Commit Graph

17 Commits

Author SHA1 Message Date
Eli Friedman 1ee6ec2bf3 Remove "mask" operand from shufflevector.
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.

This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.

I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors.  Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it.  Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.

Differential Revision: https://reviews.llvm.org/D72467
2020-03-31 13:08:59 -07:00
Roman Lebedev 0789f28048
[NFC][SCEV] Piping to pass TTI into SCEVExpander::isHighCostExpansionHelper()
Summary:
Future patches will make use of TTI to perform cost-model-driven `SCEVExpander::isHighCostExpansionHelper()`
This is a fully NFC patch to make things reviewable.

Reviewers: reames, mkazantsev, wmi, sanjoy

Reviewed By: mkazantsev

Subscribers: hiraditya, zzheng, javed.absar, dmgreen, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73704
2020-02-25 23:05:56 +03:00
Sjoerd Meijer 6b0ed508fa [ARM][MVE] Tail-Predication: recognise (again) active lanes IR pattern
A small IR change in calculating the active lanes resulted in no longer
recognising tail-predication. Now recognise both an 'add' and 'or' in
the expression that calculates the active lanes.

Differential Revision: https://reviews.llvm.org/D74394
2020-02-11 15:18:18 +00:00
Sjoerd Meijer b567ff2fa0 [ARM][MVE] Tail-predication: support constant trip count
We had support for runtime trip count values, but not constants, and this adds
supports for that.

And added a minor optimisation while I was add it: don't invoke Cleanup when
there's nothing to clean up.

Differential Revision: https://reviews.llvm.org/D73198
2020-01-27 11:05:26 +00:00
Sam Parker c04b9ba595 [ARM][MVE] Clear MaskedInsts vector
In MVETailPredication, clear the vector before running on a new loop.

Differential Revision: https://reviews.llvm.org/D73048
2020-01-22 04:27:36 -05:00
Sjoerd Meijer 8cba99e2aa [ARM][MVE] Tail-Predication: rematerialise iteration count in exit blocks
This patch uses helper function rewriteLoopExitValues that is refactored in
D72602 to rematerialise the iteration count in exit blocks, so that we can
clean-up loop update expressions inside the hardware-loops later in
ARMLowOverheadLoops, which is necessary to get actual performance gains for
tail-predicated loops.

Differential Revision: https://reviews.llvm.org/D72714
2020-01-20 10:26:36 +00:00
Sjoerd Meijer 0efc9e5a8c [ARM][MVE] More MVETailPredication debug messages. NFC.
I've added a few more debug messages to MVETailPredication because I wanted to
trace better which instructions are added/removed. And while I was at it, I
factored out one function which I thought was clearer, and have added some
comments to describe better the flow between MVETailPredication and
ARMLowOverheadLoops.

Differential Revision: https://reviews.llvm.org/D71549
2020-01-06 09:56:02 +00:00
Florian Hahn b8a3c34eee Revert "[SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC)."
This reverts commit 51ef53f3bd, as it
breaks some bots.
2020-01-04 18:44:38 +00:00
Florian Hahn 51ef53f3bd [SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC).
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.

Reviewers: sanjoy.google, efriedma, reames

Reviewed By: sanjoy.google

Differential Revision: https://reviews.llvm.org/D71537
2020-01-04 18:29:35 +00:00
David Green b4abe7afbf [ARM] Sink splat to ICmp
This adds ICmp to the list of instructions that we sink a splat to in a
loop, allowing the register forms of instructions to be selected more
often. It does not add FCmp yet as the results look a little odd, trying
to keep the register in an float reg and having to move it back to a GPR.

Differential Revision: https://reviews.llvm.org/D70997
2019-12-30 12:58:14 +00:00
Reid Kleckner 5d986953c8 [IR] Split out target specific intrinsic enums into separate headers
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
  Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
  object file size.
- Incremental step towards decoupling target intrinsics.

The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.

Part of PR34259

Reviewers: efriedma, echristo, MaskRay

Reviewed By: echristo, MaskRay

Differential Revision: https://reviews.llvm.org/D71320
2019-12-11 18:02:14 -08:00
Simon Tatham 48cce077ef [ARM,MVE] Rename and clean up VCTP IR intrinsics.
Summary:
D65884 added a set of Arm IR intrinsics for the MVE VCTP instruction,
to use in tail predication. But the 64-bit one doesn't work properly:
its predicate type is `<2 x i1>` / `v2i1`, which isn't a legal MVE
type (due to not having a full set of instructions that manipulate it
usefully). The test of `vctp64` in `basic-tail-pred.ll` goes through
`opt` fine, as the test expects, but if you then feed it to `llc` it
causes a type legality failure at isel time.

The usual workaround we've been using in the rest of the MVE
intrinsics family is to bodge `v2i1` into `v4i1`. So I've adjusted the
`vctp64` IR intrinsic to do that, and completely removed the code (and
test) that uses that intrinsic for 64-bit tail predication. That will
allow me to add isel rules (upcoming in D70485) that actually generate
the VCTP64 instruction.

Also renamed all four of these IR intrinsics so that they have `mve`
in the name, since its absence was confusing.

Reviewers: ostannard, MarkMurrayARM, dmgreen

Reviewed By: MarkMurrayARM

Subscribers: samparker, kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70592
2019-12-02 16:20:30 +00:00
Sam Parker d43913ae38 [ARM][MVE] Enable narrow vectors for tail pred
Remove the restriction, from the mve tail predication pass, that the
all masked vectors instructions need to be 128-bits. This allows us
to supported extending loads and truncating stores.

Differential Revision: https://reviews.llvm.org/D69946
2019-11-19 08:51:12 +00:00
Sjoerd Meijer d90804d26b [ARM][MVE] canTailPredicateLoop
This implements TTI hook 'preferPredicateOverEpilogue' for MVE.  This is a
first version and it operates on single block loops only. With this change, the
vectoriser will now determine if tail-folding scalar remainder loops is
possible/desired, which is the first step to generate MVE tail-predicated
vector loops.

This is disabled by default for now. I.e,, this is depends on option
-disable-mve-tail-predication, which is off by default.

I will follow up on this soon with a patch for the vectoriser to respect loop
hint 'vectorize.predicate.enable'. I.e., with this loop hint set to Disabled,
we don't want to tail-fold and we shouldn't query this TTI hook, which is
done in D70125.

Differential Revision: https://reviews.llvm.org/D69845
2019-11-13 13:24:33 +00:00
Sam Parker aac03ae06a [ARM][MVE] Change VCTP operand
The VCTP instruction will calculate the predicate masked based upon
the number of elements that need to be processed. I had inserted the
sub before the vctp intrinsic and supplied it as the operand, but
this is incorrect as the phi should directly feed the vctp. The sub
is calculating the value for the next iteration.

Differential Revision: https://reviews.llvm.org/D67921

llvm-svn: 373188
2019-09-30 08:03:23 +00:00
Sam Parker 9feb429a33 [ARM][MVE] Remove old tail predicates
Remove any predicate that we replace with a vctp intrinsic, and try
to remove their operands too. Also look into the exit block to see if
there's any duplicates of the predicates that we've replaced and
clone the vctp to be used there instead.

Differential Revision: https://reviews.llvm.org/D67709

llvm-svn: 372567
2019-09-23 09:48:25 +00:00
Sam Parker 312409e464 [ARM] MVE Tail Predication
The MVE and LOB extensions of Armv8.1m can be combined to enable
'tail predication' which removes the need for a scalar remainder
loop after vectorization. Lane predication is performed implicitly
via a system register. The effects of predication is described in
Section B5.6.3 of the Armv8.1-m Arch Reference Manual, the key points
being:
- For vector operations that perform reduction across the vector and
  produce a scalar result, whether the value is accumulated or not.
- For non-load instructions, the predicate flags determine if the
  destination register byte is updated with the new value or if the
  previous value is preserved.
- For vector store instructions, whether the store occurs or not.
- For vector load instructions, whether the value that is loaded or
  whether zeros are written to that element of the destination
  register.

This patch implements a pass that takes a hardware loop, containing
masked vector instructions, and converts it something that resembles
an MVE tail predicated loop. Currently, if we had code generation,
we'd generate a loop in which the VCTP would generate the predicate
and VPST would then setup the value of VPR.PO. The loads and stores
would be placed in VPT blocks so this is not tail predication, but
normal VPT predication with the predicate based upon a element
counting induction variable. Further work needs to be done to finally
produce a true tail predicated loop.

Because only the loads and stores are predicated, in both the LLVM IR
and MIR level, we will restrict support to only lane-wise operations
(no horizontal reductions). We will perform a final check on MIR
during loop finalisation too.

Another restriction, specific to MVE, is that all the vector
instructions need operate on the same number of elements. This is
because predication is performed at the byte level and this is set
on entry to the loop, or by the VCTP instead.

Differential Revision: https://reviews.llvm.org/D65884

llvm-svn: 371179
2019-09-06 08:24:41 +00:00