consideration the num-of-elements*width-of-element width.
Disallow casts when such width is not equal between the vector types otherwise
we may end up with an invalid LLVM bitcast.
rdar://15722308.
llvm-svn: 198474
- Remove the additions to ObjCMethodDecl & ObjCIVarDecl that were getting de/serialized and consolidate
all functionality for the checking for this warning in Sema::DiagnoseUnusedBackingIvarInAccessor
- Don't check immediately after the method body is finished, check when the @implementation is finished.
This is so we can see if the ivar was referenced by any other method, even if the method was defined after the accessor.
- Don't silence the warning if any method is called from the accessor silence it if the accessor delegates to another method via self.
rdar://15727325
llvm-svn: 198432
Remove UnaryTypeTraitExpr and switch all remaining type trait related handling
over to TypeTraitExpr.
The UTT/BTT/TT enum prefix and evaluation code is retained pending further
cleanup.
This is part of the ongoing work to unify type traits following the removal of
BinaryTypeTraitExpr in r197273.
llvm-svn: 198271
Fixes <rdar://problem/15584219> and <rdar://problem/12241361>.
This change looks large, but all it does is reuse and consolidate
the delayed diagnostic logic for deprecation warnings with unavailability
warnings. By doing so, it showed various inconsistencies between the
diagnostics, which were close, but not consistent. It also revealed
some missing "note:"'s in the deprecated diagnostics that were showing
up in the unavailable diagnostics, etc.
This change also changes the wording of the core deprecation diagnostics.
Instead of saying "function has been explicitly marked deprecated"
we now saw "'X' has been been explicitly marked deprecated". It
turns out providing a bit more context is useful, and often we
got the actual term wrong or it was not very precise
(e.g., "function" instead of "destructor"). By just saying the name
of the thing that is deprecated/deleted/unavailable we define
this issue away. This diagnostic can likely be further wordsmithed
to be shorter.
llvm-svn: 197627
The problem here is more serious than the fix implies. Adding a field
to a class updates the triviality bits for the class (among other
things). Failing to require a complete type before adding the field
meant that these updates don't happen in the well-formed case where
the capture is an uninstantiated class template specialization,
leading the lambda itself to be treated as having a trivial copy
constructor when it shouldn't. Fixes <rdar://problem/15560464>.
llvm-svn: 197623
cstring, converted to NSString, produce the
matching AST for it. This also required some
refactoring of the previous code. // rdar://14106083
llvm-svn: 197605
of objc_bridge_related attribute; eliminate
unnecessary diagnostics which is issued elsewhere,
fixit now produces a valid AST tree per convention.
This results in some simplification in handling of
this attribute as well. // rdar://15499111
llvm-svn: 197436
With the introduction of explicit address space casts into LLVM, there's
a need to provide a new cast kind the front-end can create for C/OpenCL/CUDA
and code to produce address space casts from those kinds when appropriate.
Patch by Michele Scandale!
llvm-svn: 197036
more than one such initializer in a union, make mem-initializers override
default initializers for other union members, handle anonymous unions with
anonymous struct members better. Fix a couple of semi-related bugs exposed by
the tests for same.
llvm-svn: 196892
attribute in sema and issuing a variety of diagnostics lazily
for misuse of this attribute (and what to do) when converting
from CF types to ObjectiveC types (and vice versa).
// rdar://15499111
llvm-svn: 196629
For an init capture, process the initialization expression
right away. For lambda init-captures such as the following:
const int x = 10;
auto L = [i = x+1](int a) {
return [j = x+2,
&k = x](char b) { };
};
keep in mind that each lambda init-capture has to have:
- its initialization expression executed in the context
of the enclosing/parent decl-context.
- but the variable itself has to be 'injected' into the
decl-context of its lambda's call-operator (which has
not yet been created).
Each init-expression is a full-expression that has to get
Sema-analyzed (for capturing etc.) before its lambda's
call-operator's decl-context, scope & scopeinfo are pushed on their
respective stacks. Thus if any variable is odr-used in the init-capture
it will correctly get captured in the enclosing lambda, if one exists.
The init-variables above are created later once the lambdascope and
call-operators decl-context is pushed onto its respective stack.
Since the lambda init-capture's initializer expression occurs in the
context of the enclosing function or lambda, therefore we can not wait
till a lambda scope has been pushed on before deciding whether the
variable needs to be captured. We also need to process all
lvalue-to-rvalue conversions and discarded-value conversions,
so that we can avoid capturing certain constant variables.
For e.g.,
void test() {
const int x = 10;
auto L = [&z = x](char a) { <-- don't capture by the current lambda
return [y = x](int i) { <-- don't capture by enclosing lambda
return y;
}
};
If x was not const, the second use would require 'L' to capture, and
that would be an error.
Make sure TranformLambdaExpr is also aware of this.
Patch approved by Richard (Thanks!!)
http://llvm-reviews.chandlerc.com/D2092
llvm-svn: 196454
- If a deprecated class refers to another deprecated class, do not warn.
- @implementations of a deprecated class can refer to other deprecated things.
Fixes <rdar://problem/15407366> and <rdar://problem/15466783>.
llvm-svn: 195259
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
Summary:
Similar to __FUNCTION__, MSVC exposes the name of the enclosing mangled
function name via __FUNCDNAME__. This implementation is very naive and
unoptimized, it is expected that __FUNCDNAME__ would be used rarely in
practice.
Reviewers: rnk, rsmith, thakis
CC: cfe-commits, silvas
Differential Revision: http://llvm-reviews.chandlerc.com/D2109
llvm-svn: 194181
-fobjc-subscripting-legacy-runtime which is off
by default and on only when using ObjectiveC
legacy runtime. Use this flag to allow
array and dictionary subscripting and disallow
objectiveC pointer arithmatic in ObjectiveC
legacy runtime. // rdar://15363492
llvm-svn: 193889
Specifically, this warns when a character literal is added (using '+') to a
variable with type 'char *' (or any other pointer to character type). Like
-Wstring-plus-int, there is a fix-it to change "foo + 'a'" to "&foo['a']"
iff the character literal is on the right side of the string.
Patch by Anders Rönnholm!
llvm-svn: 193418
Commit r191484 treated constexpr function templates as normal function
templates with respect to delaying their parsing. However, this is
unnecessarily restrictive because there is no compatibility concern with
constexpr, MSVC doesn't support it.
Instead, simply disable delayed template parsing for constexpr function
templates. This largely reverts the changes made in r191484 but keeps
it's unit test.
This fixes PR17661.
llvm-svn: 193274
If unqualified id lookup fails while parsing a class template with a
dependent base, clang with -fms-compatibility will pretend the user
prefixed the name with 'this->' in order to delay the lookup. However,
if there was a unary ampersand, Sema::ActOnDependentIdExpression() will
create a DependentDeclRefExpr, which is not what we wanted at all. Fix
this by building the CXXDependentScopeMemberExpr directly instead.
In order to be fully MSVC compatible, we would have to defer all
attempts at name lookup to instantiation time. However, until we have
real problems with system headers that can't be parsed, we'll put off
implementing that.
Fixes PR16014.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1892
llvm-svn: 192727
The bool conversion operator on InstantiatingTemplate never added value and
only served to obfuscate the template instantiation routines.
This replaces the conversion and its callers with an explicit isInvalid()
function to make it clear what's going on at a glance.
llvm-svn: 192177
extension. The GCC folks have decided to support this even though the standard
committee have not yet approved this feature.
Patch by Hristo Venev!
llvm-svn: 192128
In chicago, Doug had requested that I go ahead and commit the refactor as a separate change, if all the tests passed.
Lets hope the buildbots stay quiet.
Thanks!
llvm-svn: 192087
Currently, IR generation can't handle file-scope compound literals with
non-constant initializers in C++.
Fixes PR17415 (the first crash in the bug).
(We should probably change (T){1,2,3} to use the same codepath as T{1,2,3} in
C++ eventually, given that the semantics of the latter are actually defined by
the standard.)
llvm-svn: 191719
putting them in the call operator's DeclContext. This better matches the
language wording and avoids some cases where code gets confused by them for
namespace-scope lambdas and the like.
llvm-svn: 191606
Functions declared as constexpr must have their parsing delayed in
-fdelayed-template-parsing mode so as not to upset later template
instantiation.
N.B. My reading of the standard makes it seem like delayed template
parsing is at odds with constexpr. We may want to make refinements in
other places in clang to make constexpr play nicer with this feature.
This fixes PR17334.
llvm-svn: 191484
I noticed the wrong text was being replaced with the correction while
working on expanding the "namespace-aware" typo correction to include
classes.
llvm-svn: 191450
variable from being the function to being the enclosing namespace scope (in
C++) or the TU (in C). This allows us to fix a selection of related issues
where we would build incorrect redeclaration chains for such declarations, and
fail to notice type mismatches.
Such declarations are put into a new IdentifierNamespace, IDNS_LocalExtern,
which is only found when searching scopes, and not found when searching
DeclContexts. Such a declaration is only made visible in its DeclContext if
there are no non-LocalExtern declarations.
llvm-svn: 191064
LLVM supports applying conversion instructions to vectors of the same number of
elements (fptrunc, fptosi, etc.) but there had been no way for a Clang user to
cause such instructions to be generated when using builtin vector types.
C-style casting on vectors is already defined in terms of bitcasts, and so
cannot be used for these conversions as well (without leading to a very
confusing set of semantics). As a result, this adds a __builtin_convertvector
intrinsic (patterned after the OpenCL __builtin_astype intrinsic). This is
intended to aid the creation of vector intrinsic headers that create generic IR
instead of target-dependent intrinsics (in other words, this is a generic
_mm_cvtepi32_ps). As noted in the documentation, the action of
__builtin_convertvector is defined in terms of the action of a C-style cast on
each vector element.
llvm-svn: 190915
Summary:
- lambdas, blocks or captured statements in templates were not
handled which causes codegen crashes.
Differential Revision: http://llvm-reviews.chandlerc.com/D1628
llvm-svn: 190784
This expands very slightly what -Wtautological-compare considers to be
tautological to include implicit accesses to C++ fields and ObjC ivars.
I don't want to turn this into a full expression-identity check, but
these additions seem pretty well-contained, and maintain the theme
of checking for "x == x".
<rdar://problem/14431127>
llvm-svn: 190118
When an AST file is built based on another AST file, it can use a decl from
the fist file, and therefore mark the "isUsed" bit. We need to note this in
the AST file so that the bit is set correctly when the second AST file is
loaded.
This patch introduces the distinction between setIsUsed() and markUsed() so
that we don't call into the ASTMutationListener callback when it wouldn't
be appropriate.
Fixes PR16635.
llvm-svn: 190016
- __func__ or __FUNCTION__ returns captured statement's parent
function name, not the one compiler generated.
Differential Revision: http://llvm-reviews.chandlerc.com/D1491
Reviewed by bkramer
llvm-svn: 189219
Basically, isInMainFile considers line markers, and isWrittenInMainFile
doesn't. Distinguishing between the two is useful when dealing with
files which are preprocessed files or rewritten with -frewrite-includes
(so we don't, for example, print useless warnings).
llvm-svn: 188968
1. We now print the return type of lambdas and return type deduced functions
as "auto". Trailing return types with decltype print the underlying type.
2. Use the lambda or block scope for the PredefinedExpr type instead of the
parent function. This fixes PR16946, a strange mismatch between type of the
expression and the actual result.
3. Verify the type in CodeGen.
4. The type for blocks is still wrong. They are numbered and the name is not
known until CodeGen.
llvm-svn: 188900
function: it can't be 'void' and it can't be an initializer list. We give a
hard error for these rather than treating them as undefined behavior (we can
and probably should do the same for non-POD types in C++11, but as of this
change we don't).
Slightly rework the checking of variadic arguments in a function with a format
attribute to ensure that certain kinds of format string problem (non-literal
string, too many/too few arguments, ...) don't suppress this error.
llvm-svn: 187735
Sema::PerformObjectMemberConversion assumed that the Qualifier it was
given holds a type. However, the specifier could hold just a namespace.
In this case, we should ignore the qualifier and not attempt to cast to
it.
llvm-svn: 187715
passing a retainable object arg to a CF audited function
expecting a CF object type. Issue a normal type mismatch
diagnostic. This is wip // rdar://14569171
llvm-svn: 187532
It turns out that Plum Hall depends on us not emitting an error on
integer literals which fit into long long, but fit into
unsigned long long. So C99 conformance requires not conforming to C99. :)
llvm-svn: 187172
Switch some warnings over to errors which should never have been warnings
in the first place. (Also, a minor fix to the preprocessor rules for
integer literals while I'm here.)
llvm-svn: 186903
getLocForEndOfToken() isn't guaranteed to succeed; if it doesn't, make sure
we do something sane.
Fixes PR16673. I'm not sure how to write a testcase for this short of grepping
through the diagnostic output.
llvm-svn: 186889
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
Combined with typo correction's new ability to apply global/absolute nested
name specifiers to possible corrections, cases such as in PR12287 where the
desired function is being shadowed by a lexically closer function with the
same name but a different number of parameters will now include a FixIt.
On a side note, since the test for this change caused
test/SemaCXX/typo-correction.cpp to exceed the typo correction limit for
a single file, I've included a test case for exceeding the limit and added
some comments to both the original and part two of typo-correction.cpp
warning future editors of the files about the limit.
llvm-svn: 185881
Use UsualArithmeticConversions unconditionally in analysis of
comparisons and conditional operators: the method performs
the usual arithmetic conversions if both sides are arithmetic, and
usual unary conversions if they are not. This is just a cleanup
for conditional operators; for comparisons, it fixes the issue that
we would try to check isArithmetic() on an atomic type.
Also, fix GetExprRange() in SemaChecking.cpp so it deals with variables
of atomic type correctly.
Fixes PR15537.
llvm-svn: 185857
The removal is tried by retrying the failed lookup of a correction
candidate with either the MemberContext or SS (CXXScopeSpecifier) or
both set to NULL if they weren't already. If the candidate identifier
is then looked up successfully, make a note in the candidate that the
SourceRange should include any existing nested name specifier even if
the candidate isn't adding a different one (i.e. the candidate has a
NULL NestedNameSpecifier).
Also tweak the diagnostic messages to differentiate between a suggestion
that just replaces the identifer but leaves the existing nested name
specifier intact and one that replaces the entire qualified identifier,
in cases where the suggested replacement is unqualified.
llvm-svn: 185487
Blocks, like lambdas, can be written in contexts which are required to be
treated as the same under ODR. Unlike lambdas, it isn't possible to actually
take the address of a block, so the mangling of the block itself doesn't
matter. However, objects like static variables inside a block do need to
be mangled in a consistent way.
There are basically three components here. One, block literals need a
consistent numbering. Two, objects/types inside a block literal need
to be mangled using it. Three, objects/types inside a block literal need
to have their linkage computed correctly.
llvm-svn: 185372
passing arguments in the fixed style.
We have an abstraction for deciding this, but it's (1) deep in
IR-generation, (2) necessarily tied to exact argument lists, and
(3) triggered by unprototyped function types, which we can't
legitimately make in C++ mode. So this solution, wherein Sema
rewrites the function type to an exact prototype but leaves the
variadic bit enabled so as to request x86-64-like platforms to
pass the extra variadic info, is very much a hack, but it's one
that works in practice on the platforms that LLDB will support
in the medium term --- the only place we know of where it's a
problem is instance methods in Windows, where variadic functions
are implicitly cdecl. We may have a more abstracted base on which
to build a solution by then.
rdar://13731520
llvm-svn: 185112