvm.org/D97406
Similar to b3a33553ae, but this shows a TODO and a potential
miscompile is already present.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification may be possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
The new test shows that there is an existing bug somewhere in
the callers. We assumed that the original code was fully 'fast'
and so we produced IR with 'fast' even though it was just 'reassoc'.
We are tracking an FP instruction that does *not* have FMF (reassoc)
properties, so calling that "Unsafe" seems opposite of the common
reading.
I also removed one getter method by rolling the null check into
the access. Further simplification seems possible.
The motivation is to clean up the interactions between FMF and
function-level attributes in these classes and their callers.
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
This is an attempt to improve handling of partial overlaps in case of unaligned begin\end.
Existing implementation just bails out if it encounters such cases. Even when it doesn't I believe existing code checking alignment constraints is not quite correct. It tries to ensure alignment of the "later" start/end offset while should be preserving relative alignment between earlier and later start/end.
The idea behind the change is simple. When start/end is not aligned as we wish instead of bailing out let's adjust it as necessary to get desired alignment.
I'll update with performance results as measured by the test-suite...it's still running...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D93530
statepoint intrinsic can be used in invoke context,
so it should be handled in visitCallBase to cover both call and invoke.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97833
See pr46990(https://bugs.llvm.org/show_bug.cgi?id=46990). LICM should not sink store instructions to loop exit blocks which cross coro.suspend intrinsics. This breaks semantic of coro.suspend intrinsic which return to caller directly. Also this leads to use-after-free if the coroutine is freed before control returns to the caller in multithread environment.
This patch disable promotion by check whether loop contains coro.suspend intrinsics.
This is a resubmit of D86190.
Disabling LICM for loops with coroutine suspension is a better option not only for correctness purpose but also for performance purpose.
In most cases LICM sinks memory operations. In the case of coroutine, sinking memory operation out of the loop does not improve performance since coroutien needs to get data from the frame anyway. In fact LICM would hurt coroutine performance since it adds more entries to the frame.
Differential Revision: https://reviews.llvm.org/D96928
Probably should have done this before landing, but I forgot.
Basic idea is to avoid using the SCEV predicate when it doesn't buy us anything. Also happens to set us up for handling non-add recurrences in the future if desired.
LSR goes to some lengths to schedule IV increments such that %iv and %iv.next never need to overlap. This is fairly fundamental to LSRs cost model. LSR assumes that an addrec can be represented with a single register. If %iv and %iv.next have to overlap, then that assumption does not hold.
The bug - which this patch is fixing - is that LSR only does this scheduling for IVs which it inserts, but it's cost model assumes the same for existing IVs that it reuses. It will rewrite existing IV users such that the no-overlap property holds, but will not actually reschedule said IV increment.
As you can see from the relatively lack of test updates, this doesn't actually impact codegen much. The main reason for doing it is to make a follow up patch series which improves post-increment use and scheduling easier to follow.
Differential Revision: https://reviews.llvm.org/D97219
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (LLD 13 (D96914); GNU ld 2.37 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker does not let `__start_/__stop_` references retain their sections.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on COFF/Mach-O are not affected.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D97649
Before we used the same argument as the entry point. The resume partial
function might want to use a different ABI for its context argument
Differential Revision: https://reviews.llvm.org/D97333
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
This is a part of https://reviews.llvm.org/D95835.
One issue is about origin load optimization: see the
comments of useCallbackLoadLabelAndOrigin
@gbalats This change may have some conflicts with your 8bit change. PTAL the change at visitLoad.
Reviewed By: morehouse, gbalats
Differential Revision: https://reviews.llvm.org/D97570
This addresses ~50 clang-tidy warnings on dfsan instrumentation pass.
It also contains some refactoring (all non-functional changes) to eliminate some variables and simplify code.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D97714
Even when MemorySSA-based LICM is used, an AST is still populated
for scalar promotion. As the AST has quadratic complexity, a lot
of time is spent in this step despite the existing access count
limit. This patch optimizes the identification of promotable stores.
The idea here is pretty simple: We're only interested in must-alias
mod sets of loop invariant pointers. As such, only populate the AST
with loop-invariant loads and stores (anything else is definitely
not promotable) and then discard any sets which alias with any of
the remaining, definitely non-promotable accesses.
If we promoted something, check whether this has made some other
accesses loop invariant and thus possible promotion candidates.
This is much faster in practice, because we need to perform AA
queries for O(NumPromotable^2 + NumPromotable*NumNonPromotable)
instead of O(NumTotal^2), and NumPromotable tends to be small.
Additionally, promotable accesses have loop invariant pointers,
for which AA is cheaper.
This has a signicant positive compile-time impact. We save ~1.8%
geomean on CTMark at O3, with 6% on lencod in particular and 25%
on individual files.
Conceptually, this change is NFC, but may not be so in practice,
because the AST is only an approximation, and can produce
different results depending on the order in which accesses are
added. However, there is at least no impact on the number of promotions
(licm.NumPromoted) in test-suite O3 configuration with this change.
Differential Revision: https://reviews.llvm.org/D89264
It is possible to merge reuse and reorder shuffles and reduce the total
cost of the vectorization tree/number of final instructions.
Differential Revision: https://reviews.llvm.org/D94992
`__llvm_prf_vnodes` and `__llvm_prf_names` are used by runtime but not
referenced via relocation in the translation unit.
With `-z start-stop-gc` (D96914 https://sourceware.org/bugzilla/show_bug.cgi?id=27451),
the linker no longer lets `__start_/__stop_` references retain them.
Place `__llvm_prf_vnodes` and `__llvm_prf_names` in `llvm.used` to make
them retained by the linker.
This patch changes most existing `UsedVars` cases to `CompilerUsedVars`
to reflect the ideal state - if the binary format properly supports
section based GC (dead stripping), `llvm.compiler.used` should be sufficient.
`__llvm_prf_vnodes` and `__llvm_prf_names` are switched to `UsedVars`
since we want them to be unconditionally retained by both compiler and linker.
Behaviors on other COFF/Mach-O are not affected.
Differential Revision: https://reviews.llvm.org/D97649
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
Update the deletion order when destroying VPBasicBlocks. This ensures
recipes that depend on earlier ones in the block are removed first.
Otherwise this may cause issues when recipes have remaining users later
in the block.
This patch updates LV to generate the runtime checks just after cost
modeling, to allow a more precise estimate of the actual cost of the
checks. This information will be used in future patches to generate
larger runtime checks in cases where the checks only make up a small
fraction of the expected scalar loop execution time.
The runtime checks are created up-front in a temporary block to allow better
estimating the cost and un-linked from the existing IR. After deciding to
vectorize, the checks are moved backed. If deciding not to vectorize, the
temporary block is completely removed.
This patch is similar in spirit to D71053, but explores a different
direction: instead of delaying the decision on whether to vectorize in
the presence of runtime checks it instead optimistically creates the
runtime checks early and discards them later if decided to not
vectorize. This has the advantage that the cost-modeling decisions
can be kept together and can be done up-front and thus preserving the
general code structure. I think delaying (part) of the decision to
vectorize would also make the VPlan migration a bit harder.
One potential drawback of this patch is that we speculatively
generate IR which we might have to clean up later. However it seems like
the code required to do so is quite manageable.
Reviewed By: lebedev.ri, ebrevnov
Differential Revision: https://reviews.llvm.org/D75980
In the example based on:
https://llvm.org/PR49218
...we are crashing because poison is a subclass of undef, so we merge blocks and create:
PHI node has multiple entries for the same basic block with different incoming values!
%k3 = phi i64 [ poison, %entry ], [ %k3, %g ], [ undef, %entry ]
If both poison and undef values are incoming, we soften the poison values to undef.
Differential Revision: https://reviews.llvm.org/D97495
Many optimizers (e.g. GlobalOpt/ConstantMerge) do not respect linker semantics
for comdat and may not discard the sections as a unit.
The interconnected `__llvm_prf_{cnts,data}` sections (in comdat for ELF)
are similar to D97432: `__profd_` is not directly referenced, so
`__profd_` may be discarded while `__profc_` is retained, breaking the
interconnection. We currently conservatively add all such sections to
`llvm.used` and let the linker do GC for ELF.
In D97448, we will change GlobalObject's in the llvm.used list to use SHF_GNU_RETAIN,
causing the metadata sections to be unnecessarily retained (some `check-profile` tests check for GC).
Use `llvm.compiler.used` to retain the current GC behavior.
Differential Revision: https://reviews.llvm.org/D97585
This will allow identifying exactly how many shadow bytes were used
during compilation, for when fast8 mode is introduced.
Also, it will provide a consistent matching point for instrumentation
tests so that the exact llvm type used (i8 or i16) for the shadow can
be replaced by a pattern substitution. This is handy for tests with
multiple prefixes.
Reviewed by: stephan.yichao.zhao, morehouse
Differential Revision: https://reviews.llvm.org/D97409
This is a part of https://reviews.llvm.org/D95835.
Each customized function has two wrappers. The
first one dfsw is for the normal shadow propagation. The second one dfso is used
when origin tracking is on. It calls the first one, and does additional
origin propagation. Which one to use can be decided at instrumentation
time. This is to ensure minimal additional overhead when origin tracking
is off.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97483
`__sancov_pcs` parallels the other metadata section(s). While some optimizers
(e.g. GlobalDCE) respect linker semantics for comdat and retain or discard the
sections as a unit, some (e.g. GlobalOpt/ConstantMerge) do not. So we have to
conservatively retain all unconditionally in the compiler.
When a comdat is used, the COFF/ELF linkers' GC semantics ensure the
associated parallel array elements are retained or discarded together,
so `llvm.compiler.used` is sufficient.
Otherwise (MachO (see rL311955/rL311959), COFF special case where comdat is not
used), we have to use `llvm.used` to conservatively make all sections retain by
the linker. This will fix the Windows problem once internal linkage
GlobalObject's in `llvm.used` are retained via `/INCLUDE:`.
Reviewed By: morehouse, vitalybuka
Differential Revision: https://reviews.llvm.org/D97432
collectBitParts uses int8_t for the bit indices, leaving a 128-bit limit.
We already test for this before calling collectBitParts, but rGb94c215592bd added truncate handling which meant we could end up processing wider integers.
Thanks to @manojgupta for the repro.
This patch modifies TryToSinkInstruction in the InstCombine pass, to prevent
redundant debug intrinsics from being produced, and also prevent the intrinsics
from being emitted in an incorrect order. It does this by ensuring that when
this pass sinks an instruction and creates clones of the debug intrinsics that
use that instruction, it inserts those debug intrinsics in their original order,
and only inserts the last debug intrinsic for each variable in the Instruction's
block.
Differential revision: https://reviews.llvm.org/D95463
DFSan at store does store shadow data; store app data; and at load does
load shadow data; load app data.
When an application data is atomic, one overtainting case is
thread A: load shadow
thread B: store shadow
thread B: store app
thread A: load app
If the application address had been used by other flows, thread A reads
previous shadow, causing overtainting.
The change is similar to MSan's solution.
1) enforce ordering of app load/store
2) load shadow after load app; store shadow before shadow app
3) do not track atomic store by reseting its shadow to be 0.
The last one is to address a case like this.
Thread A: load app
Thread B: store shadow
Thread A: load shadow
Thread B: store app
This approach eliminates overtainting as a trade-off between undertainting
flows via shadow data race.
Note that this change addresses only native atomic instructions, but
does not support builtin libcalls yet.
https://llvm.org/docs/Atomics.html#libcalls-atomic
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D97310
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
This now analyzes calls to both intrinsics and functions.
For intrinsics, grab the ones we know and care about (mem* family) and
analyze the arguments.
For calls, use TLI to get more information about the libcalls, then
analyze the arguments if known.
```
auto-init.c:4:7: remark: Call to memset inserted by -ftrivial-auto-var-init. Memory operation size: 4096 bytes. [-Rpass-missed=annotation-remarks]
int var[1024];
^
```
Differential Revision: https://reviews.llvm.org/D97489
This adds support for analyzing the instruction with the !annotation
"auto-init" in order to generate a more user-friendly remark.
For now, support the store size, and whether it's atomic/volatile.
Example:
```
auto-init.c:4:7: remark: Store inserted by -ftrivial-auto-var-init.Store size: 4 bytes. [-Rpass-missed=annotation-remarks]
int var;
^
```
Differential Revision: https://reviews.llvm.org/D97412
Using the !annotation metadata, emit remarks pointing to code added by
`-ftrivial-auto-var-init` that survived the optimizer.
Example:
```
auto-init.c:4:7: remark: Initialization inserted by -ftrivial-auto-var-init. [-Rpass-missed=annotation-remarks]
int buf[1024];
^
```
The tests are testing various situations like calls/stores/other
instructions, with debug locations, and extra debug information on
purpose: more patches will come to improve the reporting to make it more
user-friendly, and these tests will show how the reporting evolves.
Differential Revision: https://reviews.llvm.org/D97405
This doesn't actually reproduce with a dbg.declare(i8* null, ...)
which produces a non-null null Value, but I have seen this show up in
crash logs. I'm suspecting that there may be another pass forcibly
setting the operand to a nullptr.
In SanitizerCoverage, the metadata sections (`__sancov_guards`,
`__sancov_cntrs`, `__sancov_bools`) are referenced by functions. After
inlining, such a `__sancov_*` section can be referenced by more than one
functions, but its sh_link still refers to the original function's section.
(Note: a SHF_LINK_ORDER section referenced by a section other than its linked-to
section violates the invariant.)
If the original function's section is discarded (e.g. LTO internalization +
`ld.lld --gc-sections`), ld.lld may report a `sh_link points to discarded section` error.
This above reasoning means that `!associated` is not appropriate to be called by
an inlinable function. Non-interposable functions are inline candidates, so we
have to drop `!associated`. A `__sancov_pcs` is not referenced by other sections
but is expected to parallel a metadata section, so we have to make sure the two
sections are retained or discarded at the same time. A section group does the
trick. (Note: we have a module ctor, so `getUniqueModuleId` guarantees to
return a non-empty string, and `GetOrCreateFunctionComdat` guarantees to return
non-null.)
For interposable functions, we could keep using `!associated`, but
LTO can change the linkage to `internal` and allow such functions to be inlinable,
so we have to drop `!associated`, too. To not interfere with section
group resolution, we need to use the `noduplicates` variant (section group flag 0).
(This allows us to get rid of the ModuleID parameter.)
In -fno-pie and -fpie code (mostly dso_local), instrumented interposable
functions have WeakAny/LinkOnceAny linkages, which are rare. So the
section group header overload should be low.
This patch does not change the object file output for COFF (where `!associated` is ignored).
Reviewed By: morehouse, rnk, vitalybuka
Differential Revision: https://reviews.llvm.org/D97430
This patch makes SampleProfileLoaderBaseImpl a template class so it
can be used in CodeGen transformation.
Noticeable changes:
* use one template parameter and use IRTraits to get other used
types an type specific functions.
* remove the temporary "inline" keywords in previous refactor
patch.
* change the template function findEquivalencesFor to a regular
function. This function has a single caller with type of
PostDominatorTree. It's simpler to use the type directly
because MachinePostDominatorTree is not a derived type of
template DominatorTreeBase.
Differential Revision: https://reviews.llvm.org/D96981
Support reassociation for min/max. With that we should be able to transform min(min(a, b), c) -> min(min(a, c), b) if min(a, c) is already available.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88287
In the existing logic, we look at the lifetime.start marker of each alloca, and check all uses of the alloca, to see if any pair of the lifetime marker and an use of alloca crosses suspension point.
This approach is unfortunately incorrect. An use of alloca does not need to be a direct use, but can be an indirect use through alias.
Only checking direct uses can miss cases where indirect uses are crossing suspension point.
This can be demonstrated in the newly added test case 007.
In the test case, both x and y are only directly used prior to suspend, but they are captured into an alias, merged through a PHINode (so they couldn't be materialized), and used after CoroSuspend.
If we only check whether the lifetime starts cross suspension points with direct uses, we will put the allocas to the stack, and then capture their addresses in the frame.
Instead of fixing it in D96441 and D96566, this patch takes a different approach which I think is better.
We still checks the lifetime info in the same way as before, but with two differences:
1. The collection of liftime.start is moved into AllocaUseVisitor to make the logic more concentrated.
2. When looking at lifetime.start and use pairs, we not only checks the direct uses as before, but in this patch we check all uses collected by AllocaUseVisitor, which would include all indirect uses through alias. This will make the analysis more accurate without throwing away the lifetime optimization.
Differential Revision: https://reviews.llvm.org/D96922
This extends b40fde062c for the especially non-standard
powi pattern. We want to avoid being completely wrong
on the negation-of-int-min corner case, so I'm adding
an extra FMF check for 'ninf' assuming that gives us
the flexibility to handle that possibility.
https://llvm.org/PR49147
This is a follow up to 22a52dfddc and a
revert of df763188c9.
With this change, we only skip cloning distinct nodes in
MDNodeMapper::mapDistinct if RF_ReuseAndMutateDistinctMDs, dropping the
no-longer-needed local helper `cloneOrBuildODR()`. Skipping cloning in
other cases is unsound and breaks CloneModule, which is why the textual
IR for PR48841 didn't pass previously. This commit adds the test as:
Transforms/ThinLTOBitcodeWriter/cfi-debug-info-cloned-type-references-global-value.ll
Cloning less often exposed a hole in subprogram cloning in
CloneFunctionInto thanks to df763188c9a1ecb1e7e5c4d4ea53a99fbb755903's
test ThinLTO/X86/Inputs/dicompositetype-unique-alias.ll. If a function
has a subprogram attachment whose scope is a DICompositeType that
shouldn't be cloned, but it has no internal debug info pointing at that
type, that composite type was being cloned. This commit plugs that hole,
calling DebugInfoFinder::processSubprogram from CloneFunctionInto.
As hinted at in 22a52dfddcefad4f275eb8ad1cc0e200074c2d8a's commit
message, I think we need to formalize ownership of metadata a bit more
so that ValueMapper/CloneFunctionInto (and similar functions) can deal
with cloning (or not) metadata in a more generic, less fragile way.
This fixes PR48841.
Differential Revision: https://reviews.llvm.org/D96734
Putting globals in a comdat for dead-stripping changes the semantic and
can potentially cause false negative odr violations at link time.
If odr indicators are used, we keep the comdat sections, as link time
odr violations will be dectected for the odr indicator symbols.
This fixes PR 47925
This reverts the revert commit 437f0bbcd5.
It adds a new toVPRecipeResult, which forces VPRecipeOrVPValueTy to be
constructed with a VPRecipeBase *. This should address ambiguous
constructor issues for recipe sub-types that also inherit from VPValue.
Previously there was no way to control how module destructors were emitted
by `ModuleAddressSanitizerPass`. However, we want language frontends (e.g. Clang)
to be able to decide how to emit these destructors (if at all).
This patch introduces the `AsanDtorKind` enum that represents the different ways
destructors can be emitted. There are currently only two valid ways to emit destructors.
* `Global` - Use `llvm.global_dtors`. This was the previous behavior and is the default.
* `None` - Do not emit module destructors.
The `ModuleAddressSanitizerPass` and the various wrappers around it have been updated
to take the `AsanDtorKind` as an argument.
The `-asan-destructor-kind=` command line argument has been introduced to make this
easy to test from `opt`. If this argument is specified it overrides the value passed
to the `ModuleAddressSanitizerPass` constructor.
Note that `AsanDtorKind` is not `bool` because we will introduce a new way to
emit destructors in a subsequent patch.
Note that `AsanDtorKind` is given its own header file because if it is declared
in `Transforms/Instrumentation/AddressSanitizer.h` it leads to compile error
(Module is ambiguous) when trying to use it in
`clang/Basic/CodeGenOptions.def`.
rdar://71609176
Differential Revision: https://reviews.llvm.org/D96571
This is a simple patch to update SimplifyCFG's passingValueIsAlwaysUndefined to inspect more attributes.
A new function `CallBase::isPassingUndefUB` checks attributes that imply noundef.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D97244
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Depends on D97128 (which added a new SmallVecImpl overload for collectUsedGlobalVariables).
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97139
Iterating on `SmallPtrSet<GlobalValue *, 8>` with more than 8 elements
is not deterministic. Use a SmallVector instead because `Used` is guaranteed to contain unique elements.
While here, decrease inline element counts from 8 to 4. The number of
`llvm.used`/`llvm.compiler.used` elements is usually 0 or 1. For full
LTO/hybrid LTO, the number may be large, so we need to be careful.
According to tejohnson's analysis https://reviews.llvm.org/D97128#2582399 , 4 is
good for a large project with WholeProgramDevirt, when available_externally
vtables are placed in the llvm.compiler.used set.
Differential Revision: https://reviews.llvm.org/D97128
The fix in 3c4c205060 caused an assert in
the case of a pure virtual base class. In that case, the vTableFuncs
list on the summary will be empty, so we were hitting the new assert
that the linkage type was not available_externally.
In the case of pure virtual, we do not want to assert, and additionally
need to set VS so that we don't treat it conservatively and quit the
analysis of the type id early.
This exposed a pre-existing issue where we were not updating the vcall
visibility on pure virtual functions when whole program visibility was
specified. We were skipping updating the visibility on any global vars
that didn't have any vTableFuncs, which meant all pure virtual were not
updated, and the later analysis would block any devirtualization of
calls that had a type id used on those pure virtual vtables (see the
handling in the other code modified in this patch). Simply remove that
check. It will mean that we may update the vcall visibility on global
vars that aren't vtables, but that setting is ignored for any global
vars that didn't have type metadata anyway.
Added a new test case that asserted without removing the assert, and
that requires the other fixes in this patch (updateVCallVisibilityInIndex
and not skipping all vtables without virtual funcs) to get a successful
devirtualization with index-only WPD. I added cases to test hybrid and
regular LTO for completeness, although those already worked without the
fixes here.
With this final fix, a clang multistage bootstrap with WPD builds and
runs all tests successfully.
Differential Revision: https://reviews.llvm.org/D97126
Under certain (currently unknown) conditions, llvm-profdata is outputting
profiles that have two consecutive entries in the MemOPSize section for the
value 0. This causes the PGOMemOPSizeOpt pass to output an invalid switch
instruction with two cases for 0. As mentioned, we’re not quite sure what’s
causing this to happen, but this patch prevents llvm-profdata from outputting a
profile that has this problem and gives an error with a request for a
reproducible.
Differential Revision: https://reviews.llvm.org/D92074
Generalize the return value of tryToCreateWidenRecipe to return either a
newly create recipe or an existing VPValue. Use this to avoid creating
unnecessary VPBlendRecipes.
Fixes PR44800.
The new intrinsic replaces the size in one specified AsyncFunctionPointer with
the size in another. This ability is necessary for functions which merely
forward to async functions such as those defined for partial applications.
Reviewed By: aschwaighofer
Differential Revision: https://reviews.llvm.org/D97229
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.
This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.
Differential Revision: https://reviews.llvm.org/D96287
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
The **IsGuaranteedLoopInvariant** function is making sure to check if the
incoming pointer is guaranteed to be loop invariant, therefore I think
the case where the pointer is defined in the entry block of a function
automatically guarantees the pointer to be loop invariant, as the entry
block of a function cannot have predecessors or be part of a loop.
I implemented this small patch and tested it using
**ninja check-llvm-unit** and **ninja check-llvm**. I added a contained test
file that shows the problem and used **opt -O3 -debug** on it to make sure
the case is not currently handled (in fact the debug log is showing that
the DSE pass is bailing out when testing if the killer store is able to
clobber the dead store).
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96979
This is a patch to explicitly mark the size parameter of allocator functions like malloc/realloc/... as noundef.
For C/C++: undef can be created from reading an uninitialized variable or padding.
Calling a function with uninitialized variable is already UB.
Calling malloc with padding value is.. something that's not expected. Padding bits may appear in a coerced aggregate, which doesn't apply to malloc's size.
Therefore, malloc's size can be marked as noundef.
For transformations that introduce malloc/realloc/..: I ran LLVM unit tests with an updated Alive2 semantics, and found no regression, so it seems okay.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D97045
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
Pointer operand of scatter loads does not remain scalar in the tree (it
gest vectorized) and thus must not be marked as the scalar that remains
scalar in vectorized form.
Differential Revision: https://reviews.llvm.org/D96818
ICMP_NE predicates cannot be directly represented as constraint. But we
can use ICMP_UGT instead ICMP_NE for %x != 0.
See https://alive2.llvm.org/ce/z/XlLCsW
If the call is readnone, then there may not be any MemoryAccess
associated with the call. Bail out in that case.
This fixes the issue reported at
https://reviews.llvm.org/D94376#2578312.
When cloning instructions during jump threading, also clone and
adapt any declared scopes. This is primarily important when
threading loop exits, because we'll end up with two dominating
scope declarations in that case (at least after additional loop
rotation). This addresses a loose thread from
https://reviews.llvm.org/rG2556b413a7b8#975012.
Differential Revision: https://reviews.llvm.org/D97154
This patch extends VPWidenPHIRecipe to manage pairs of incoming
(VPValue, VPBasicBlock) in the VPlan native path. This is made possible
because we now directly manage defined VPValues for recipes.
By keeping both the incoming value and block in the recipe directly,
code-generation in the VPlan native path becomes independent of the
predecessor ordering when fixing up non-induction phis, which currently
can cause crashes in the VPlan native path.
This fixes PR45958.
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D96773
__start_/__stop_ references retain C identifier name sections such as
__llvm_prf_*. Putting these into a section group disables this logic.
The ELF section group semantics ensures that group members are retained
or discarded as a unit. When a function symbol is discarded, this allows
allows linker to discard counters, data and values associated with that
function symbol as well.
Note that `noduplicates` COMDAT is lowered to zero-flag section group in
ELF. We only set this for functions that aren't already in a COMDAT and
for those that don't have available_externally linkage since we already
use regular COMDAT groups for those.
Differential Revision: https://reviews.llvm.org/D96757
FindAvailableLoadedValue() accepts an iterator by reference. If no
available value is found, then the iterator will either be left
at a clobbering instruction or the beginning of the basic block.
This allows using FindAvailableLoadedValue() across multiple blocks.
If this functionality is not needed, as is the case in InstCombine,
then we can use a much more efficient implementation: First try
to find an available value, and only perform clobber checks if
we actually found one. As this function only looks at a very small
number of instructions (6 by default) and usually doesn't find an
available value, this saves many expensive alias analysis queries.
Currently, if there is a module that contains a strong definition of
a global variable and a module that has both a weak definition for
the same global and a reference to it, it may result in an undefined symbol error
while linking with ThinLTO.
It happens because:
* the strong definition become internal because it is read-only and can be imported;
* the weak definition gets replaced by a declaration because it's non-prevailing;
* the strong definition failed to be imported because the destination module
already contains another definition of the global yet this def is non-prevailing.
The patch adds a check to computeImportForReferencedGlobals() that allows
considering a global variable for being imported even if the module contains
a definition of it in the case this def has an interposable linkage type.
Note that currently the check is based only on the linkage type
(and this seems to be enough at the moment), but it might be worth to account
the information whether the def is prevailing or not.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95943
Follow-up to:
D96648 / b40fde062
...for the special-case base calls.
From the earlier commit:
This is unusual in the general (non-reciprocal) case because we need
an extra instruction, but that should be better for general FP
reassociation and codegen. We conservatively check for "arcp" FMF
here as we do with existing fdiv folds, but it is not strictly
necessary to have that.
Refines the fix in 3c4c205060 to only
put globals whose defs were cloned into the split regular LTO module
on the cloned llvm*.used globals. This avoids an issue where one of the
attached values was a local that was promoted in the original module
after the module was cloned. We only need to have the values defined in
the new module on those globals.
Fixes PR49251.
Differential Revision: https://reviews.llvm.org/D97013
recognizeBSwapOrBitReverseIdiom + collectBitParts have pattern matching to bail out early if a bswap/bitreverse pattern isn't possible - we should be able to rely on this instead without any notable change in compile time.
This is part of a cleanup towards letting matchBSwapOrBitReverse /recognizeBSwapOrBitReverseIdiom use 'root' instructions that aren't ORs (FSHL/FSHRs in particular which can be prematurely created).
Differential Revision: https://reviews.llvm.org/D97056
I think we can use here same logic as for nonnull.
strlen(X) - X must be noundef => valid pointer.
for libcalls with size arg, we add noundef only if size is known and greater than 0 - so pointers must be noundef (valid ones)
Reviewed By: jdoerfert, aqjune
Differential Revision: https://reviews.llvm.org/D95122
In https://reviews.llvm.org/rG5fb65c02ca5e91e7e1a00e0efdb8edc899f3e4b9,
We use 0 count value profile to memorize which target has been promoted
and prevent repeated ICP for the same target, so we delete PromotedInsns.
However, I found the implementation in the patch has some shortcomings
to be fixed otherwise there will still be repeated ICP. So I add
PromotedInsns back temorarily. Will remove it after I get a thorough fix.
This enables use of MemorySSA instead of MemDep in MemCpyOpt. To
allow this without significant compile-time impact, the MemCpyOpt
pass is moved directly before DSE (in the cases where this was not
already the case), which allows us to reuse the existing MemorySSA
analysis.
Unlike the MemDep-based implementation, the MemorySSA-based MemCpyOpt
can also perform simple optimizations across basic blocks.
Differential Revision: https://reviews.llvm.org/D94376
Now that all state for generated instructions is managed directly in
VPTransformState, VPCallBack is no longer needed. This patch updates the
last use of `getOrCreateScalarValue` to instead manage the value
directly in VPTransformState and removes VPCallback.
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D95383
In both ADCE and BDCE (via DemandedBits) we should not remove
instructions that are not guaranteed to return. This issue was
pointed out by fhahn in the recent llvm-dev thread.
Differential Revision: https://reviews.llvm.org/D96993
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
As discussed in D94834, we don't really need to do complicated analysis. It's safe to just drop the tail call attribute.
Differential Revision: https://reviews.llvm.org/D96926
Found a problem in indirect call promotion in sample loader pass. Currently
if an indirect call is promoted for a target, and if the parent function is
inlined into some other function, the indirect call can be promoted for the
same target again. That is redundent which can harm performance and can cause
excessive compile time in some extreme case.
The patch fixes the issue. If a target is promoted for an indirect call, the
patch will write ICP metadata with the target call count being set to 0.
In the later ICP in sample profile loader, if it sees a target has 0 count
for an indirect call, it knows the target has been promoted and won't do
indirect call promotion for the indirect call.
The fix brings 0.1~0.2% performance on our search benchmark.
Differential Revision: https://reviews.llvm.org/D96806
With CSSPGO all indirect call targets are counted torwards the original indirect call site in the profile, including both inlined and non-inlined targets. Therefore no need to look for callee entry counts. This also fixes the issue where callee entry count doesn't match callsite count due to the nature of CS sampling.
I'm also cleaning up the orginal code that called `findIndirectCallFunctionSamples` just to compute the sum, the return value of which was disgarded.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D96990
We can always look through single-argument (LCSSA) phi nodes when
performing alias analysis. getUnderlyingObject() already does this,
but stripPointerCastsAndInvariantGroups() does not. We still look
through these phi nodes with the usual aliasPhi() logic, but
sometimes get sub-optimal results due to the restrictions on value
equivalence when looking through arbitrary phi nodes. I think it's
generally beneficial to keep the underlying object logic and the
pointer cast stripping logic in sync, insofar as it is possible.
With this patch we get marginally better results:
aa.NumMayAlias | 5010069 | 5009861
aa.NumMustAlias | 347518 | 347674
aa.NumNoAlias | 27201336 | 27201528
...
licm.NumPromoted | 1293 | 1296
I've renamed the relevant strip method to stripPointerCastsForAliasAnalysis(),
as we're past the point where we can explicitly spell out everything
that's getting stripped.
Differential Revision: https://reviews.llvm.org/D96668
This fixes https://bugs.llvm.org/show_bug.cgi?id=49185
When `NDEBUG` is not set, `LPMUpdater` checks if the added loops have the same parent loop as the current one in `addSiblingLoops`.
If multiple loop passes are executed through `LoopPassManager`, `U.ParentL` will be the same across all passes.
However, the parent loop might change after running a loop pass, resulting in assertion failures in subsequent passes.
This patch resets `U.ParentL` after running individual loop passes in `LoopPassManager`.
Reviewed By: asbirlea, ychen
Differential Revision: https://reviews.llvm.org/D96727