Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
As mentioned in the comments, extractelement is special
since we actually want a scalar base for that element we extracted from
the vector (i.e. not a vector base).
This same logic should apply to uses of the extractelement such as phis
and selects which have the same BDV as the extractelement.
Howeber, for these uses we conservatively mark the BDV state as
conflict, since setting the EE's new base BDV does not always dominate
these uses.
Added testcase showcases the problem where the BDV identification chokes
on the incorrect cast from vector to scalar for the phi use of
extractelement.
Tests-Run: make check, internal fuzzer testing
Reviewers: reames, skatkov, dantrushin
Reviewed-By: dantrushin
Differential Revision: https://reviews.llvm.org/D75704
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
There are no users that pass in LazyValueInfo, so we can simplify the
function a bit.
Reviewers: brzycki, asbirlea, davide
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D68297
llvm-svn: 373488
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
`CallBase` class rather than `CallSite` wrappers.
I pushed this change down through most of the statepoint infrastructure,
completely removing the use of CallSite where I could reasonably do so.
I ended up making a couple of cut-points: generic call handling
(instcombine, TLI, SDAG). As soon as it hit truly generic handling with
users outside the immediate code, I simply transitioned into or out of
a `CallSite` to make this a reasonable sized chunk.
Differential Revision: https://reviews.llvm.org/D56122
llvm-svn: 353660
DomTreeUpdater depends on headers from Analysis, but is in IR. This is a
layering violation since Analysis depends on IR. Relocate this code from IR
to Analysis to fix the layering violation.
llvm-svn: 353265
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
After submitting https://reviews.llvm.org/D57138, I realized it was slightly more conservative than needed. The scalar indices don't appear to be a problem on a vector gep, we even had a test for that.
Differential Revision: https://reviews.llvm.org/D57161
llvm-svn: 352061
This is an alternative to https://reviews.llvm.org/D57103. After discussion, we dedicided to check this in as a temporary workaround, and pursue a true fix under the original thread.
The issue at hand is that the base rewriting algorithm doesn't consider the fact that GEPs can turn a scalar input into a vector of outputs. We had handling for scalar GEPs and fully vector GEPs (i.e. all vector operands), but not the scalar-base + vector-index forms. A true fix here requires treating GEP analogously to extractelement or shufflevector.
This patch is merely a workaround. It simply hides the crash at the cost of some ugly code gen for this presumable very rare pattern.
Differential Revision: https://reviews.llvm.org/D57138
llvm-svn: 352059
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
This commit adds a wrapper for std::distance() which works with ranges.
As it would be a common case to write `distance(predecessors(BB))`, this
also introduces `pred_size()` and `succ_size()` helpers to make that
easier to write.
Differential Revision: https://reviews.llvm.org/D46668
llvm-svn: 332057
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: kcc, pcc, danielcdh, jmolloy, sanjoy, dberlin, ruiu
Reviewed By: ruiu
Subscribers: ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D45142
llvm-svn: 330059
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
RewriteStatepointsForGC collects parse points for further processing.
During the collection if a callsite is found in an unreachable block
(DominatorTree::isReachableFromEntry()) then all unreachable blocks are
removed by removeUnreachableBlocks(). Some of the removed blocks could
have been reachable according to DominatorTree::isReachableFromEntry().
In this case the collected parse points became stale and resulted in a
crash when accessed.
The fix is to unconditionally canonicalize the IR to
removeUnreachableBlocks and then collect the parse points.
The added test crashes with the old version and passes with this patch.
Patch by Yevgeny Rouban!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D43929
llvm-svn: 326748
Summary:
There's an asymmetry in the definitions of findBaseDefiningValueOfVector() and
findBaseDefiningValue() of RS4GC. The later handles call and invoke instructions,
and the former does not. This appears to be simple oversight. This patch remedies
the oversight by adding the call and invoke cases to findBaseDefiningValueOfVector().
Reviewers: DaniilSuchkov, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42653
llvm-svn: 323764
`RewriteStatepointsForGC` iterates over function blocks and their predecessors
in order of declaration. One of outcomes of this is that callsites are placed in
arbitrary order which has nothing to do with travelsar order.
On the other hand, function `recomputeLiveInValues` asserts that bases are
added to `Info.PointerToBase` before their deried pointers are updated. But
if call sites are processed in order different from RPOT, this is not necessarily
true. We cannot guarantee that the base was placed there before every
pointer derived from it. All we can guarantee is that this base was marked as
known base by this point.
This patch replaces the fact that we assert from checking that the base was
added to the map with assert that the base was marked as known base.
Differential Revision: https://reviews.llvm.org/D41593
llvm-svn: 321517
Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used in this module pass is domtree,
which is a function analysis. That requires asking for the results
of each function and disallows a single interface for run-on-module
pass action.
Decided to copy-paste the main body of this pass.
Most of its code is requesting analyses anyway, so not that much
of a copy-paste.
The rest of the code movement is to transform all the implementation
helper functions like stripNonValidData into non-member statics.
Extended all the related LLVM tests with new-pass-manager use.
No failures.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: skatkov, llvm-commits
Differential Revision: https://reviews.llvm.org/D41162
llvm-svn: 320796
The original change was reverted in rL317217 because of the failure in
the RS4GC testcase. I couldn't reproduce the failure on my local machine
(macbook) but could reproduce it on a linux box.
The failure was around removing the uses of invariant.start. The fix
here is to just RAUW undef (which was the first implementation in D39388).
This is perfectly valid IR as discussed in the review.
llvm-svn: 317225
Summary:
Invariant.start on memory locations has the property that the memory
location is unchanging. However, this is not true in the face of
rewriting statepoints for GC.
Teach RS4GC about removing invariant.start so that optimizations after
RS4GC does not incorrect sink a load from the memory location past a
statepoint.
Added test showcasing the issue.
Reviewers: reames, apilipenko, dneilson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39388
llvm-svn: 317215
Summary:
In RS4GC it is possible that a base pointer is contained in a vector that
has undergone a bitcast from one element-pointertype to another. We teach
RS4GC how to look through bitcasts of vector types when looking for a base
pointer.
Reviewers: anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38849
llvm-svn: 315694
Summary:
It is possible for some passes to materialize a call to a libcall (ex: ldexp, exp2, etc),
but these passes will not mark the call as a gc-leaf-function. All libcalls are
actually gc-leaf-functions, so we change llvm::callsGCLeafFunction() to tell us that
available libcalls are equivalent to gc-leaf-function calls.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35840
llvm-svn: 309291
Summary:
After RS4GC, we should drop metadata that is no longer valid. These metadata
is used by optimizations scheduled after RS4GC, and can cause a miscompile.
One such metadata is invariant.load which is used by LICM sinking transform.
After rewriting statepoints, the address of a load maybe relocated. With
invariant.load metadata on a load instruction, LICM sinking assumes the
loaded value (from a dererenceable address) to be invariant, and
rematerializes the load operand and the load at the exit block.
This transforms the IR to have an unrelocated use of the
address after a statepoint, which is incorrect.
Other metadata we conservatively remove are related to
dereferenceability and noalias metadata.
This patch drops such metadata on store and load instructions after
rewriting statepoints.
Reviewers: reames, sanjoy, apilipenko
Reviewed by: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33756
llvm-svn: 305234
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
We'd called this "vm state" in the early days, but have long since standardized on calling it "deopt" in line with the operand bundle tag. Fix a few cases we'd missed.
llvm-svn: 304607
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
This broke the Clang build. (Clang-side patch missing?)
Original commit message:
> [IR] Make add/remove Attributes use AttrBuilder instead of
> AttributeList
>
> This change cleans up call sites and avoids creating temporary
> AttributeList objects.
>
> NFC
llvm-svn: 301712