Commit Graph

1166 Commits

Author SHA1 Message Date
Sander de Smalen f571fe6df5 Reland [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This relands https://reviews.llvm.org/D91059 and reverts commit
30fded75b4.

GetRegUsage now returns 0 when Ty is not a valid vector element type.
2020-11-17 13:45:10 +00:00
Philip Reames 2240d3d054 [LoopVec] Introduce an api for detecting uniform memory ops
Split off D91398 at request of reviewer.
2020-11-16 13:30:48 -08:00
Florian Hahn 0c119ba8a8 [VPlan] Use VPValue def for VPWidenGEPRecipe.
This patch turns VPWidenGEPRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84683
2020-11-15 15:12:47 +00:00
Florian Hahn a70b511e78 Recommit "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts the revert commit c8d73d939f.

It includes a fix for cases where we missed inserting VPValues
for some selects, which should fix PR48142.
2020-11-14 20:00:25 +00:00
Sander de Smalen 30fded75b4 Revert "[LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost."
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
  b873aba394.
* [LoopVectorizer] Silence warning in GetRegUsage.
  9ff701100a.
2020-11-11 14:41:55 +00:00
Sander de Smalen 9ff701100a [LoopVectorizer] Silence warning in GetRegUsage.
This patch silences the warning:
	error: lambda capture 'DL' is not used [-Werror,-Wunused-lambda-capture]
	  auto GetRegUsage = [&DL, &TTI=TTI](Type *Ty, ElementCount VF) {
	                      ~^~~
	1 error generated.

Introduced in:
  https://reviews.llvm.org/rGb873aba3943c067a5efd5303cbdf5aeb0732cf88
2020-11-11 10:54:20 +00:00
Sander de Smalen b873aba394 [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.

This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91059
2020-11-11 10:18:50 +00:00
Sander de Smalen 0141f5a49d [LoopVectorizer] NFC: Return ElementCount from compute[Feasible]MaxVF
Interfaces changed to return `ElementCount`:
* LoopVectorizationCostModel::computeMaxVF
* LoopVectorizationCostModel::computeFeasibleMaxVF

This is NFC for fixed-width vectors.

Reviewed By: dmgreen, ctetreau

Differential Revision: https://reviews.llvm.org/D90880
2020-11-11 09:55:06 +00:00
Florian Hahn c8d73d939f Revert "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts commit a8e50f1c6e.

This reportedly breaks building the Linux kernel.
  https://bugs.llvm.org/show_bug.cgi?id=48142
2020-11-10 22:50:46 +00:00
Florian Hahn a8e50f1c6e
[VPlan] Use VPValue def for VPWidenSelectRecipe.
This patch turns VPWidenSelectRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84682
2020-11-10 19:39:37 +00:00
Sander de Smalen f47573f9bf [LoopVectorizer] NFC: Propagate ElementCount to more interfaces.
Interfaces changed to take `ElementCount` as parameters:
* LoopVectorizationPlanner::buildVPlans
* LoopVectorizationPlanner::buildVPlansWithVPRecipes
* LoopVectorizationCostModel::selectVectorizationFactor

This patch is NFC for fixed-width vectors.

Reviewed By: dmgreen, ctetreau

Differential Revision: https://reviews.llvm.org/D90879
2020-11-10 11:11:02 +00:00
Florian Hahn fec64de261
[VPlan] Use VPValue def for VPWidenCall.
This patch turns VPWidenCall into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84681
2020-11-09 13:29:41 +00:00
Sander de Smalen 4a3bb9ea6c [VPlan] NFC: Change VFRange to take ElementCount
This patch changes the type of Start, End in VFRange to be an ElementCount
instead of `unsigned`. This is done as preparation to make VPlans for
scalable vectors, but is otherwise NFC.

Reviewed By: dmgreen, fhahn, vkmr

Differential Revision: https://reviews.llvm.org/D90715
2020-11-06 09:50:20 +00:00
Florian Hahn b3b993a7ad Reland "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts the revert commit 408c4408fa.

This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.

Original message:

On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
2020-11-02 15:39:29 +00:00
Florian Hahn 408c4408fa Revert "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts commit 73f01e3df5.

This appears to break
http://lab.llvm.org:8011/#/builders/85/builds/383.
2020-10-30 21:26:14 +00:00
Florian Hahn 73f01e3df5 [TTI] Add VecPred argument to getCmpSelInstrCost.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.

Reviewed By: dmgreen, RKSimon

Differential Revision: https://reviews.llvm.org/D90070
2020-10-30 13:49:08 +00:00
Florian Hahn 89c0124273 [LoopVersion] Unify SCEVChecks and alias check handling (NFC).
This is an initial cleanup of the way LoopVersioning interacts with LAA.

Currently LoopVersioning has 2 ways of initializing things:

1. Passing LAI and passing UseLAIChecks = true
2. Passing UseLAIChecks = false, followed by calling setSCEVChecks and
   setAliasChecks.

Both ways of initializing lead to the same result and the duplication
seems more complicated than necessary.

This patch removes the UseLAIChecks flag from the constructor and the
setSCEVChecks & setAliasChecks helpers and move initialization
exclusively to the constructor.

This simplifies things, by providing a single way to initialize
LoopVersioning and reducing duplication.

Reviewed By: Meinersbur, lebedev.ri

Differential Revision: https://reviews.llvm.org/D84406
2020-10-15 22:02:17 +01:00
David Green 13ec3dd66f [LV] Add a getRecurrenceBinOp and make use of it. NFC 2020-10-15 18:21:41 +01:00
Florian Hahn 93f6c6b79c Recommit "[VPlan] Use VPValue def for VPMemoryInstructionRecipe."
This reverts the revert commit 710aceb645
and includes a fix for a memsan failure.

Original message:

    This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
    during VPlan construction and codegeneration instead of the plain IR
    reference where possible.
2020-10-14 17:41:23 +01:00
Evgeniy Brevnov d0c95808e5 [LV] Unroll factor is expected to be > 0
LV fails with assertion checking that UF > 0. We already set UF to 1 if it is 0 except the case when IC > MaxInterleaveCount. The fix is to set UF to 1 for that case as well.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D87679
2020-10-14 16:48:17 +07:00
Vitaly Buka 710aceb645 Revert "[VPlan] Use VPValue def for VPMemoryInstructionRecipe."
It introduced a memory leak.

This reverts commit 525b085a65.
2020-10-13 03:14:08 -07:00
Florian Hahn 525b085a65 [VPlan] Use VPValue def for VPMemoryInstructionRecipe.
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84680
2020-10-12 18:02:33 +01:00
David Sherwood c5ba0d33cc [SVE] Make ElementCount and TypeSize use a new PolySize class
I have introduced a new template PolySize class, where the template
parameter determines the type of quantity, i.e. for an element
count this is just an unsigned value. The ElementCount class is
now just a simple derivation of PolySize<unsigned>, whereas TypeSize
is more complicated because it still needs to contain the uint64_t
cast operator, since there are still many places in the code that
rely upon this implicit cast. As such the class also still needs
some of it's own operators.

I've tried to minimise the amount of code in the base PolySize
class, which led to a couple of changes:

1. In some places we were relying on '==' operator comparisons
between ElementCounts and the scalar value 1. I didn't put this
operator in the new PolySize class, and thought it was actually
clearer to use the isScalar() function instead.
2. I removed the isByteSized function and replaced it with calls
to isKnownMultipleOf(8).

I've also renamed NextPowerOf2 to be coefficientNextPowerOf2 so
that it's more consistent with coefficientDivideBy.

Differential Revision: https://reviews.llvm.org/D88409
2020-10-12 08:23:38 +01:00
David Green be6e8e50f4 [LV] Tail folded inloop reductions.
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:

  x = select(mask, vecop, zero)
  v = vecreduce.add(x)
  c = add chain, v

Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.

Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.

Differential Revision: https://reviews.llvm.org/D84451
2020-10-11 16:58:34 +01:00
David Green 498f89d188 [LV] Collect dead induction truncates
We currently collect the ICmp and Add from an induction variable,
marking them as dead so that vplan values are not created for them. This
extends that to include any single use trunk from the ICmp, which allows
the Add to more readily be removed too.

This can help with costing vplan nodes, as the ICmp and Add are more
reliably removed and are not double-counted.

Differential Revision: https://reviews.llvm.org/D88873
2020-10-08 08:28:58 +01:00
Florian Hahn 0867a9e85a [VPlan] Use isa<> instead of directly checking VPRecipeID (NFC).
getVPRecipeID is intended to be only used in `classof` helpers. Instead
of checking it directly, use isa<> with the correct recipe type.
2020-10-02 17:47:35 +01:00
Florian Hahn d856365470 [VPlan] Change recipes to inherit from VPUser instead of a member var.
Now that VPUser is not inheriting from VPValue, we can take the next
step and turn the recipes that already manage their operands via VPUser
into VPUsers directly. This is another small step towards traversing
def-use chains in VPlan.

This is NFC with respect to the generated code, but makes the interface
more powerful.
2020-09-30 14:39:00 +01:00
Simon Pilgrim 474dc33d07 Add missing namespace closure comment. NFCI.
Fixes clang-tidy llvm-namespace-comment warning.
2020-09-23 16:19:25 +01:00
Stefanos Baziotis 89c1e35f3c [LoopInfo] empty() -> isInnermost(), add isOutermost()
Differential Revision: https://reviews.llvm.org/D82895
2020-09-22 23:28:51 +03:00
Sanjay Patel be93505986 [LoopVectorize] use unary shuffle creator to reduce code duplication; NFC 2020-09-21 15:34:24 -04:00
Wenlei He 2ea4c2c598 [BFI] Make BFI information available through loop passes inside LoopStandardAnalysisResults
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~

~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~

~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~

~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~

See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .

This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.

Testing
Ninja check

Reviewed By: asbirlea, nikic

Differential Revision: https://reviews.llvm.org/D86156
2020-09-15 16:16:24 -07:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
Aaron Liu d7e16ca28f [LV] Interleave to expose ILP for small loops with scalar reductions.
Interleave for small loops that have reductions inside,
which breaks dependencies and expose.

This gives very significant performance improvements for some benchmarks.
Because small loops could be in very hot functions in real applications.

Differential Revision: https://reviews.llvm.org/D81416
2020-09-01 19:47:32 +00:00
Florian Hahn eb35ebb3a2 [LV] Update CFG before adding runtime checks.
addRuntimeChecks uses SCEVExpander, which relies on the DT/LoopInfo to
be up-to-date. Changing the CFG afterwards may invalidate some inserted
instructions, especially LCSSA phis.

Reorder the code to first update the CFG and then create the runtime
checks. This should not have any impact on the generated code, as we
adjust the CFG and generate runtime checks together.

Fixes PR47343.
2020-08-30 18:21:44 +01:00
David Green 543c5425f1 [LV] Add some const to RecurrenceDescriptor. NFC 2020-08-30 12:27:51 +01:00
Florian Hahn 5067f4b626 [LV] Check opt-for-size before expanding runtime checks.
Move bail out when optimizing for size before runtime check generation.
In that case, we do not use the result of the expansion, the expanded
instruction will be dead and cleaned up later.

By doing the check before expanding the runtime-checks, we can save a
bit of unnecessary work.
2020-08-29 20:35:14 +01:00
David Sherwood f4257c5832 [SVE] Make ElementCount members private
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().

Differential Revision: https://reviews.llvm.org/D86065
2020-08-28 14:43:53 +01:00
Christopher Tetreault 5e63083435 [SVE] Remove calls to VectorType::getNumElements from Transforms/Vectorize
Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D82056
2020-08-27 12:02:20 -07:00
Sjoerd Meijer bda8fbe2d2 [LV] Fallback strategies if tail-folding fails
This implements 2 different vectorisation fallback strategies if tail-folding
fails: 1) don't vectorise at all, or 2) vectorise using a scalar epilogue. This
can be controlled with option -prefer-predicate-over-epilogue, that has been
changed to take a numeric value corresponding to the tail-folding preference
and preferred fallback.

Patch by: Pierre van Houtryve, Sjoerd Meijer.

Differential Revision: https://reviews.llvm.org/D79783
2020-08-26 16:55:25 +01:00
Sjoerd Meijer ae366479e8 [LV] get.active.lane.mask consuming tripcount instead of backedge-taken count
This adapts LV to the new semantics of get.active.lane.mask as discussed in
D86147, which means that the LV now emits intrinsic get.active.lane.mask with
the loop tripcount instead of the backedge-taken count as its second argument.
The motivation for this is described in D86147.

Differential Revision: https://reviews.llvm.org/D86304
2020-08-25 13:49:19 +01:00
Francesco Petrogalli 5a34b3ab95 [llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]
Changes:

* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Replaced the uses of `llvm::SmallSet<ElementCount, ...>` with
   `llvm::SmallSetVector<ElementCount, ...>`. This avoids the need of an
   ordering function for the `ElementCount` class.
* Bits and pieces around printing the `ElementCount` to string streams.

To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:

1. When it doesn't make sense to deal with the scalable property, for
example:
   a. When computing unrolling factors.
   b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.

Note that in some places the idiom

```
unsigned VF = ...
auto VTy = FixedVectorType::get(ScalarTy, VF)
```

has been replaced with

```
ElementCount VF = ...
assert(!VF.Scalable && ...);
auto VTy = VectorType::get(ScalarTy, VF)
```

The assertion guarantees that the new code is (at least in debug mode)
functionally equivalent to the old version. Notice that this change had been
possible because none of the methods that are specific to `FixedVectorType`
were used after the instantiation of `VTy`.

Reviewed By: rengolin, ctetreau

Differential Revision: https://reviews.llvm.org/D85794
2020-08-24 13:54:03 +00:00
Francesco Petrogalli bad7d6b373 Revert "[llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]"
Reverting because the commit message doesn't reflect the one agreed on
phabricator at https://reviews.llvm.org/D85794.

This reverts commit c8d2b065b9.
2020-08-24 13:50:55 +00:00
Francesco Petrogalli c8d2b065b9 [llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]
Changes:

* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Add `<` operator to `ElementCount` to be able to use
`llvm::SmallSetVector<ElementCount, ...>`.
* Bits and pieces around printing the ElementCount to string streams.
* Added a static method to `ElementCount` to represent a scalar.

To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:

1. When it doesn't make sense to deal with the scalable property, for
example:
   a. When computing unrolling factors.
   b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.

Differential Revision: https://reviews.llvm.org/D85794
2020-08-24 13:39:42 +00:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green 816097e4e5 [LV] Allow tail folded reduction selects to remain in the loop
The normal scheme for tail folding reductions is to use:

loop:
  p = phi(0, a)
  mask = ...
  x = masked_load(..., mask)
  a = add(x, p)
s = select(mask, a, p)

This means we need to keep the register p and a alive out of the loop, plus
the mask. On a target with predicated operations we can instead generate
the phi as p = phi(0, s). This ensures the select in the loop and we can
fold select(m, add(a, b), c) to something like a vaddt c, a, b using the
m predicate. This in turn allows us to tail predicate the entire loop.

Differential Revision: https://reviews.llvm.org/D84741
2020-08-20 14:31:14 +01:00
Hiroshi Yamauchi ab401a8c8a [PGO][PGSO][LV] Fix loop not vectorized issue under profile guided size opts.
D81345 appears to accidentally disables vectorization when explicitly
enabled. As PGSO isn't currently accessible from LoopAccessInfo, revert back to
the vectorization with versioning-for-unit-stride for PGSO.

Differential Revision: https://reviews.llvm.org/D85784
2020-08-19 12:13:34 -07:00
Mehdi Amini a407ec9b6d Revert "Revert "[NFC][llvm] Make the contructors of `ElementCount` private.""
Was reverted because MLIR/Flang builds were broken, these APIs have been
fixed in the meantime.
2020-08-19 17:26:36 +00:00
Mehdi Amini 4fc56d70aa Revert "[NFC][llvm] Make the contructors of `ElementCount` private."
This reverts commit 264afb9e6a.
(and dependent 6b742cc48 and fc53bd610f)

MLIR/Flang are broken.
2020-08-19 17:21:37 +00:00
Francesco Petrogalli 264afb9e6a [NFC][llvm] Make the contructors of `ElementCount` private.
Differential Revision: https://reviews.llvm.org/D86120
2020-08-19 16:26:44 +00:00
David Green 745bf6cf44 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-06 10:10:50 +01:00