This patch updates DSE + MemorySSA to use the same check as the legacy
implementation to determine if a location is killed by a free call.
This changes the existing behavior so that a free does not kill
locations before the start of the freed pointer.
This should fix PR48036.
Currently isOverwrite returns OW_MaybePartial even for accesss known not to overlap. This is not a big problem for legacy implementation (since isPartialOverwrite follows isOverwrite and clarifies the result). Contrary SSA based version does a lot of work to later find out that accesses don't overlap. Besides negative impact on compile time we quickly reach MemorySSAPartialStoreLimit and miss optimization opportunities.
Note: In fact, I think it would be cleaner implementation if isOverwrite returned fully clarified result in the first place whithout need to call isPartialOverwrite. This can be done as a follow up. What do you think?
Reviewed By: fhahn, asbirlea
Differential Revision: https://reviews.llvm.org/D90371
Currently we fail to eliminate some noop stores if there is a kill-able
store between the starting def and the load. This is because we
eliminate noop stores first.
In practice it seems like eliminating noop stores after the main
elimination for a def covers slightly more cases.
This patch improves the number of stores slightly in 2 cases for X86 -O3
-flto
Same hash: 235 (filtered out)
Remaining: 2
Metric: dse.NumRedundantStores
Program base patch diff
test-suite...ce/Benchmarks/PAQ8p/paq8p.test 2.00 3.00 50.0%
test-suite...006/453.povray/453.povray.test 18.00 21.00 16.7%
There might be other phase ordering issues, but it appears that they do
not show up in the test-suite/SPEC2000/SPEC2006. We can always tune the
ordering later.
Partly fixes PR47887.
Reviewed By: asbirlea, zoecarver
Differential Revision: https://reviews.llvm.org/D89650
Instead of getting the defining access we should be able to use
getClobberingMemoryAccess to skip non-aliasing MemoryDefs. No additional
checks should be needed, because we only remove the starting def if it
matches the defining access of the load. All we need to worry about is
that there are no (may)alias stores between the starting def and the
load and getClobberingMemoryAccess should guarantee that.
Partly fixes PR47887.
This improves the number of redundant stores removed in some cases
(numbers below for MultiSource, SPEC2000, SPEC2006 on X86 with -flto
-O3).
Same hash: 226 (filtered out)
Remaining: 11
Metric: dse.NumRedundantStores
Program base patch1 diff
test-suite...:: External/Povray/povray.test 1.00 5.00 400.0%
test-suite...chmarks/MallocBench/gs/gs.test 1.00 3.00 200.0%
test-suite...0/253.perlbmk/253.perlbmk.test 21.00 37.00 76.2%
test-suite...0.perlbench/400.perlbench.test 24.00 37.00 54.2%
test-suite.../Applications/SPASS/SPASS.test 3.00 4.00 33.3%
test-suite...006/453.povray/453.povray.test 15.00 18.00 20.0%
test-suite...T2006/445.gobmk/445.gobmk.test 27.00 29.00 7.4%
test-suite.../CINT2006/403.gcc/403.gcc.test 136.00 137.00 0.7%
test-suite.../CINT2000/176.gcc/176.gcc.test 6.00 6.00 0.0%
test-suite.../Benchmarks/Bullet/bullet.test NaN 3.00 nan%
test-suite.../Benchmarks/Ptrdist/bc/bc.test NaN 1.00 nan%
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89647
isMemTerminator checks if the current def is a memory terminator that
terminates the memory pointed to by DefLoc. We do not have to add any of
their users to the worklist, because the follow-on users cannot read the
memory in question.
This leads to more stores eliminated in the presence of lifetime calls.
Previously we added the users of those intrinsics to the worklist,
limiting elimination.
In terms of removed stores, this gives a nice boost on some benchmarks
(MultiSource/SPEC2000/SPEC2006 on X86 with -flto -O3):
Same hash: 205 (filtered out)
Remaining: 32
Metric: dse.NumFastStores
Program base patch diff
test-suite...000/197.parser/197.parser.test 4.00 8.00 100.0%
test-suite...rolangs-C++/family/family.test 4.00 7.00 75.0%
test-suite...marks/7zip/7zip-benchmark.test 1722.00 2189.00 27.1%
test-suite...CFP2000/177.mesa/177.mesa.test 30.00 38.00 26.7%
test-suite :: External/Nurbs/nurbs.test 44.00 49.00 11.4%
test-suite...lications/sqlite3/sqlite3.test 115.00 128.00 11.3%
test-suite...006/447.dealII/447.dealII.test 2715.00 3013.00 11.0%
test-suite...ProxyApps-C++/CLAMR/CLAMR.test 237.00 261.00 10.1%
test-suite...tions/lambda-0.1.3/lambda.test 40.00 44.00 10.0%
test-suite...3.xalancbmk/483.xalancbmk.test 1366.00 1475.00 8.0%
test-suite...abench/jpeg/jpeg-6a/cjpeg.test 13.00 14.00 7.7%
test-suite...oxyApps-C++/miniFE/miniFE.test 43.00 46.00 7.0%
test-suite...lications/ClamAV/clamscan.test 230.00 246.00 7.0%
test-suite...006/450.soplex/450.soplex.test 284.00 299.00 5.3%
test-suite...nsumer-jpeg/consumer-jpeg.test 21.00 22.00 4.8%
isNoopIntrinsic returns true for some intrinsics that are modeled in
MemorySSA but do not actually read or write any memory and do not block
DSE. Such intrinsics should not be considered as read-clobbers.
After investigation by @asbirlea, the issue that caused the
revert appears to be an issue in the original source, rather
than a problem with the compiler.
This patch enables MemorySSA DSE again.
This reverts commit 915310bf14.
Summary:
Adds support for "following" memory through MSSA PHI arguments. This will help catch more noop stores that exist between blocks.
Originally part of D79391.
Reviewers: fhahn, jfb, asbirlea
Differential Revision: https://reviews.llvm.org/D82588
There appears to be a mis-compile with MemorySSA-backed DSE in
combination with llvm.lifetime.end. It currently appears like
DSE is doing the right thing and the llvm.lifetime.end markers
are incorrect. The reverted patch uncovers the mis-compile.
This patch temporarily switches back to the legacy DSE
implementation, while we investigate.
This reverts commit 9d172c8e9c.
When looking for memory defs killed by memory terminators the code
currently incorrectly ignores the size argument of llvm.lifetime.end.
This patch updates the code to use isMemTerminator and updates
isMemTerminator to use isOverwrite() to make sure locations that are
outside the range marked as dead by llvm.lifetime.end are not
considered. Note that isOverwrite is only used for llvm.lifetime.end,
because free-like functions make the whole underlying object dead.
This switches to using DSE + MemorySSA by default again, after
fixing the issues reported after the first commit.
Notable fixes fc82006331, a0017c2bc2.
This reverts commit 3a59628f3c.
AliasAnalysis/MemoryLocation does not account for loops. Two
MemoryLocation can be must-overwrite, even if the first one writes
multiple locations in a loop.
This patch prevents removing such stores, by only considering candidates
that are known to be loop invariant, or executed in the same BB.
Currently the invariant check is quite conservative and only considers
Alloca and Alloca-like instructions and arguments as invariant base pointers.
It also considers GEPs with all constant indices and invariant bases as
invariant.
This can be improved in the future, but the current implementation has
only minor impact on the total number of stores eliminated (25903 vs
26047 for the baseline). There are some 2-10% swings for some individual
benchmarks. In roughly half of the cases, the number of stores removed
increases actually, because we skip candidates that are unlikely to be
valid candidates early.
When deleting stores at the end of a function, we have to do PHI
translation, otherwise we might miss reads in different iterations of a
loop. See multiblock-loop-carried-dependence.ll for details.
This fixes a mis-compile and surprisingly also increases the number of
eliminated stores from 26047 to 26572 for MultiSource/SPEC2000/SPEC2006
on X86 with -O3 -flto. This is most likely because we save budget by not
exploring through MemoryPhis, which are less likely to result in valid
candidates for elimination.
The issue was reported post-commit for fb109c42d9.
The tests have been updated and I plan to move them from the MSSA
directory up.
Some end-to-end tests needed small adjustments. One difference to the
legacy DSE is that legacy DSE also deletes trivially dead instructions
that are unrelated to memory operations. Because MemorySSA-backed DSE
just walks the MemorySSA, we only visit/check memory instructions. But
removing unrelated dead instructions is not really DSE's job and other
passes will clean up.
One noteworthy change is in llvm/test/Transforms/Coroutines/ArgAddr.ll,
but I think this comes down to legacy DSE not handling instructions that
may throw correctly in that case. To cover this with MemorySSA-backed
DSE, we need an update to llvm.coro.begin to treat it's return value to
belong to the same underlying object as the passed pointer.
There are some minor cases MemorySSA-backed DSE currently misses, e.g. related
to atomic operations, but I think those can be implemented after the switch.
This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-August/144417.html
For the MultiSource/SPEC2000/SPEC2006 the number of eliminated stores
goes from ~17500 (legayc DSE) to ~26300 (MemorySSA-backed). More numbers
and details in the thread on llvm-dev.
Impact on CTMark:
```
Legacy Pass Manager
exec instrs size-text
O3 + 0.60% - 0.27%
ReleaseThinLTO + 1.00% - 0.42%
ReleaseLTO-g. + 0.77% - 0.33%
RelThinLTO (link only) + 0.87% - 0.42%
RelLO-g (link only) + 0.78% - 0.33%
```
http://llvm-compile-time-tracker.com/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
```
New Pass Manager
exec instrs. size-text
O3 + 0.95% - 0.25%
ReleaseThinLTO + 1.34% - 0.41%
ReleaseLTO-g. + 1.71% - 0.35%
RelThinLTO (link only) + 0.96% - 0.41%
RelLO-g (link only) + 2.21% - 0.35%
```
http://195.201.131.214:8000/compare.php?from=3f22e96d95c71ded906c67067d75278efb0a2525&to=ae8be4642533ff03803967ee9d7017c0d73b0ee0&stat=instructions
Reviewed By: asbirlea, xbolva00, nikic
Differential Revision: https://reviews.llvm.org/D87163
MemoryLocation has been taught about memcpy.inline, which means we can
get the memory locations read and written by it. This means DSE can
handle memcpy.inline
Atomic stores are modeled as MemoryDef to model the fact that they may
not be reordered, depending on the ordering constraints.
Atomic stores that are monotonic or weaker do not limit re-ordering, so
we do not have to treat them as potential read clobbers.
Note that llvm/test/Transforms/DeadStoreElimination/MSSA/atomic.ll
already contains a set of negative test cases.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87386
This changes getDomMemoryDef to check if a Current is a valid
candidate for elimination before checking for reads. Before the change,
we were spending a lot of compile-time in checking for read accesses for
Current that might not even be removable.
This patch flips the logic, so we skip Current if they cannot be
removed before checking all their uses. This is much more efficient in
practice.
It also adds a more aggressive limit for checking partially overlapping
stores. The main problem with overlapping stores is that we do not know
if they will lead to elimination until seeing all of them. This patch
limits adds a new limit for overlapping store candidates, which keeps
the number of modified overlapping stores roughly the same.
This is another substantial compile-time improvement (while also
increasing the number of stores eliminated). Geomean -O3 -0.67%,
ReleaseThinLTO -0.97%.
http://llvm-compile-time-tracker.com/compare.php?from=0a929b6978a068af8ddb02d0d4714a2843dd8ba9&to=2e630629b43f64b60b282e90f0d96082fde2dacc&stat=instructions
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86487
For DSE with MemorySSA it is beneficial to manually traverse the
defining access, instead of using a MemorySSA walker, so we can
better control the number of steps together with other limits and
also weed out invalid/unprofitable paths early on.
This patch requires a follow-up patch to be most effective, which I will
share soon after putting this patch up.
This temporarily XFAIL's the limit tests, because we now explore more
MemoryDefs that may not alias/clobber the killing def. This will be
improved/fixed by the follow-up patch.
This patch also renames some `Dom*` variables to `Earlier*`, because the
dominance relation is not really used/important here and potentially
confusing.
This patch allows us to aggressively cut down compile time, geomean
-O3 -0.64%, ReleaseThinLTO -1.65%, at the expense of fewer stores
removed. Subsequent patches will increase the number of removed stores
again, while keeping compile-time in check.
http://llvm-compile-time-tracker.com/compare.php?from=d8e3294118a8c5f3f97688a704d5a05b67646012&to=0a929b6978a068af8ddb02d0d4714a2843dd8ba9&stat=instructions
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86486
Currently we repeatedly check the same uses for read clobbers in some
cases. We can avoid unnecessary checks by keeping track of the memory
accesses we already found read clobbers for. To do so, we just add
memory access causing read-clobbers to a set. Note that marking all
visited accesses as read-clobbers would be to pessimistic, as that might
include accesses not on any path to the actual read clobber.
If we do not find any read-clobbers, we can add all visited instructions
to another set and use that to skip the same accesses in the next call.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D75025
Using callCapturesBefore potentially improves the precision and the
number of stores we can remove. But in practice, it seems to have very
little impact in terms of stores removed. For example, for
SPEC2000/SPEC2006/MultiSource with -O3 -flto, ~50 more stores are
removed (out of ~26900 stores removed). But in terms of compile-time, it
is very expensive and the patch gives substantial compile-time
improvements: Geomean O3 -0.24%, ReleaseThinLTO -0.47%, ReleaseLTO-g
-0.39%.
http://llvm-compile-time-tracker.com/compare.php?from=612a0bff88ed906c83b82f079d4c49e5fecfb9d0&to=e6c86b96d20d97dd88e903a409bd8d39b6114312&stat=instructions
Avoid computing InvisibleToCallerBefore/AfterRet up front. In most
cases, this information is not really needed. Instead, introduce helper
functions to compute and cache the result on demand.
Notably, this also does not use PointerMayBeCapturedBefore for
isInvisibleToCallerBeforeRet, as it requires the killing MemoryDef as
starting instruction, making the caching ineffective. But it appears the
use of PointerMayBeCapturedBefore has very limited benefits in practice
(e.g. on SPEC2000/SPEC2006/MultiSource there are no binary changes with
-O3 -flto). Refrain from using it for now, to limit-compile-time.
This gives some nice compile-time improvements:
http://llvm-compile-time-tracker.com/compare.php?from=db9345f6810f379a36752dc52caf5230585d0ebd&to=b4d091047e1b8a3d377d200137b79d03aca65663&stat=instructions
Limit elimination of stores at the end of a function to MemoryDefs with
a single underlying object, to save compile time.
In practice, the case with multiple underlying objects seems not very
important in practice. For -O3 -flto on MultiSource/SPEC2000/SPEC2006
this results in a total of 2 more stores being eliminated.
We can always re-visit that in the future.
isWriteAtEndOfFunction needs to check all memory uses of Def, which is
much more expensive than getting the underlying objects in practice.
Switch the call order, as recommended by the TODO, which was added as
per an earlier review.
This shaves off a bit of compile-time.
Currently the code does not account for the fact that getDomMemoryDef
can be called with ScanLimit == 0, if we reached the limit while
processing an earlier access. Also tighten the check a bit more and bump
the scan limit now that it is handled properly.
In some cases, this brings a 2x speedup in terms of compile-time.
We are re-using tryToMergePartialOverlappingStores, which requires
earlier to domiante Later. In the long run,
tryToMergeParialOverlappingStores should be re-written using MemorySSA.
Fixes PR46513.
When the byref attribute is added, there will need to be two similar
functions for the existing cases which have an associate value copy,
and byref which does not. Most, but not all of the existing uses will
use the existing version.
The associated size function added by D82679 also needs to
contextually differ, and will help eliminate a few places still
relying on pointee element types.
This fixes an instance where MemorySSA-using Dead Store Elimination is failing
to do a transformation that the non-MemorySSA-using version does.
Differential Revision: https://reviews.llvm.org/D83783
This patch adds support for eliminating stores by free & lifetime.end
calls. We can remove stores that are not read before calling a memory
terminator and we can eliminate all stores after a memory terminator
until we see a new lifetime.start. The second case seems to not really
trigger much in practice though.
Reviewers: dmgreen, rnk, efriedma, bryant, asbirlea, Tyker
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D72410