This patch allows ISD::FSHR(i32) patterns to lower to ALIGNBIT instructions.
This improves test coverage of ISD::FSHR matching - x86 has both FSHL/FSHR instructions and we prefer FSHL by default.
Differential Revision: https://reviews.llvm.org/D76070
Instead, emit a trap and a warning. We force inlining of this
situation, so any function where this happens should be dead as
indirect or external calls are not yet supported. This should avoid
erroring on dead code.
Interpret these as extending to the next multiple of 32-bits. This had
no effect with i48 for example, which is really split into {i32, i16},
which should extend the high part.
GetDemandedBits mostly just calls SimplifyMultipleUseDemandedBits now, but it does a very blunt constant simplification that SimplifyMultipleUseDemandedBits avoids.
If we need to demand bits from constants we should handle this through ShrinkDemandedConstant/targetShrinkDemandedConstant.
@arsenm confirmed that the sign extended immediates are better for code size.
Differential Revision: https://reviews.llvm.org/D74857
We probably want this, and I've meant to turn this on for a long
time. SC actually emits a special case to early-out for a 1
denominator, which perhaps should also be considered.
The isNegatibleForFree/getNegatedExpression methods currently rely on a raw char value to indicate whether a negation is beneficial or not.
This patch replaces the char return value with an NegatibleCost enum to more clearly demonstrate what is implied.
It also renames isNegatibleForFree to getNegatibleCost to more accurately reflect whats going on.
Differential Revision: https://reviews.llvm.org/D74221
https://reviews.llvm.org/D72312 introduced an infinite loop which involves
DAGCombiner::visitFMA and AMDGPUTargetLowering::performFNegCombine.
fma( a, fneg(b), fneg(c) ) => fneg( fma (a, b, c) ) => fma( a, fneg(b), fneg(c) ) ...
This only breaks with types where 'isFNegFree' returns flase, e.g. v4f32.
Reproducing the issue also needs the attribute 'no-signed-zeros-fp-math',
and no source mods allowed on one of the users of the Op.
This fix makes changes to indicate that it is not free to negate a fma if it
has users with source mods.
Differential Revision: https://reviews.llvm.org/D73939
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
Manually select this is as a tablegen workraound. Both SelectionDAG
and GlobalISel end up misplacing the copy to m0 when both instructions
in the output need it. Neither considers that both output instructions
depend on m0. I don't know of any other pattern we need to handle this
case, so it's less effort to just workaround this for now.
Currently BE allows only a little load narrowing because
of the fear it will produce sub-dword ext loads. However,
we can always allow narrowing if we are shrinking one
multi-dword load to another multi-dword load.
In particular we were unable to reduce s_load_dwordx8 into
s_load_dwordx4 if identity shuffle was used to extract
low 4 dwords.
Differential Revision: https://reviews.llvm.org/D73133
I'm mildly worried about potentially reordering exp/exp_done with
IntrWriteMem on the intrinsic.
Requires hacking out the illegal type on SI, so manually select that
case during lowering.
This allows us to clean up some places that were peeking through
the MERGE_VALUES node after the call. By returning the SDValues
directly, we can clean that up.
Unfortunately, there are several call sites in AMDGPU that wanted
the MERGE_VALUES and now need to create their own.
Summary:
At present, the code calculating known bits of AMDGPU MUL_I24 confuses the concepts of "non-negative number" and "positive number".
In some situations, it results in incorrect code. I have a case where the optimizer replaces the result of calculating MUL_I24(-5, 0) with -8.
Reviewers: foad, arsenm
Reviewed By: arsenm
Subscribers: foad, arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Patch by Eugene Kuznetsov.
Differential Revision: https://reviews.llvm.org/D70367
Summary:
The use of a boolean isInteger flag (generally initialized using
VT.isInteger()) caused errors in our out-of-tree CHERI backend
(https://github.com/CTSRD-CHERI/llvm-project).
In our backend, pointers use a separate ValueType (iFATPTR) and therefore
.isInteger() returns false. This meant that getSetCCInverse() was using the
floating-point variant and generated incorrect code for us:
`(void *)0x12033091e < (void *)0xffffffffffffffff` would return false.
Committing this change will significantly reduce our merge conflicts
for each upstream merge.
Reviewers: spatel, bogner
Reviewed By: bogner
Subscribers: wuzish, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70917
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
The usage of target boolean checks is overly inflexible, since sext
and zext of a compare are equally cheap. The choice is arbitrary, but
using 0/1 to some degree is the choice of lower resistance since
that's what most targets use. This enables a few combines that don't
bother to support ZeroOrNegativeOneBooleanContent.
Rename old function to explicitly show that it cares only about alignment.
The new allowsMemoryAccess call the function related to alignment by default
and can be overridden by target to inform whether the memory access is legal or
not.
Differential Revision: https://reviews.llvm.org/D67121
llvm-svn: 372935
The static analyzer is warning about a potential null dereference, but we should be able to use cast<LoadSDNode> directly and if not assert will fire for us.
llvm-svn: 372528
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
The same stack is loaded for each workitem ID, and each use. Nothing
prevents you from creating multiple fixed stack objects with the same
offsets, so this was creating a load for each unique frame index,
despite them being the same offset. Re-use the same frame index so the
loads are CSEable.
llvm-svn: 371148
The problem these are supposed to work around can occur before the
intrinsics are lowered into the nodes. Try to directly simplify them
so they are matched before the bit assert operations can be optimized
out.
llvm-svn: 369994
I might look at improving PR43065 which will require being
able to mark a 256 and 512 bit vector of f16 as Legal.
Differential Revision: https://reviews.llvm.org/D66515
llvm-svn: 369565
AMDGPU has some buffer intrinsics which theoretically could use
this. Some of the generated tables include the 3 and 4 element vector
versions of these rounded to 64-bits, which is ambiguous. Add these to
help the table disambiguate these.
Assertion change is for the path odd sized vectors now take for R600.
v3i16 is widened to v4i16, which then needs to be promoted to v4i32.
llvm-svn: 369038
This is the more natural lowering, and presents more opportunities to
reduce 64-bit ops to 32-bit.
This should also help avoid issues graphics shaders have had with
64-bit values, and simplify argument lowering in globalisel.
llvm-svn: 366578
Now that the patterns use the new PatFrag address space support, the
only blocker to importing most load patterns is the addressing mode
complex patterns.
llvm-svn: 366237
These should really use v32f32, but were defined as v32i32
due to the lack of the v32f32 type.
Differential Revision: https://reviews.llvm.org/D64667
llvm-svn: 365972