This patch introduces a new VPDef class, which can be used to
manage VPValues defined by recipes/VPInstructions.
The idea here is to mirror VPUser for values defined by a recipe. A
VPDef can produce either zero (e.g. a store recipe), one (most recipes)
or multiple (VPInterleaveRecipe) result VPValues.
To traverse the def-use chain from a VPDef to its users, one has to
traverse the users of all values defined by a VPDef.
VPValues now contain a pointer to their corresponding VPDef, if one
exists. To traverse the def-use chain upwards from a VPValue, we first
need to check if the VPValue is defined by a VPDef. If it does not have
a VPDef, this means we have a VPValue that is not directly defined
iniside the plan and we are done.
If we have a VPDef, it is defined inside the region by a recipe, which
is a VPUser, and the upwards def-use chain traversal continues by
traversing all its operands.
Note that we need to add an additional field to to VPVAlue to link them
to their defs. The space increase is going to be offset by being able to
remove the SubclassID field in future patches.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D90558
Update the code responsible for deleting VPBBs and recipes to properly
update users and release operands.
This is another preparation for D84680 & following patches towards
enabling modeling def-use chains in VPlan.
This adds a helper to convert a VPRecipeBase pointer to a VPUser, for
recipes that inherit from VPUser. Once VPRecipeBase directly inherits
from VPUser this helper can be removed.
When updating operands of a VPUser, we also have to adjust the list of
users for the new and old VPValues. This is required once we start
transitioning recipes to become VPValues.
Now that VPUser is not inheriting from VPValue, we can take the next
step and turn the recipes that already manage their operands via VPUser
into VPUsers directly. This is another small step towards traversing
def-use chains in VPlan.
This is NFC with respect to the generated code, but makes the interface
more powerful.
This is a speculative fix to silence the spurious C4129 warning that
some version of MSVC generate for the raw string literals in the changed
files.
Before disabling the warning (D76428), try a potential fix suggested in
the review.
When the an underlying value is available, we can use its name for
printing, as discussed in D73078.
Reviewers: rengolin, hsaito, Ayal, gilr
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D76200
Currently when printing VPValues we use the object address, which makes
it hard to distinguish VPValues as they usually are large numbers with
varying distance between them.
This patch adds a simple slot tracker, similar to the ModuleSlotTracker
used for IR values. In order to dump a VPValue or anything containing a
VPValue, a slot tracker for the enclosing VPlan needs to be created. The
existing VPlanPrinter can take care of that for the existing code. We
assign consecutive numbers to each VPValue we encounter in a reverse
post order traversal of the VPlan.
Reviewers: rengolin, hsaito, fhahn, Ayal, dorit, gilr
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D73078
This patch adds a getPlan accessor to VPBlockBase, which finds the entry
block of the plan containing the block and returns the plan set for this
block.
VPBlockBase contains a VPlan pointer, but it should only be set for
the entry block of a plan. This allows moving blocks without updating
the pointer for each moved block and in the future we might introduce a
parent relationship between plans and blocks, similar to the one in LLVM IR.
Reviewers: rengolin, hsaito, fhahn, Ayal, dorit, gilr
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D74445
This recommits 11ed1c0239 (reverted in
9f08ce0d21 for failing an assert) with a fix:
tryToWidenMemory() now first checks if the widening decision is to interleave,
thus maintaining previous behavior where tryToInterleaveMemory() was called
first, giving priority to interleave decisions over widening/scalarization. This
commit adds the test case that exposed this bug as a LIT.
This recommits 100e797adb (reverted in
009e032634 for failing an assert). While the
root cause was independently reverted in eaff300401,
this commit includes a LIT to make sure IVDescriptor's SinkAfter logic does not
try to sink branch instructions.
This recommits 2be17087f8 (reverted in
d3ec06d219 for heap-use-after-free) with a fix
in IAI's reset() which was not clearing the set of interleave groups after
deleting them.
The sink-after and interleave-group vectorization decisions were so far applied to
VPlan during initial VPlan construction, which complicates VPlan construction – also because of
their inter-dependence. This patch refactors buildVPlanWithRecipes() to construct a simpler
initial VPlan and later apply both these vectorization decisions, in order, as VPlan-to-VPlan
transformations.
Differential Revision: https://reviews.llvm.org/D68577
This patch adds a moveAfter method to VPRecipeBase, which can be used to
move elements after other elements, across VPBasicBlocks, if necessary.
Reviewers: dcaballe, hsaito, rengolin, hfinkel
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D46825
llvm-svn: 374565
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636