Summary:
Added basic representation and parsing/sema handling of array-shaping
operations. Array shaping expression is an expression of form ([s0]..[sn])base,
where s0, ..., sn must be a positive integer, base - a pointer. This
expression is a kind of cast operation that converts pointer expression
into an array-like kind of expression.
Reviewers: rjmccall, rsmith, jdoerfert
Subscribers: guansong, arphaman, cfe-commits, caomhin, kkwli0
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74144
In order to support non-user-named kernels, SYCL needs some way in the
integration headers to name the kernel object themselves. Initially, the
design considered just RTTI naming of the lambdas, this results in a
quite unstable situation in light of some device/host macros.
Additionally, this ends up needing to use RTTI, which is a burden on the
implementation and typically unsupported.
Instead, we've introduced a builtin, __builtin_unique_stable_name, which
takes a type or expression, and results in a constexpr constant
character array that uniquely represents the type (or type of the
expression) being passed to it.
The implementation accomplishes that simply by using a slightly modified
version of the Itanium Mangling. The one exception is when mangling
lambdas, instead of appending the index of the lambda in the function,
it appends the macro-expansion back-trace of the lambda itself in the
form LINE->COL[~LINE->COL...].
Differential Revision: https://reviews.llvm.org/D76620
Normally clang avoids creating expressions when it encounters semantic
errors, even if the parser knows which expression to produce.
This works well for the compiler. However, this is not ideal for
source-level tools that have to deal with broken code, e.g. clangd is
not able to provide navigation features even for names that compiler
knows how to resolve.
The new RecoveryExpr aims to capture the minimal set of information
useful for the tools that need to deal with incorrect code:
source range of the expression being dropped,
subexpressions of the expression.
We aim to make constructing RecoveryExprs as simple as possible to
ensure writing code to avoid dropping expressions is easy.
Producing RecoveryExprs can result in new code paths being taken in the
frontend. In particular, clang can produce some new diagnostics now and
we aim to suppress bogus ones based on Expr::containsErrors.
We deliberately produce RecoveryExprs only in the parser for now to
minimize the code affected by this patch. Producing RecoveryExprs in
Sema potentially allows to preserve more information (e.g. type of an
expression), but also results in more code being affected. E.g.
SFINAE checks will have to take presence of RecoveryExprs into account.
Initial implementation only works in C++ mode, as it relies on compiler
postponing diagnostics on dependent expressions. C and ObjC often do not
do this, so they require more work to make sure we do not produce too
many bogus diagnostics on the new expressions.
See documentation of RecoveryExpr for more details.
original patch from Ilya
This change is based on https://reviews.llvm.org/D61722
Reviewers: sammccall, rsmith
Reviewed By: sammccall, rsmith
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69330
Summary:
- https://reviews.llvm.org/D68578 revises the `GlobalDecl` constructors
to ensure all GPU kernels have `ReferenceKenelKind` initialized
properly with an explicit constructor and static one. But, there are
lots of places using the implicit constructor triggering the assertion
on non-GPU kernels. That's found in compilation of many tests and
workloads.
- Fixing all of them may change more code and, more importantly, all of
them assumes the default kernel reference kind. This patch changes
that constructor to tell `CUDAGlobalAttr` and construct `GlobalDecl`
properly.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76344
Module.h takes 86ms to parse, mostly parsing the class itself. Avoid it
if possible. ASTContext.h depends on ExternalASTSource.h.
A few NFC changes were needed to make this possible:
- Move ASTSourceDescriptor to Module.h. This needs Module to be
complete, and seems more related to modules and AST files than
external AST sources.
- Move "import complete" bit from Module* pointer int pair to
NextLocalImport pointer. Required because PointerIntPair<Module*,...>
requires Module to be complete, and now it may not be.
Reviewed By: aaron.ballman, hans
Differential Revision: https://reviews.llvm.org/D75784
HIP emits a device stub function for each kernel in host code.
The HIP debugger requires device stub function to have a different unmangled name as the kernel.
Currently the name of the device stub function is the mangled name with a postfix .stub. However,
this does not work with the HIP debugger since the unmangled name is the same as the kernel.
This patch adds prefix __device__stub__ to the unmangled name of the device stub before mangling,
therefore the device stub function has a valid mangled name which is different than the device kernel
name. The device side kernel name is kept unchanged. kernels with extern "C" also gets the prefix added
to the corresponding device stub function.
Differential Revision: https://reviews.llvm.org/D68578
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
Summary:
This adds parsing of the qualifiers __ptr32, __ptr64, __sptr, and __uptr and
lowers them to the corresponding address space pointer for 32-bit and 64-bit pointers.
(32/64-bit pointers added in https://reviews.llvm.org/D69639)
A large part of this patch is making these pointers ignore the address space
when doing things like overloading and casting.
https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: rnk, rsmith
Subscribers: jholewinski, jvesely, nhaehnle, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71039
Implement mangling for CSEs to match regular template-ids.
Reviewed as part of D41569 <https://reviews.llvm.org/D41569>.
Re-commit fixing failing test.
llvm-svn: 375063
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is refe$
D41217 on Phabricator.
(recommit after fixing failing Parser test on windows)
llvm-svn: 374903
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373584
template parameters.
This finishes the implementation of the proposal described in
https://github.com/itanium-cxx-abi/cxx-abi/issues/31. (We already
implemented the <lambda-sig> extensions, but didn't take them into
account when computing mangling numbers, and didn't deal properly with
expanded parameter packs, and didn't disambiguate between different
levels of template parameters in manglings.)
llvm-svn: 371004
This patch adds the SVE built-in types defined by the Procedure Call
Standard for the Arm Architecture:
https://developer.arm.com/docs/100986/0000
It handles the types in all relevant places that deal with built-in types.
At the moment, some of these places bail out with an error, including:
(1) trying to generate LLVM IR for the types
(2) trying to generate debug info for the types
(3) trying to mangle the types using the Microsoft C++ ABI
(4) trying to @encode the types in Objective C
(1) and (2) are fixed by follow-on patches but (unlike this patch)
they deal mostly with target-specific LLVM details, so seemed like
a logically separate change. There is currently no spec for (3) and
(4), so reporting an error seems like the correct behaviour for now.
The intention is that the types will become sizeless types:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
The main purpose of the sizeless type extension is to diagnose
impossible or dangerous uses of the types, such as any that would
require sizeof to have a meaningful defined value.
Until then, the patch sets the alignments of the types to the values
specified in the link above. It also sets the sizes of the types to
zero, which is chosen to be consistently wrong and shouldn't affect
correctly-written code (i.e. code that would compile even with the
sizeless type extension).
The patch adds the common subset of functionality needed to test the
sizeless type extension on the one hand and to provide SVE intrinsic
functions on the other. After this patch, the two pieces of work are
essentially independent.
The patch is based on one by Graham Hunter:
https://reviews.llvm.org/D59245
Differential Revision: https://reviews.llvm.org/D62960
llvm-svn: 368413
In gcc PowerPC, long double has 3 mangling schemes:
-mlong-double-64: `e`
-mlong-double-128 -mabi=ibmlongdouble: `g`
-mlong-double-128 -mabi=ieeelongdouble: `u9__ieee128` (gcc <= 8.1: `U10__float128`)
The current useFloat128ManglingForLongDouble() bisection is not suitable
when we support -mlong-double-128 in clang (D64277). Replace
useFloat128ManglingForLongDouble() with getLongDoubleMangling() and
getFloat128Mangling() to allow 3 mangling schemes.
I also deleted the `getTriple().isOSBinFormatELF()` check (the Darwin
support has gone: https://reviews.llvm.org/D50988).
For x86, change the mangled code of __float128 from `U10__float128` to `g`. `U10__float128` was wrongly copied from PowerPC.
The test will be added to `test/CodeGen/x86-long-double.cpp` in D64277.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D64276
llvm-svn: 365480
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
template argument contains a backreference to a dependently-typed
earlier parameter.
In a case like:
template<typename T, T A, decltype(A) = A> struct X {};
template<typename U> auto Y = X<U, 0>();
we previously treated both references to `A` in the third parameter as
being of type `int` when checking the template-id in `Y`. That`s wrong;
the type of `A` in these contexts is the dependent type `U`.
When we encounter a non-type template argument that we can't convert to
the parameter type because of type-dependence, we now insert a dependent
conversion node so that the SubstNonTypeTemplateParmExpr for the
template argument will have the parameter's type rather than whatever
type the argument had.
llvm-svn: 363972
Device have to use the same mangling as the host for 128bit float types. Otherwise, the codegen for the device is unable to find the parent function when it tries to generate the outlined function for the target region and it leads to incorrect compilation and crash at the runtime.
llvm-svn: 363734
This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
The attribute pass_dynamic_object_size(n) behaves exactly like
pass_object_size(n), but instead of evaluating __builtin_object_size on calls,
it evaluates __builtin_dynamic_object_size, which has the potential to produce
runtime code when the object size can't be determined statically.
Differential revision: https://reviews.llvm.org/D58757
llvm-svn: 356515
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636