This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.
This recommits 100e797adb (reverted in
009e032634 for failing an assert). While the
root cause was independently reverted in eaff300401,
this commit includes a LIT to make sure IVDescriptor's SinkAfter logic does not
try to sink branch instructions.
We have a vector compare reduction problem seen in PR39665 comment 2:
https://bugs.llvm.org/show_bug.cgi?id=39665#c2
Or slightly reduced here:
define i1 @cmp2(<2 x double> %a0) {
%a = fcmp ogt <2 x double> %a0, <double 1.0, double 1.0>
%b = extractelement <2 x i1> %a, i32 0
%c = extractelement <2 x i1> %a, i32 1
%d = and i1 %b, %c
ret i1 %d
}
SLP would not attempt to turn this into a vector reduction because there is an
artificial lower limit on that transform. We can not completely remove that limit
without inducing regressions though, so this patch just hacks an extra attempt at
creating a 2-way reduction to the end of the analysis.
As shown in the test file, we are still not getting some of the motivating cases,
so follow-on patches will be needed to solve those cases.
Differential Revision: https://reviews.llvm.org/D59710
"[SLP] Generalization of stores vectorization."
"[SLP] Fix -Wunused-variable. NFC"
"[SLP] Vectorize jumbled stores."
As they're causing significant (10-30x) compile time regressions on
vectorizable code.
The primary cause of the compile-time regression is f228b53716.
This reverts commits:
f228b537165503455ccb21d498c9c0
We have two ways to steer creating a predicated vector body over creating a
scalar epilogue. To force this, we have 1) a command line option and 2) a
pragma available. This adds a third: a target hook to TargetTransformInfo that
can be queried whether predication is preferred or not, which allows the
vectoriser to make the decision without forcing it.
While this change behaves as a non-functional change for now, it shows the
required TTI plumbing, usage of this new hook in the vectoriser, and the
beginning of an ARM MVE implementation. I will follow up on this with:
- a complete MVE implementation, see D69845.
- a patch to disable this, i.e. we should respect "vector_predicate(disable)"
and its corresponding loophint.
Differential Revision: https://reviews.llvm.org/D69040
This recommits 2be17087f8 (reverted in
d3ec06d219 for heap-use-after-free) with a fix
in IAI's reset() which was not clearing the set of interleave groups after
deleting them.
Summary:
If the GEP instructions are going to be vectorized, the indices in those
GEP instructions must be of the same type. Otherwise, the compiler may
crash when trying to build the vector constant.
Reviewers: RKSimon, spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69627
The sink-after and interleave-group vectorization decisions were so far applied to
VPlan during initial VPlan construction, which complicates VPlan construction – also because of
their inter-dependence. This patch refactors buildVPlanWithRecipes() to construct a simpler
initial VPlan and later apply both these vectorization decisions, in order, as VPlan-to-VPlan
transformations.
Differential Revision: https://reviews.llvm.org/D68577
Summary:
Patch adds support for vectorization of the jumbled stores. The value
operands are vectorized and then shuffled in the right order before
store.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43339
Summary:
Patch adds support for vectorization of the jumbled stores. The value
operands are vectorized and then shuffled in the right order before
store.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43339
Stores are vectorized with maximum vectorization factor of 16. Patch
tries to improve the situation and use maximal vectorization factor.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Differential Revision: https://reviews.llvm.org/D43582
Currently we may do iterleaving by more than estimated trip count
coming from the profile or computed maximum trip count. The solution is to
use "best known" trip count instead of exact one in interleaving analysis.
Patch by Evgeniy Brevnov.
Differential Revision: https://reviews.llvm.org/D67948
The 1st attempt at this modified the cost model in a bad way to avoid the vectorization,
but that caused problems for other users (the loop vectorizer) of the cost model.
I don't see an ideal solution to these 2 related, potentially large, perf regressions:
https://bugs.llvm.org/show_bug.cgi?id=42708https://bugs.llvm.org/show_bug.cgi?id=43146
We decided that load combining was unsuitable for IR because it could obscure other
optimizations in IR. So we removed the LoadCombiner pass and deferred to the backend.
Therefore, preventing SLP from destroying load combine opportunities requires that it
recognizes patterns that could be combined later, but not do the optimization itself (
it's not a vector combine anyway, so it's probably out-of-scope for SLP).
Here, we add a cost-independent bailout with a conservative pattern match for a
multi-instruction sequence that can probably be reduced later.
In the x86 tests shown (and discussed in more detail in the bug reports), SDAG combining
will produce a single instruction on these tests like:
movbe rax, qword ptr [rdi]
or:
mov rax, qword ptr [rdi]
Not some (half) vector monstrosity as we currently do using SLP:
vpmovzxbq ymm0, dword ptr [rdi + 1] # ymm0 = mem[0],zero,zero,..
vpsllvq ymm0, ymm0, ymmword ptr [rip + .LCPI0_0]
movzx eax, byte ptr [rdi]
movzx ecx, byte ptr [rdi + 5]
shl rcx, 40
movzx edx, byte ptr [rdi + 6]
shl rdx, 48
or rdx, rcx
movzx ecx, byte ptr [rdi + 7]
shl rcx, 56
or rcx, rdx
or rcx, rax
vextracti128 xmm1, ymm0, 1
vpor xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 78 # xmm1 = xmm0[2,3,0,1]
vpor xmm0, xmm0, xmm1
vmovq rax, xmm0
or rax, rcx
vzeroupper
ret
Differential Revision: https://reviews.llvm.org/D67841
llvm-svn: 375025
Add an extra parameter so the backend can take the alignment into
consideration.
Differential Revision: https://reviews.llvm.org/D68400
llvm-svn: 374763
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374634
This patch adds a moveAfter method to VPRecipeBase, which can be used to
move elements after other elements, across VPBasicBlocks, if necessary.
Reviewers: dcaballe, hsaito, rengolin, hfinkel
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D46825
llvm-svn: 374565
This is just small refactoring to minimize changes in upcoming patch.
In the next path I'm going to introduce changes into heuristic for vectorization of "tiny trip count" loops.
Patch by Evgeniy Brevnov <evgueni.brevnov@gmail.com>
Reviewers: hsaito, Ayal, fhahn, reames
Reviewed By: hsaito
Differential Revision: https://reviews.llvm.org/D67690
llvm-svn: 374338
We failed to account for the target register width (max vector factor)
when vectorizing starting from GEPs. This causes vectorization to
proceed to obviously illegal widths as in:
https://bugs.llvm.org/show_bug.cgi?id=43578
For x86, this also means that SLP can produce rogue AVX or AVX512
code even when the user specifies a narrower vector width.
The AArch64 test in ext-trunc.ll appears to be better using the
narrower width. I'm not exactly sure what getelementptr.ll is trying
to do, but it's testing with "-slp-threshold=-18", so I'm not worried
about those diffs. The x86 test is an over-reduction from SPEC h264;
this patch appears to restore the perf loss caused by SLP when using
-march=haswell.
Differential Revision: https://reviews.llvm.org/D68667
llvm-svn: 374183
When optimising for size and SCEV runtime checks need to be emitted to check
overflow behaviour, the loop vectorizer can run in this assert:
LoopVectorize.cpp:2699: void llvm::InnerLoopVectorizer::emitSCEVChecks(
llvm::Loop *, llvm::BasicBlock *): Assertion `!BB->getParent()->hasOptSize()
&& "Cannot SCEV check stride or overflow when opt
We should not generate predicates while optimising for size because
code will be generated for predicates such as these SCEV overflow runtime
checks.
This should fix PR43371.
Differential Revision: https://reviews.llvm.org/D68082
llvm-svn: 374166
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"
This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.
The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.
llvm-svn: 374091
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374017
This reverts SVN r373833, as it caused a failed assert "Non-zero loop
cost expected" on building numerous projects, see PR43582 for details
and reproduction samples.
llvm-svn: 373882
I don't see an ideal solution to these 2 related, potentially large, perf regressions:
https://bugs.llvm.org/show_bug.cgi?id=42708https://bugs.llvm.org/show_bug.cgi?id=43146
We decided that load combining was unsuitable for IR because it could obscure other
optimizations in IR. So we removed the LoadCombiner pass and deferred to the backend.
Therefore, preventing SLP from destroying load combine opportunities requires that it
recognizes patterns that could be combined later, but not do the optimization itself (
it's not a vector combine anyway, so it's probably out-of-scope for SLP).
Here, we add a scalar cost model adjustment with a conservative pattern match and cost
summation for a multi-instruction sequence that can probably be reduced later.
This should prevent SLP from creating a vector reduction unless that sequence is
extremely cheap.
In the x86 tests shown (and discussed in more detail in the bug reports), SDAG combining
will produce a single instruction on these tests like:
movbe rax, qword ptr [rdi]
or:
mov rax, qword ptr [rdi]
Not some (half) vector monstrosity as we currently do using SLP:
vpmovzxbq ymm0, dword ptr [rdi + 1] # ymm0 = mem[0],zero,zero,..
vpsllvq ymm0, ymm0, ymmword ptr [rip + .LCPI0_0]
movzx eax, byte ptr [rdi]
movzx ecx, byte ptr [rdi + 5]
shl rcx, 40
movzx edx, byte ptr [rdi + 6]
shl rdx, 48
or rdx, rcx
movzx ecx, byte ptr [rdi + 7]
shl rcx, 56
or rcx, rdx
or rcx, rax
vextracti128 xmm1, ymm0, 1
vpor xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 78 # xmm1 = xmm0[2,3,0,1]
vpor xmm0, xmm0, xmm1
vmovq rax, xmm0
or rax, rcx
vzeroupper
ret
Differential Revision: https://reviews.llvm.org/D67841
llvm-svn: 373833
Initially SLP vectorizer replaced all going-to-be-vectorized
instructions with Undef values. It may break ScalarEvaluation and may
cause a crash.
Reworked SLP vectorizer so that it does not replace vectorized
instructions by UndefValue anymore. Instead vectorized instructions are
marked for deletion inside if BoUpSLP class and deleted upon class
destruction.
Reviewers: mzolotukhin, mkuper, hfinkel, RKSimon, davide, spatel
Subscribers: RKSimon, Gerolf, anemet, hans, majnemer, llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D29641
llvm-svn: 373166
The static analyzer is warning about a potential null dereference, but we should be able to use cast<CmpInst> directly and if not assert will fire for us.
llvm-svn: 372732
When vectorisation is forced with a pragma, we optimise for min size, and we
need to emit runtime memory checks, then allow this code growth and don't run
in an assert like we currently do.
This is the result of D65197 and D66803, and was a use-case not really
considered before. If this now happens, we emit an optimisation remark warning
about the code-size expansion, which can be avoided by not forcing
vectorisation or possibly source-code modifications.
Differential Revision: https://reviews.llvm.org/D67764
llvm-svn: 372694
Summary:
Initially SLP vectorizer replaced all going-to-be-vectorized
instructions with Undef values. It may break ScalarEvaluation and may
cause a crash.
Reworked SLP vectorizer so that it does not replace vectorized
instructions by UndefValue anymore. Instead vectorized instructions are
marked for deletion inside if BoUpSLP class and deleted upon class
destruction.
Reviewers: mzolotukhin, mkuper, hfinkel, RKSimon, davide, spatel
Subscribers: RKSimon, Gerolf, anemet, hans, majnemer, llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D29641
llvm-svn: 372626
The static analyzer is warning about potential null dereferences of dyn_cast<> results, we can use cast<> directly as we know that these cases should all be CastInst, which is why its working atm and anyway cast<> will assert if they aren't.
llvm-svn: 372116
The static analyzer is warning about a potential null dereference of the cast_or_null result, I've split the cast_or_null check from the ->getUnderlyingInstr() call to avoid this, but it appears that we weren't seeing any null pointers in the dumped bundles in the first place.
llvm-svn: 371975
The static analyzer is warning about potential null dereferences of dyn_cast<> results - in these cases we can safely use cast<> directly as we know that these cases should all be the correct type, which is why its working atm and anyway cast<> will assert if they aren't.
llvm-svn: 371973
This is a fix for:
https://bugs.llvm.org/show_bug.cgi?id=33958
It seems universally true that we would not want to transform this kind of
sequence on any target, but if that's not correct, then we could view this
as a target-specific cost model problem. We could also white-list ConstantInt,
ConstantFP, etc. rather than blacklist Global and ConstantExpr.
Differential Revision: https://reviews.llvm.org/D67362
llvm-svn: 371931
Expose a utility function so that all places which want to suppress speculation (when otherwise legal) due to ordering and/or sanitizer interaction can do so.
llvm-svn: 371556
If we're vectorizing a load in a predicated block, check to see if the load can be speculated rather than predicated. This allows us to generate a normal vector load instead of a masked.load.
To do so, we must prove that all bytes accessed on any iteration of the original loop are dereferenceable, and that all loads (across all iterations) are properly aligned. This is equivelent to proving that hoisting the load into the loop header in the original scalar loop is safe.
Note: There are a couple of code motion todos in the code. My intention is to wait about a day - to be sure this sticks - and then perform the NFC motion without furthe review.
Differential Revision: https://reviews.llvm.org/D66688
llvm-svn: 371452
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
Fold-tail currently supports reduction last-vector-value live-out's,
but has yet to support last-scalar-value live-outs, including
non-header phi's. As it relies on AllowedExit in order to detect
them and bail out we need to add the non-header PHI nodes to
AllowedExit, otherwise we end up with miscompiles.
Solves https://bugs.llvm.org/show_bug.cgi?id=43166
Reviewers: fhahn, Ayal
Reviewed By: fhahn, Ayal
Subscribers: anna, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67074
llvm-svn: 370721
Now that we allow tail-folding, not only when we optimise for size, make
sure we do not run in this assert.
Differential revision: https://reviews.llvm.org/D66932
llvm-svn: 370711
The loop vectorizer was running in an assert when it tried to fold the tail and
had to emit runtime memory disambiguation checks.
Differential revision: https://reviews.llvm.org/D66803
llvm-svn: 370707
Allow vectorizing loops that have reductions when tail is folded by masking.
A select is introduced in VPlan, choosing between the last value carried by the
loop-exit/live-out instruction of the reduction, and the penultimate value
carried by the reduction phi, according to the "i < n" mask of fold-tail.
This select replaces the last value as the live-out value of the loop.
Differential Revision: https://reviews.llvm.org/D66720
llvm-svn: 370173
We can avoid repetitive calls getSameOpcode() for already known tree elements by keeping MainOp and AltOp in TreeEntry.
Differential Revision: https://reviews.llvm.org/D64700
llvm-svn: 369315
Summary:
The scheduler's dependence graph gets the use-def dependencies by accessing the operands of the instructions in a bundle. However, buildTree_rec() may change the order of the operands in TreeEntry, and the scheduler is currently not aware of this. This is not causing any functional issues currently, because reordering is restricted to the operands of a single instruction. Once we support operand reordering across multiple TreeEntries, as shown here: http://www.llvm.org/devmtg/2019-04/slides/Poster-Porpodas-Supernode_SLP.pdf , the scheduler will need to get the correct operands from TreeEntry and not from the individual instructions.
In short, this patch:
- Connects the scheduler's bundle with the corresponding TreeEntry. It introduces new TE and Lane fields in ScheduleData.
- Moves the location where the operands of the TreeEntry are initialized. This used to take place in newTreeEntry() setting one operand at a time, but is now moved pre-order just before the recursion of buildTree_rec(). This is required because the scheduler needs to access both operands of the TreeEntry in tryScheduleBundle().
- Updates the scheduler to access the instruction operands through the TreeEntry operands instead of accessing the instruction operands directly.
Reviewers: ABataev, RKSimon, dtemirbulatov, Ayal, dorit, hfinkel
Reviewed By: ABataev
Subscribers: hiraditya, llvm-commits, lebedev.ri, rcorcs
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62432
llvm-svn: 369131
cppcheck + MSVC analyzer both over zealously warn that we might dereference a null Bundle pointer - add an assertion to check for null to silence the warning, plus its a good idea to check that we succeeded in finding a schedule bundle anyway....
llvm-svn: 369094
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.
Differential Revision: https://reviews.llvm.org/D66106
Reviewers: Ayal, hsaito, fhahn
llvm-svn: 368973
This is the compiler-flag equivalent of the Predicate pragma
(https://reviews.llvm.org/D65197), to direct the vectorizer to fold the
remainder-loop into the main-loop using predication.
Differential Revision: https://reviews.llvm.org/D66108
Reviewers: Ayal, hsaito, fhahn, SjoerdMeije
llvm-svn: 368801
If we know the trip count, we should make sure the interleave factor won't cause the vectorized loop to exceed it.
Improves one of the cases from PR42674
Differential Revision: https://reviews.llvm.org/D65896
llvm-svn: 368215
Added code to truncate or shrink offsets so that we can continue
base pointer search if size has changed along the way.
Differential Revision: https://reviews.llvm.org/D65612
llvm-svn: 367646
The previous change to fix crash in the vectorizer introduced
performance regressions. The condition to preserve pointer
address space during the search is too tight, we only need to
match the size.
Differential Revision: https://reviews.llvm.org/D65600
llvm-svn: 367624
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.
Differential Revision: https://reviews.llvm.org/D65197
llvm-svn: 367592
When vectorizer strips pointers it can eventually end up with
pointers of two different sizes, then SCEV will crash.
Differential Revision: https://reviews.llvm.org/D65480
llvm-svn: 367443
This refactors boolean 'OptForSize' that was passed around in a lot of places.
It controlled folding of the tail loop, the scalar epilogue, into the main loop
but code-size reasons may not be the only reason to do this. Thus, this is a
first step to generalise the concept of tail-loop folding, and hence OptForSize
has been renamed and is using an enum ScalarEpilogueStatus that holds the
status how the epilogue should be lowered.
This will be followed up by D65197, that picks up the predicate loop hint and
performs the tail-loop folding.
Differential Revision: https://reviews.llvm.org/D64916
llvm-svn: 366993
This patch introduces the DAG version of SimplifyMultipleUseDemandedBits, which attempts to peek through ops (mainly and/or/xor so far) that don't contribute to the demandedbits/elts of a node - which means we can do this even in cases where we have multiple uses of an op, which normally requires us to demanded all bits/elts. The intention is to remove a similar instruction - SelectionDAG::GetDemandedBits - once SimplifyMultipleUseDemandedBits has matured.
The InstCombine version of SimplifyMultipleUseDemandedBits can constant fold which I haven't added here yet, and so far I've only wired this up to some basic binops (and/or/xor/add/sub/mul) to demonstrate its use.
We do see a couple of regressions that need to be addressed:
AMDGPU unsigned dot product codegen retains an AND mask (for ZERO_EXTEND) that it previously removed (but otherwise the dotproduct codegen is a lot better).
X86/AVX2 has poor handling of vector ANY_EXTEND/ANY_EXTEND_VECTOR_INREG - it prematurely gets converted to ZERO_EXTEND_VECTOR_INREG.
The code owners have confirmed its ok for these cases to fixed up in future patches.
Differential Revision: https://reviews.llvm.org/D63281
llvm-svn: 366799
cast<CallInst> shouldn't return null and we dereference the pointer in a lot of other places, causing both MSVC + cppcheck to warn about dereferenced null pointers
llvm-svn: 366793
As there are some reported miscompiles with AVX512 and performance regressions
in Eigen. Verified with the original committer and testcases will be forthcoming.
This reverts commit r364964.
llvm-svn: 366154
We do not compute the scalarization overhead in getVectorIntrinsicCost
and TTI::getIntrinsicInstrCost requires the full arguments list.
llvm-svn: 366049
Loop invariant operands do not need to be scalarized, as we are using
the values outside the loop. We should ignore them when computing the
scalarization overhead.
Fixes PR41294
Reviewers: hsaito, rengolin, dcaballe, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D59995
llvm-svn: 366030
For a given set of live values, the spill cost will always be the
same for each call. Compute the cost once and multiply it by the
number of calls.
(I'm not sure this spill cost modeling makes sense if there are
multiple calls, as the spill cost will likely be shared across
calls in that case. But that's how it currently works.)
llvm-svn: 365552
Summary: This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Reviewers: RKSimon, ABataev, dtemirbulatov, Ayal, hfinkel, rnk
Reviewed By: RKSimon, dtemirbulatov
Subscribers: hiraditya, phosek, rnk, rcorcs, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364964
Summary: This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Reviewers: RKSimon, ABataev, dtemirbulatov, Ayal, hfinkel, rnk
Reviewed By: RKSimon, dtemirbulatov
Subscribers: rnk, rcorcs, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364478
This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364084
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.
This adds two new functions:
bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;
to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.
This fixes https://llvm.org/PR40759
Differential Revision: https://reviews.llvm.org/D61764
llvm-svn: 363581
Summary:
There is PHINode::getBasicBlockIndex() and PHINode::setIncomingValue()
but no function to replace incoming value for a specified BasicBlock*
predecessor.
Clearly, there are a lot of places that could use that functionality.
Reviewer: craig.topper, lebedev.ri, Meinersbur, kbarton, fhahn
Reviewed By: Meinersbur, fhahn
Subscribers: fhahn, hiraditya, zzheng, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63338
llvm-svn: 363566
Summary:
Avoid that loop vectorizer creates loads/stores of vectors
with "irregular" types when interleaving. An example of
an irregular type is x86_fp80 that is 80 bits, but that
may have an allocation size that is 96 bits. So an array
of x86_fp80 is not bitcast compatible with a vector
of the same type.
Not sure if interleavedAccessCanBeWidened is the best
place for this check, but it solves the problem seen
in the added test case. And it is the same kind of check
that already exists in memoryInstructionCanBeWidened.
Reviewers: fhahn, Ayal, craig.topper
Reviewed By: fhahn
Subscribers: hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63386
llvm-svn: 363547
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
A function for loop vectorization illegality reporting has been
introduced:
void LoopVectorizationLegality::reportVectorizationFailure(
const StringRef DebugMsg, const StringRef OREMsg,
const StringRef ORETag, Instruction * const I) const;
The function prints a debug message when the debug for the compilation
unit is enabled as well as invokes the optimization report emitter to
generate a message with a specified tag. The function doesn't cover any
complicated logic when a custom lambda should be passed to the emitter,
only generating a message with a tag is supported.
The function always prints the instruction `I` after the debug message
whenever the instruction is specified, otherwise the debug message
ends with a dot: 'LV: Not vectorizing: Disabled/already vectorized.'
Patch by Pavel Samolysov <samolisov@gmail.com>
llvm-svn: 362736
This patch fixes a regression caused by the operand reordering refactoring patch https://reviews.llvm.org/D59973 .
The fix changes the strategy to Splat instead of Opcode, if broadcast opportunities are found.
Please see the lit test for some examples.
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D62427
llvm-svn: 362613
Instead of passing around fast-math-flags as a parameter, we can set those
using an IRBuilder guard object. This is no-functional-change-intended.
The motivation is to eventually fix the vectorizers to use and set the
correct fast-math-flags for reductions. Examples of that not behaving as
expected are:
https://bugs.llvm.org/show_bug.cgi?id=23116 (should be able to reduce with less than 'fast')
https://bugs.llvm.org/show_bug.cgi?id=35538 (possible miscompile for -0.0)
D61802 (should be able to reduce with IR-level FMF)
Differential Revision: https://reviews.llvm.org/D62272
llvm-svn: 362612
VPlan.h already contains the declaration of VPlanPtr type alias:
using VPlanPtr = std::unique_ptr<VPlan>;
The LoopVectorizationPlanner class also contains the same declaration
of VPlanPtr and therefore LoopVectorize requires a long wording when
its methods return VPlanPtr:
LoopVectorizationPlanner::VPlanPtr
LoopVectorizationPlanner::buildVPlanWithVPRecipes(...)
but LoopVectorize.cpp includes VPlan.h (via LoopVectorizationPlanner.h)
and can use VPlanPtr from that header.
Patch by Pavel Samolysov.
Reviewers: hsaito, rengolin, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D62576
llvm-svn: 362126
Currently, only the following information is provided by LoopVectorizer
in the case when the CF of the loop is not legal for vectorization:
LV: Can't vectorize the instructions or CFG
LV: Not vectorizing: Cannot prove legality.
But this information is not enough for the root cause analysis; what is
exactly wrong with the loop should also be printed:
LV: Not vectorizing: The exiting block is not the loop latch.
Patch by Pavel Samolysov.
Reviewers: mkuper, hsaito, rengolin, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D62311
llvm-svn: 362056
Summary:
The refactoring in r360276 moved the `RunSLPVectorization` flag and added the default explicitly. The default should have been `false`, as before.
The new pass manager used to have SLPVectorization on by default, now it's off in opt, and needs D61617 checked in to enable it in clang.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61955
llvm-svn: 361537
The input LoopCost value can be zero, but if so it should be recalculated with the current VF. After that it should always be non-zero.
llvm-svn: 361387
This is a follow-up refactoring patch after the introduction of usable TreeEntry pointers in D61706.
The EdgeInfo struct can now use a TreeEntry pointer instead of an index in VectorizableTree.
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D61795
llvm-svn: 361110
This reduces the number of parameters we need to pass in and they seem a
natural fit in LoopVectorizationCostModel. Also simplifies things for
D59995.
As a follow up refactoring, we could only expose a expose a
shouldUseVectorIntrinsic() helper in LoopVectorizationCostModel, instead
of calling getVectorCallCost/getVectorIntrinsicCost in
InnerLoopVectorizer/VPRecipeBuilder.
Reviewers: Ayal, hsaito, dcaballe, rengolin
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D61638
llvm-svn: 360758
This patch fixes the TreeEntry dangling pointer issue caused by reallocations of VectorizableTree.
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D61706
llvm-svn: 360456
Summary:
Preserve MemorySSA in LoopSimplify, in the old pass manager, if the analysis is available.
Do not preserve it in the new pass manager.
Update tests.
Subscribers: nemanjai, jlebar, javed.absar, Prazek, kbarton, zzheng, jsji, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60833
llvm-svn: 360270
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel
Reviewed By: hfinkel
Subscribers: bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 360162
Properly initialize store type to null then ensure we find a real store type in the chain.
Fixes scan-build null dereference warning and makes the code clearer.
llvm-svn: 360031
Summary:
When refactoring vectorization flags, vectorization was disabled by default in the new pass manager.
This patch re-enables is for both managers, and changes the assumptions opt makes, based on the new defaults.
Comments in opt.cpp should clarify the intended use of all flags to enable/disable vectorization.
Reviewers: chandlerc, jgorbe
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61091
llvm-svn: 359167
Summary: The code did not check if operand was undef before casting it to Instruction.
Reviewers: RKSimon, ABataev, dtemirbulatov
Reviewed By: ABataev
Subscribers: uabelho
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61024
llvm-svn: 359136
Summary:
Trying to add the plumbing necessary to add tuning options to the new pass manager.
Testing with the flags for loop vectorize.
Reviewers: chandlerc
Subscribers: sanjoy, mehdi_amini, jlebar, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59723
llvm-svn: 358763
This is a refactoring patch which should have all the functionality of the current code. Its goal is twofold:
i. Cleanup and simplify the reordering code, and
ii. Generalize reordering so that it will work for an arbitrary number of operands, not just 2.
This is the second patch in a series of patches that will enable operand reordering across chains of operations. An example of this was presented in EuroLLVM'18 https://www.youtube.com/watch?v=gIEn34LvyNo .
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D59973
llvm-svn: 358519
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
1. Use computed VF for stress testing.
2. If the computed VF does not produce vector code (VF smaller than 2), force VF to be 4.
3. Test vectorization of i64 data on AArch64 to make sure we generate VF != 4 (on X86 that was already tested on AVX).
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D59952
llvm-svn: 358056
Bug: https://bugs.llvm.org/show_bug.cgi?id=41180
In the bug test case the debug location was missing for the cmp instruction in
the "middle block" BB. This patch fixes the bug by copying the debug location
from the cmp of the scalar loop's terminator branch, if it exists.
The patch also fixes the debug location on the subsequent branch instruction.
It was previously using the location of the of the original loop's pre-header
block terminator. Both of these instructions will now map to the source line of
the conditional branch in the original loop.
A regression test has been added that covers these issues.
Patch by Orlando Cazalet-Hyams!
Differential Revision: https://reviews.llvm.org/D59944
llvm-svn: 357499
For the cases where the icmp/fcmp predicate is commutative, use reorderInputsAccordingToOpcode to collect and commute the operands.
This requires a helper to recognise commutativity in both general Instruction and CmpInstr types - the CmpInst::isCommutative doesn't overload the Instruction::isCommutative method for reasons I'm not clear on (maybe because its based on predicate not opcode?!?).
Differential Revision: https://reviews.llvm.org/D59992
llvm-svn: 357266
We should be able to match elements with the swapped predicate as well - as long as we commute the source operands.
Differential Revision: https://reviews.llvm.org/D59956
llvm-svn: 357243
With this change, the VPlan native path is triggered with the directive:
#pragma clang loop vectorize(enable)
There is no need to specify the vectorize_width(N) clause.
Patch by Francesco Petrogalli <francesco.petrogalli@arm.com>
Differential Revision: https://reviews.llvm.org/D57598
llvm-svn: 357156
As discussed on D59738, this generalizes reorderInputsAccordingToOpcode to handle multiple + non-commutative instructions so we can get rid of reorderAltShuffleOperands and make use of the extra canonicalizations that reorderInputsAccordingToOpcode brings.
Differential Revision: https://reviews.llvm.org/D59784
llvm-svn: 356939
Remove attempts to commute non-Instructions to the LHS - the codegen changes appear to rely on chance more than anything else and also have a tendency to fight existing instcombine canonicalization which moves constants to the RHS of commutable binary ops.
This is prep work towards:
(a) reusing reorderInputsAccordingToOpcode for alt-shuffles and removing the similar reorderAltShuffleOperands
(b) improving reordering to optimized cases with commutable and non-commutable instructions to still find splat/consecutive ops.
Differential Revision: https://reviews.llvm.org/D59738
llvm-svn: 356913
Remove the I.getOperand() calls from inside shouldReorderOperands - reorderInputsAccordingToOpcode should handle the creation of the operand lists and shouldReorderOperands should just check to see whether the i'th element should be commuted.
llvm-svn: 356854