The generic FastISel code would bail, because it can't emit a sign-extend for
AArch64. This copies the code over and uses AArch64 specific emit functions.
This is not ideal and 'computeAddress' should handles this, so it can fold the
address computation into the memory operation.
I plan to clean up 'computeAddress' anyways, so I will add that in a future
commit.
Related to rdar://problem/18962471.
llvm-svn: 221923
These were directly using the old base instruction
class, and specifying the wrong register classes
for operands. The operands can be the other special
inputs besides SGPRs. The op name was also being
directly used for the asm string, so this was printed
without any operands.
llvm-svn: 221921
If a function is just an unreachable, this would hit a
"this is not a MachO target" assertion because of setting
HasSubsectionViaSymbols.
llvm-svn: 221920
e.g. v_mad_f32 a, b, c -> v_mad_f32 b, a, c
This simplifies matching v_madmk_f32.
This looks somewhat surprising, but it appears to be
OK to do this. We can commute src0 and src1 in all
of these instructions, and that's all that appears
to matter.
llvm-svn: 221910
Normally entries can only move to a lower address, but when that wasn't viable,
the user's block was considered anyway. Unfortunately, it went via
createNewWater which wasn't designed to handle the case where there's already
an island after the block.
Unfortunately, the test we have is slow and fragile, and I couldn't reduce it
to anything sane even with the @llvm.arm.space intrinsic. The test change here
is recreating the previous one after the change.
rdar://problem/18545506
llvm-svn: 221905
We were using a naive heuristic to determine whether a basic block already had
an unconditional branch at the end. This mostly corresponded to reality
(assuming branches got optimised) because there's not much point in a branch to
the next block, but could go wrong.
llvm-svn: 221904
Creating tests for the ConstantIslands pass is very difficult, since it depends
on precise layout details. Having the ability to precisely inject a number of
bytes into the stream helps greatly.
llvm-svn: 221903
between splitting a vector into 128-bit lanes and recombining them vs.
decomposing things into single-input shuffles and a final blend.
This handles a large number of cases in AVX1 where the cross-lane
shuffles would be much more expensive to represent even though we end up
with a fast blend at the root. Instead, we can do a better job of
shuffling in a single lane and then inserting it into the other lanes.
This fixes the remaining bits of Halide's regression captured in PR21281
for AVX1. However, the bug persists in AVX2 because I've made this
change reasonably conservative. The cases where it makes sense in AVX2
to split into 128-bit lanes are much more rare because we can often do
full permutations across all elements of the 256-bit vector. However,
the particular test case in PR21281 is an example of one of the rare
cases where it is *always* better to work in a single 128-bit lane. I'm
going to try to teach the logic to detect and form the good code even in
AVX2 next, but it will need to use a separate heuristic.
Finally, there is one pesky regression here where we previously would
craftily use vpermilps in AVX1 to shuffle both high and low halves at
the same time. We no longer pull that off, and not for any really good
reason. Ultimately, I think this is just another missing nuance to the
selection heuristic that I'll try to add in afterward, but this change
already seems strictly worth doing considering the magnitude of the
improvements in common matrix math shuffle patterns.
As always, please let me know if this causes a surprising regression for
you.
llvm-svn: 221861
re-combining shuffles because nothing was available in the wider vector
type.
The key observation (which I've put in the comments for future
maintainers) is that at this point, no further combining is really
possible. And so even though these shuffles trivially could be combined,
we need to actually do that as we produce them when producing them this
late in the lowering.
This fixes another (huge) part of the Halide vector shuffle regressions.
As it happens, this was already well covered by the tests, but I hadn't
noticed how bad some of these got. The specific patterns that turn
directly into unpckl/h patterns were occurring *many* times in common
vector processing code.
There are still more problems here sadly, but trying to incrementally
tease them apart and it looks like this is the core of the problem in
the splitting logic.
There is some chance of regression here, you can see it in the test
changes. Specifically, where we stop forming pshufb in some cases, it is
possible that pshufb was in fact faster. Intel "says" that pshufb is
slower than the instruction sequences replacing it.
llvm-svn: 221852
This folds the compare emission into the select emission when possible, so we
can directly use the flags and don't have to emit a separate compare.
Related to rdar://problem/18960150.
llvm-svn: 221847
This is a follow-on to r221706 and r221731 and discussed in more detail in PR21385.
This patch also loosens the testcase checking for btver2. We know that the "1.0" will be loaded, but
we can't tell exactly when, so replace the CHECK-NEXT specifiers with plain CHECKs. The CHECK-NEXT
sequence relied on a quirk of post-RA-scheduling that may change independently of anything in these tests.
llvm-svn: 221819
One of them (__memcpy_chk) was already there, the others were checked
by comparing function names.
Note that the fortified libfuncs are now part of TLI, but are always
available, because they aren't generated, only optimized into the
non-checking versions.
Differential Revision: http://reviews.llvm.org/D6179
llvm-svn: 221817
Summary:
Reapply r221772. The old patch breaks the bot because the @indvar_32_bit test
was run whether NVPTX was enabled or not.
IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.
Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.
Fixes PR21148.
Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive. This test is run only when NVPTX is
enabled.
Reviewers: jholewinski, eliben, meheff, atrick
Reviewed By: atrick
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D6196
llvm-svn: 221799
Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
llvm-svn: 221791
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.
llvm-svn: 221779
Summary:
IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.
Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.
Fixes PR21148.
Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive.
Reviewers: jholewinski, eliben, meheff, atrick
Reviewed By: atrick
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D6196
llvm-svn: 221772
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td. These are patterned after the similar
intrinsics for lvx and stvx (Altivec). In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.
At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp. This will open up more
optimization opportunities while still allowing the correct
instructions to be generated. (Similar code exists for aligned
Altivec loads and stores.)
The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().
There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number. It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.
I ended up having to modify vsx-fma-m.ll. It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it. The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands. Commutativity allows
either to be chosen. If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result. Hopefully this doesn't change often.
There is a companion patch for Clang.
llvm-svn: 221767
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
llvm-svn: 221751
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
llvm-svn: 221708
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
llvm-svn: 221706
My original support for the general dynamic and local dynamic TLS
models contained some fairly obtuse hacks to generate calls to
__tls_get_addr when lowering a TargetGlobalAddress. Rather than
generating real calls, special GET_TLS_ADDR nodes were used to wrap
the calls and only reveal them at assembly time. I attempted to
provide correct parameter and return values by chaining CopyToReg and
CopyFromReg nodes onto the GET_TLS_ADDR nodes, but this was also not
fully correct. Problems were seen with two back-to-back stores to TLS
variables, where the call sequences ended up overlapping with unhappy
results. Additionally, since these weren't real calls, the proper
register side effects of a call were not recorded, so clobbered values
were kept live across the calls.
The proper thing to do is to lower these into calls in the first
place. This is relatively straightforward; see the changes to
PPCTargetLowering::LowerGlobalTLSAddress() in PPCISelLowering.cpp.
The changes here are standard call lowering, except that we need to
track the fact that these calls will require a relocation. This is
done by adding a machine operand flag of MO_TLSLD or MO_TLSGD to the
TargetGlobalAddress operand that appears earlier in the sequence.
The calls to LowerCallTo() eventually find their way to
LowerCall_64SVR4() or LowerCall_32SVR4(), which call FinishCall(),
which calls PrepareCall(). In PrepareCall(), we detect the calls to
__tls_get_addr and immediately snag the TargetGlobalTLSAddress with
the annotated relocation information. This becomes an extra operand
on the call following the callee, which is expected for nodes of type
tlscall. We change the call opcode to CALL_TLS for this case. Back
in FinishCall(), we change it again to CALL_NOP_TLS for 64-bit only,
since we require a TOC-restore nop following the call for the 64-bit
ABIs.
During selection, patterns in PPCInstrInfo.td and PPCInstr64Bit.td
convert the CALL_TLS nodes into BL_TLS nodes, and convert the
CALL_NOP_TLS nodes into BL8_NOP_TLS nodes. This replaces the code
removed from PPCAsmPrinter.cpp, as the BL_TLS or BL8_NOP_TLS
nodes can now be emitted normally using their patterns and the
associated printTLSCall print method.
Finally, as a result of these changes, all references to get-tls-addr
in its various guises are no longer used, so they have been removed.
There are existing TLS tests to verify the changes haven't messed
anything up). I've added one new test that verifies that the problem
with the original code has been fixed.
llvm-svn: 221703
The ISel lowering for global TLS access in PIC mode was creating a pseudo
instruction that is later expanded to a call, but the code was not
setting the hasCalls flag in the MachineFrameInfo alongside the adjustsStack
flag. This caused some functions to be mistakenly recognized as leaf functions,
and this in turn affected the decision to eliminate the frame pointer.
With the fix, hasCalls is properly set and the leaf frame pointer is correctly
preserved.
llvm-svn: 221695
Summary:
This patch enables code generation for the MIPS II target. Pre-Mips32
targets don't have the MUL instruction, so we add the correspondent
pattern that uses the MULT/MFLO combination in order to retrieve the
product.
This is WIP as we don't support code generation for select nodes due to
the lack of conditional-move instructions.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6150
llvm-svn: 221686
The canonical name when printing assembly is still $29. The reason is that
GAS does not accept "$hwr_ulr" at the moment.
This addresses the comments from r221307, which reverted the original
commit r221299.
llvm-svn: 221685
The original commit r221299 was reverted in r221307. I removed the name
"hrw_ulr" ($29) from the original commit because two tests were failing.
llvm-svn: 221681
This fixes an issue with matching trunc -> assertsext -> zext on x86-64, which would not zero the high 32-bits. See PR20494 for details.
Recommitting - This time, with a hopefully working test.
Differential Revision: http://reviews.llvm.org/D6128
llvm-svn: 221672
AVX2 is available.
According to IACA, the new lowering has a throughput of 8 cycles instead of 13
with the previous one.
Althought this lowering kicks in some SPECs benchmarks, the performance
improvement was within the noise.
Correctness testing has been done for the whole range of uint32_t with the
following program:
uint4 v = (uint4) {0,1,2,3};
uint32_t i;
//Check correctness over entire range for uint4 -> float4 conversion
for( i = 0; i < 1U << (32-2); i++ )
{
float4 t = test(v);
float4 c = correct(v);
if( 0xf != _mm_movemask_ps( t == c ))
{
printf( "Error @ %vx: %vf vs. %vf\n", v, c, t);
return -1;
}
v += 4;
}
Where "correct" is the old lowering and "test" the new one.
The patch adds a test case for the two custom lowering instruction.
It also modifies the vector cost model, which is why cast.ll and uitofp.ll are
modified.
2009-02-26-MachineLICMBug.ll is also modified because we now hoist 7
instructions instead of 4 (3 more constant loads).
rdar://problem/18153096>
llvm-svn: 221657
In the case we optimize an integer extend away and replace it directly with the
source register, we also have to clear all kill flags at all its uses.
This is necessary, because the orignal IR instruction might be trivially dead,
but we replaced it with a nop at MI level.
llvm-svn: 221628
This fixes an issue with matching trunc -> assertsext -> zext on x86-64, which would not zero the high 32-bits.
See PR20494 for details.
Differential Revision: http://reviews.llvm.org/D6128
llvm-svn: 221626
Summary:
It currently only implements hasBranchDivergence, and will be extended
in later diffs.
Split from D6188.
Test Plan: make check-all
Reviewers: jholewinski
Reviewed By: jholewinski
Subscribers: llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D6195
llvm-svn: 221619
This fixes a few cases of:
* Wrong variable name style.
* Lines longer than 80 columns.
* Repeated names in comments.
* clang-format of the above.
This make the next patch a lot easier to read.
llvm-svn: 221615
Summary:
... and after all that refactoring, it's possible to distinguish softfloat
floating point values from integers so this patch no longer breaks softfloat to
do it.
Remove direct handling of i32's in the N32/N64 ABI by promoting them to
i64. This more closely reflects the ABI documentation and also fixes
problems with stack arguments on big-endian targets.
We now rely on signext/zeroext annotations (already generated by clang) and
the Assert[SZ]ext nodes to avoid the introduction of unnecessary sign/zero
extends.
It was not possible to convert three tests to use signext/zeroext. These tests
are bswap.ll, ctlz-v.ll, ctlz-v.ll. It's not possible to put signext on a
vector type so we just accept the sign extends here for now. These tests don't
pass the vectors the same way clang does (clang puts multiple elements in the
same argument, these map 1 element to 1 argument) so we don't need to worry too
much about it.
With this patch, all known N32/N64 bugs should be fixed and we now pass the
first 10,000 tests generated by ABITest.py.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6117
llvm-svn: 221534
Summary:
One of the calls to AllocateStack (the one in LowerCall) doesn't look like
it should be there but it was there before and removing it breaks the
frame size calculation.
Reviewers: vmedic, theraven
Reviewed By: theraven
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6116
llvm-svn: 221529
Summary:
In addition to the usual f128 workaround, it was also necessary to provide
a means of accessing ArgListEntry::IsFixed.
Reviewers: theraven, vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6111
llvm-svn: 221518
Summary:
In the long run, it should probably become a calling convention in its own
right but for now just move it out of
MipsISelLowering::analyzeCallOperands() so that we can drop this function
in favour of CCState::AnalyzeCallOperands().
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6085
llvm-svn: 221517
Summary:
CCState objects already carry this information in their isVarArg() method.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6084
llvm-svn: 221516
Reversing a CB* instruction used to drop the flags on the condition. On the
included testcase, this lead to a read from an undefined vreg.
Using addOperand keeps the flags, here <undef>.
Differential Revision: http://reviews.llvm.org/D6159
llvm-svn: 221507
Fixed an issue with the (v)cvttps2dq and (v)cvttpd2dq instructions being incorrectly put in the 2 source operand folding tables instead of the 1 source operand and added the missing SSE/AVX versions.
Also added missing (v)cvtps2dq and (v)cvtpd2dq instructions to the folding tables.
Differential Revision: http://reviews.llvm.org/D6001
llvm-svn: 221489
Summary:
As with returns, we must be able to identify f128 arguments despite them
being lowered away. We do this with a pre-analyze step that builds a
vector and then we use this vector from the tablegen-erated code.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6081
llvm-svn: 221461
Example:
define <4 x i32> @test(<4 x i32> %a, <4 x i32> %b) {
%shuffle = shufflevector <4 x i32> %a, <4 x i32> %b, <4 x i32> <i32 4, i32 5, i32 6, i32 3>
ret <4 x i32> %shuffle
}
Before llc (-mattr=+sse4.1), produced the following assembly instruction:
pblendw $4294967103, %xmm1, %xmm0
After
pblendw $63, %xmm1, %xmm0
llvm-svn: 221455
Summary:
Currently, we give an error if %z is used with non-immediates, instead of continuing as if the %z isn't there.
For example, you use the %z operand modifier along with the "Jr" constraints ("r" makes the operand a register, and "J" makes it an immediate, but only if its value is 0).
In this case, you want the compiler to print "$0" if the inline asm input operand turns out to be an immediate zero and you want it to print the register containing the operand, if it's not.
We give an error in the latter case, and we shouldn't (GCC also doesn't).
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6023
llvm-svn: 221453
Summary:
Improved warning message when using .cpload inside a reorder section and added an error message for using .cpload with Mips16 enabled.
Modified the tests to fit with the changes mentioned above, added a test-case for the N32 ABI in cpload.s and did some reformatting to make the tests easier to read.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5465
llvm-svn: 221447
condition to match a blend.
This prevents optimizations that work on VSELECT to perform invalid
transformations. Indeed, the optimized condition does not match the vector
boolean content that is expected and bad things may happen.
This patch yields the exact same code on the whole test-suite + specs (-O3 and
-O3 -march=core-avx2), it improves one test case (vector-blend.ll) and fixes a
bug reduced in vselect-avx.ll.
<rdar://problem/18819506>
llvm-svn: 221429
Added missing memory folding for the (V)CVTDQ2PS instructions - we can safely fold these (but not the (V)CVTDQ2PD versions which have a register/memory size discrepancy in the source operand). I've added a test case demonstrating that stack folding now works.
Differential Revision: http://reviews.llvm.org/D5981
llvm-svn: 221407
Summary:
X86FastISel::fastMaterializeAlloca was incorrectly conditioning its
opcode selection on subtarget bitness rather than pointer size.
Differential Revision: http://reviews.llvm.org/D6136
llvm-svn: 221386
This works around the limitation that PTX does not allow .param space
loads/stores with arbitrary pointers.
If a function has a by-val struct ptr arg, say foo(%struct.x *byval %d), then
add the following instructions to the first basic block :
%temp = alloca %struct.x, align 8
%tt1 = bitcast %struct.x * %d to i8 *
%tt2 = llvm.nvvm.cvt.gen.to.param %tt2
%tempd = bitcast i8 addrspace(101) * to %struct.x addrspace(101) *
%tv = load %struct.x addrspace(101) * %tempd
store %struct.x %tv, %struct.x * %temp, align 8
The above code allocates some space in the stack and copies the incoming
struct from param space to local space. Then replace all occurences of %d
by %temp.
Fixes PR21465.
llvm-svn: 221377
Change `NamedMDNode::getOperator()` from returning `MDNode *` to
returning `Value *`. To reduce boilerplate at some call sites, add a
`getOperatorAsMDNode()` for named metadata that's expected to only
return `MDNode` -- for now, that's everything, but debug node named
metadata (such as llvm.dbg.cu and llvm.dbg.sp) will soon change. This
is part of PR21433.
Note that there's a follow-up patch to clang for the API change.
llvm-svn: 221375
This matches the format produced by the AMD proprietary driver.
//==================================================================//
// Shell script for converting .ll test cases: (Pass the .ll files
you want to convert to this script as arguments).
//==================================================================//
; This was necessary on my system so that A-Z in sed would match only
; upper case. I'm not sure why.
export LC_ALL='C'
TEST_FILES="$*"
MATCHES=`grep -v Patterns SIInstructions.td | grep -o '"[A-Z0-9_]\+["e]' | grep -o '[A-Z0-9_]\+' | sort -r`
for f in $TEST_FILES; do
# Check that there are SI tests:
grep -q -e 'verde' -e 'bonaire' -e 'SI' -e 'tahiti' $f
if [ $? -eq 0 ]; then
for match in $MATCHES; do
sed -i -e "s/\([ :]$match\)/\L\1/" $f
done
# Try to get check lines with partial instruction names
sed -i 's/\(;[ ]*SI[A-Z\\-]*: \)\([A-Z_0-9]\+\)/\1\L\2/' $f
fi
done
sed -i -e 's/bb0_1/BB0_1/g' ../../../test/CodeGen/R600/infinite-loop.ll
sed -i -e 's/SI-NOT: bfe/SI-NOT: {{[^@]}}bfe/g'../../../test/CodeGen/R600/llvm.AMDGPU.bfe.*32.ll ../../../test/CodeGen/R600/sext-in-reg.ll
sed -i -e 's/exp_IEEE/EXP_IEEE/g' ../../../test/CodeGen/R600/llvm.exp2.ll
sed -i -e 's/numVgprs/NumVgprs/g' ../../../test/CodeGen/R600/register-count-comments.ll
sed -i 's/\(; CHECK[-NOT]*: \)\([A-Z_0-9]\+\)/\1\L\2/' ../../../test/CodeGen/R600/select64.ll ../../../test/CodeGen/R600/sgpr-copy.ll
//==================================================================//
// Shell script for converting .td files (run this last)
//==================================================================//
export LC_ALL='C'
sed -i -e '/Patterns/!s/\("[A-Z0-9_]\+[ "e]\)/\L\1/g' SIInstructions.td
sed -i -e 's/"EXP/"exp/g' SIInstrInfo.td
llvm-svn: 221350
This patch improves the folding of vector AND nodes into blend operations for
targets that feature SSE4.1. A vector AND node where one of the operands is
a constant build_vector with elements that are either zero or all-ones can be
converted into a blend.
This allows for example to simplify the following code:
define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
%1 = and <4 x i32> %A, <i32 0, i32 0, i32 0, i32 -1>
%2 = and <4 x i32> %B, <i32 -1, i32 -1, i32 -1, i32 0>
%3 = or <4 x i32> %1, %2
ret <4 x i32> %3
}
Before this patch llc (-mcpu=corei7) generated:
andps LCPI1_0(%rip), %xmm0, %xmm0
andps LCPI1_1(%rip), %xmm1, %xmm1
orps %xmm1, %xmm0, %xmm0
retq
With this patch we generate a single 'vpblendw'.
llvm-svn: 221343
Some ARM FPUs only have 16 double-precision registers, rather than the
normal 32. LLVM represents this with the D16 target feature. This is
currently used by CodeGen to avoid using high registers when they are
not available, but the assembler and disassembler do not.
I fix this in the assmebler and disassembler rather than the
InstrInfo.td files, as the latter would require a large number of
changes everywhere one of the floating-point instructions is referenced
in the backend. This solution is similar to the one used for
co-processor numbers and MSR masks.
llvm-svn: 221341
We currently try to push an even number of registers to preserve 8-byte
alignment during a function's prologue, but only when the stack alignment is
prcisely 8. Many of the reasons for doing it apply also when that alignment > 8
(the extra store is often free, and can save another stack adjustment, though
less frequently for 16-byte stack alignment).
llvm-svn: 221321
We were making an attempt to do this by adding an extra callee-saved GPR (so
that there was an even number in the list), but when that failed we went ahead
and pushed anyway.
This had a couple of potential issues:
+ The .cfi directives we emit misplaced dN because they were based on
PrologEpilogInserter's calculation.
+ Unaligned stores can be less efficient.
+ Unaligned stores can actually fault (likely only an issue in niche cases,
but possible).
This adds a final explicit stack adjustment if all other options fail, so that
the actual locations of the registers match up with where they should be.
llvm-svn: 221320
Patch to allow (v)blendps, (v)blendpd, (v)pblendw and vpblendd instructions to be commuted - swaps the src registers and inverts the blend mask.
This is primarily to improve memory folding (see new tests), but it also improves the quality of shuffles (see modified tests).
Differential Revision: http://reviews.llvm.org/D6015
llvm-svn: 221313
While fixing up the register classes in the machine combiner in a previous
commit I missed one.
This fixes the last one and adds a test case.
llvm-svn: 221308
This patch adds 'FeatureSlowSHLD' to 'bdver3'.
According to the official AMD optimization guide for amdfam15: "Using
alternative code in place of SHLD achieves lower overall latency and
requires fewer execution resources. The 32-bit and 64-bit forms of
ADD, ADC, SHR, and LEA (except 16-bit form) are DirectPath
instructions, while SHLD is a VectorPath instruction."
This patch also explicitly sets feature AVX and SSE4A for all the bdver*
cpus. This part of the patch is a non-functional change and it is mainly
done for clarity reasons (Both XOP and FMA4 already imply AVX and SSE4A).
llvm-svn: 221296
Summary:
Appropriately set/clear the FeatureBit for Mips16 when these assembler directives are used and also emit ".set nomips16" (previously, only ".set mips16" was being emitted).
These improvements allow for better testing of the .cpload/.cprestore assembler directives (which are not supposed to work when Mips16 is enabled).
Test Plan: The test is bare-bones because there are no MC tests for Mips16 instructions (there's only one, which checks that the Mips16 ELF header flag gets set), and that suggests to me that it has not been implemented yet in the IAS.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5462
llvm-svn: 221277
register class tGPRRegClass if the target is thumb1.
This commit fixes a crash that occurs during register allocation which was
triggered when a virtual register defined by an inline-asm instruction had to
be spilled.
rdar://problem/18740489
llvm-svn: 221178
For 8-bit divrems where the remainder is used, we used to generate:
divb %sil
shrw $8, %ax
movzbl %al, %eax
That was to avoid an H-reg access, which is problematic mainly because
it isn't possible in REX-prefixed instructions.
This patch optimizes that to:
divb %sil
movzbl %ah, %eax
To do that, we explicitly extend AH, and extract the L-subreg in the
resulting register. The extension is done using the NOREX variants of
MOVZX. To support signed operations, MOVSX_NOREX is also added.
Further, this introduces a new SDNode type, [us]divrem_ext_hreg, which is
then lowered to a sequence containing a single zext (rather than 2).
Differential Revision: http://reviews.llvm.org/D6064
llvm-svn: 221176
This CPU definition is redundant. The Cortex-A9 is defined as
supporting multiprocessing extensions. Remove its definition and
update appropriate tests.
LLVM defines both a cortex-a9 CPU and a cortex-a9-mp CPU. The only
difference between the two CPU definitions in ARM.td is that
cortex-a9-mp contains the feature FeatureMP for multiprocessing
extensions.
This is redundant since the Cortex-A9 is defined as having
multiprocessing extensions in the TRMs. armcc also defines the
Cortex-A9 as having multiprocessing extensions by default.
Change-Id: Ifcadaa6c322be0a33d9d2a39cfdd7da1d75981a7
llvm-svn: 221166
Some literals in the AArch64 backend had 15 'f's rather than 16, causing
comparisons with a constant 0xffffffffffffffff to be miscompiled.
llvm-svn: 221157
Hexagon was not calling InitializeELF and could not select between
ctors and init_array.
Phabricator revision: http://reviews.llvm.org/D6061
llvm-svn: 221156
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
llvm-svn: 221117
r221056 "[mips] Move F128 argument handling into MipsCCState as we did for returns. NFC."
r221058 "[mips] Fix unused variable warning introduced in r221056"
r221059 "[mips] Move all ByVal handling into CCState and tablegen-erated code. NFC."
r221061 "Renamed CCState members that appear to misspell 'Processed' as 'Proceed'. NFC."
It cuased an undefined behavior in LLVM :: CodeGen/Mips/return-vector.ll.
llvm-svn: 221081
Summary:
CCState already contains a byval implementation that is very similar to the
Mips custom code. This patch merges the custom code into the existing
common code and tablegen-erated code.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D5977
llvm-svn: 221059
Summary:
There are a couple more changes to make before analyzeFormalArguments can
be merged into the standard AnalyzeFormalArguments. I've had to temporarily
poke a couple holes in MipsCCState's encapsulation to save having to make
all the required changes for this merge all at once*. These will be removed
shortly.
* We must merge our ByVal argument handling with the implementation in CCState.
This will be done over the next three patches, then the fourth will merge
analyzeFormalArguments with AnalyzeFormalArguments.
Depends on D5967
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5969
llvm-svn: 221056
Summary:
It's now passed in as an argument to functions that need it. Eventually
this argument will be replaced by the 'this' pointer for a MipsCCState
object.
Depends on D5966
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5967
llvm-svn: 221054
Summary:
There is one remaining trace of it in MipsCC::analyzeCallOperands() where
Mips16 might override the calling convention. This will moved into
tablegen-erated code later.
Depends on D5965
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5966
llvm-svn: 221053
Summary:
CustomCallingConv is simply a CallingConv that tablegen should not generate the
implementation for. It allows regular CallingConv's to delegate to these custom
functions. This is (currently) necessary for Mips and we cannot use CCCustom
without having to adapt to the different API that CCCustom uses.
This brings us a bit closer to being able to remove
MipsCC::analyzeCallOperands and MipsCC::analyzeFormalArguments in favour of
the common implementation.
No functional change to the targets.
Depends on D3341
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: vmedic, llvm-commits
Differential Revision: http://reviews.llvm.org/D5965
llvm-svn: 221052
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
llvm-svn: 221050
"[x86] Simplify vector selection if condition value type matches vselect value type and true value is all ones or false value is all zeros."
llvm-svn: 221028
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
llvm-svn: 221024
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
llvm-svn: 221017
We need to figure out how to track ptrtoint values all the
way until result is converted back to a pointer in order
to correctly rewrite the pointer type.
llvm-svn: 220997
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch adds
basic support for VSX intrinsics in general, and tests it by
implementing intrinsics for minimum and maximum for the vector double
data type.
The LLVM portion of this is quite straightforward. There is a
companion patch for Clang.
llvm-svn: 220988
Our internal test reveals such case should not be transformed:
cmp x17, #3
b.lt .LBB10_15
...
subs x12, x12, #1
b.gt .LBB10_1
where x12 is a liveout, becomes:
cmp x17, #2
b.le .LBB10_15
...
subs x12, x12, #2
b.ge .LBB10_1
Unable to provide test case as it's difficult to reproduce on community branch.
http://reviews.llvm.org/D6048
Patch by Zhaoshi Zheng <zhaoshiz@codeaurora.org>!
llvm-svn: 220987
This patch adds an optimization in CodeGenPrepare to move an extractelement
right before a store when the target can combine them.
The optimization may promote any scalar operations to vector operations in the
way to make that possible.
** Context **
Some targets use different register files for both vector and scalar operations.
This means that transitioning from one domain to another may incur copy from one
register file to another. These copies are not coalescable and may be expensive.
For example, according to the scheduling model, on cortex-A8 a vector to GPR
move is 20 cycles.
** Motivating Example **
Let us consider an example:
define void @foo(<2 x i32>* %addr1, i32* %dest) {
%in1 = load <2 x i32>* %addr1, align 8
%extract = extractelement <2 x i32> %in1, i32 1
%out = or i32 %extract, 1
store i32 %out, i32* %dest, align 4
ret void
}
As it is, this IR generates the following assembly on armv7:
vldr d16, [r0] @vector load
vmov.32 r0, d16[1] @ cross-register-file copy: 20 cycles
orr r0, r0, #1 @ scalar bitwise or
str r0, [r1] @ scalar store
bx lr
Whereas we could generate much faster code:
vldr d16, [r0] @ vector load
vorr.i32 d16, #0x1 @ vector bitwise or
vst1.32 {d16[1]}, [r1:32] @ vector extract + store
bx lr
Half of the computation made in the vector is useless, but this allows to get
rid of the expensive cross-register-file copy.
** Proposed Solution **
To avoid this cross-register-copy penalty, we promote the scalar operations to
vector operations. The penalty will be removed if we manage to promote the whole
chain of computation in the vector domain.
Currently, we do that only when the chain of computation ends by a store and the
target is able to combine an extract with a store.
Stores are the most likely candidates, because other instructions produce values
that would need to be promoted and so, extracted as some point[1]. Moreover,
this is customary that targets feature stores that perform a vector extract (see
AArch64 and X86 for instance).
The proposed implementation relies on the TargetTransformInfo to decide whether
or not it is beneficial to promote a chain of computation in the vector domain.
Unfortunately, this interface is rather inaccurate for this level of details and
although this optimization may be beneficial for X86 and AArch64, the inaccuracy
will lead to the optimization being too aggressive.
Basically in TargetTransformInfo, everything that is legal has a cost of 1,
whereas, even if a vector type is legal, usually a vector operation is slightly
more expensive than its scalar counterpart. That will lead to too many
promotions that may not be counter balanced by the saving of the
cross-register-file copy. For instance, on AArch64 this penalty is just 4
cycles.
For now, the optimization is just enabled for ARM prior than v8, since those
processors have a larger penalty on cross-register-file copies, and the scope is
limited to basic blocks. Because of these two factors, we limit the effects of
the inaccuracy. Indeed, I did not want to build up a fancy cost model with block
frequency and everything on top of that.
[1] We can imagine targets that can combine an extractelement with other
instructions than just stores. If we want to go into that direction, the current
interfaces must be augmented and, moreover, I think this becomes a global isel
problem.
Differential Revision: http://reviews.llvm.org/D5921
<rdar://problem/14170854>
llvm-svn: 220978
Since block address values can be larger than 2GB in 64-bit code, they
cannot be loaded simply using an @l / @ha pair, but instead must be
loaded from the TOC, just like GlobalAddress, ConstantPool, and
JumpTable values are.
The commit also fixes a bug in PPCLinuxAsmPrinter::doFinalization where
temporary labels could not be used as TOC values, since code would
attempt (and fail) to use GetOrCreateSymbol to create a symbol of the
same name as the temporary label.
llvm-svn: 220959
This transformation worked if selector is produced by SETCC, however SETCC is needed only if we consider to swap operands. So I replaced SETCC check for this case.
Added tests for vselect of <X x i1> values.
llvm-svn: 220777
Ffter commit at rev219046 512-bit broadcasts lowering become non-optimal. Most of tests on broadcasting and embedded broadcasting were changed and they doesn’t produce efficient code.
Example below is from commit changes (it’s the first test from test/CodeGen/X86/avx512-vbroadcast.ll):
define <16 x i32> @_inreg16xi32(i32 %a) {
; CHECK-LABEL: _inreg16xi32:
; CHECK: ## BB#0:
-; CHECK-NEXT: vpbroadcastd %edi, %zmm0
+; CHECK-NEXT: vmovd %edi, %xmm0
+; CHECK-NEXT: vpbroadcastd %xmm0, %ymm0
+; CHECK-NEXT: vinserti64x4 $1, %ymm0, %zmm0, %zmm0
; CHECK-NEXT: retq
%b = insertelement <16 x i32> undef, i32 %a, i32 0
%c = shufflevector <16 x i32> %b, <16 x i32> undef, <16 x i32> zeroinitializer
ret <16 x i32> %c
}
Here, 256-bit broadcast was generated instead of 512-bit one.
In this patch
1) I added vector-shuffle lowering through broadcasts
2) Removed asserts and branches likes because this is incorrect
- assert(Subtarget->hasDQI() && "We can only lower v8i64 with AVX-512-DQI");
3) Fixed lowering tests
llvm-svn: 220774
This is a Microsoft calling convention that supports both x86 and x86_64
subtargets. It passes vector and floating point arguments in XMM0-XMM5,
and passes them indirectly once they are consumed.
Homogenous vector aggregates of up to four elements can be passed in
sequential vector registers, but this part is not implemented in LLVM
and will be handled in Clang.
On 32-bit x86, it is similar to fastcall in that it uses ecx:edx as
integer register parameters and is callee cleanup. On x86_64, it
delegates to the normal win64 calling convention.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D5943
llvm-svn: 220745
Benchmarks have shown that it's harmless to the performance there, and having a
unified set of passes between the two cores where possible helps big.LITTLE
deployment.
Patch by Z. Zheng.
llvm-svn: 220744
No functionality change. No change in X86.td.expanded except that we only set
the CD8 attributes for the memory variants. (This shouldn't be used unless we
have a memory operand.)
llvm-svn: 220736
1) i512mem -> f512mem (this is the packed FP input being permuted)
2) element size is 64 bits in EVEX_CD8 for PD.
(A good illustration why X86VectorVTInfo is useful)
llvm-svn: 220734
For a call to not return in to the stackmap shadow, the shadow must end with the call.
To do this, we must insert any required nops *before* the call, and not after it.
llvm-svn: 220728
This is a minor change to use the immediate version when the operand is a null
value. This should get rid of an unnecessary 'mov' instruction in debug
builds and align the code more with the one generated by SelectionDAG.
This fixes rdar://problem/18785125.
llvm-svn: 220713
To avoid emitting too many nops, a stackmap shadow can include emitted instructions in the shadow, but these must not include branch targets.
A return from a call should count as a branch target as patching over the instructions after the call would lead to incorrect behaviour for threads currently making that call, when they return.
llvm-svn: 220710
The pattern matching for a 'ConstantInt' value was too restrictive. Checking for
a 'Constant' with a bull value is sufficient for using an 'cbz/cbnz' instruction.
This fixes rdar://problem/18784732.
llvm-svn: 220709
This fixes a bug where the input register was not defined for the 'tbz/tbnz'
instruction. This happened, because we folded the 'and' instruction from a
different basic block.
This fixes rdar://problem/18784013.
llvm-svn: 220704
At higher optimization levels the LLVM IR may contain more complex patterns for
loads/stores from/to frame indices. The 'computeAddress' function wasn't able to
handle this and triggered an assertion.
This fix extends the possible addressing modes for frame indices.
This fixes rdar://problem/18783298.
llvm-svn: 220700
sets as keys into a cache of interference matrice values in the Interference
constraint adder.
Creating interference matrices was one of the large remaining time-sinks in
PBQP. Caching them reduces the total compile time (when using PBQP) on the
nightly test suite by ~10%.
llvm-svn: 220688
Currently, the ARM backend will select the VMAXNM and VMINNM for these C
expressions:
(a < b) ? a : b
(a > b) ? a : b
but not these expressions:
(a > b) ? b : a
(a < b) ? b : a
This patch allows all of these expressions to be matched.
llvm-svn: 220671
Tidied up some entries in the folding tables so that they are under the correct comment section (they were categorised as AVX2 instructions when they're AVX1).
Minor patch agreed with qcolombet.
llvm-svn: 220613
Summary:
Fixes PR21100 which is caused by inconsistency between the declared return type
and the expected return type at the call site. The new behavior is consistent
with nvcc and the NVPTXTargetLowering::getPrototype function.
Test Plan: test/Codegen/NVPTX/vector-return.ll
Reviewers: jholewinski
Reviewed By: jholewinski
Subscribers: llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D5612
llvm-svn: 220607
In a Mach-O object file a relocatable expression of the form
SymbolA - SymbolB + constant is allowed when both symbols are
defined in a section. But when either symbol is undefined it
is an error.
The code was crashing when it had an undefined symbol in this case.
And should have printed a error message using the location information
in the relocation entry.
rdar://18678402
llvm-svn: 220599
Minor patch to fix an issue in XFormVExtractWithShuffleIntoLoad where a load is unary shuffled, then bitcast (to a type with the same number of elements) before extracting an element.
An undef was created for the second shuffle operand using the original (post-bitcasted) vector type instead of the pre-bitcasted type like the rest of the shuffle node - this was then causing an assertion on the different types later on inside SelectionDAG::getVectorShuffle.
Differential Revision: http://reviews.llvm.org/D5917
llvm-svn: 220592
Modified library structure to deal with circular dependency between HexagonInstPrinter and HexagonMCInst.
Adding encoding bits for add opcode.
Adding llvm-mc tests.
Removing unit tests.
http://reviews.llvm.org/D5624
llvm-svn: 220584
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570
Summary:
No functional change yet, it's just an object replacement for an enum.
It will allow us to gather ABI information in a single place so that we can
start testing for properties of the ABI's instead of the ABI itself.
For example we will eventually be able to use:
ABI.MinStackAlignmentInBytes()
instead of:
(isABI_N32() || isABI_N64()) ? 16 : 8
which is clearer and more maintainable.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3341
llvm-svn: 220568
Summary:
i32 is always promoted to i64 so it no longer makes sense to assign i32 to
registers.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5964
llvm-svn: 220561
Summary:
Most structs were fixed by r218451 but those of between >32-bits and
<64-bits remained broken since they were not marked with [ASZ]ExtUpper.
This patch fixes the remaining cases by using
CCPromoteToUpperBitsInType<i64> on i64's in addition to i32 and smaller.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5963
llvm-svn: 220556
This fixes a miscompilation in the AArch64 fast-isel which was
triggered when a branch is based on an icmp with condition eq or ne,
and type i1, i8 or i16. The cbz instruction compares the whole 32-bit
register, so values with the bottom 1, 8 or 16 bits clear would cause
the wrong branch to be taken.
llvm-svn: 220553
This is asm/diasm-only support, similar to AVX.
For ISeling the register variant, they are no different from 213 other than
whether the multiplication or the addition operand is destructed.
For ISeling the memory variant, i.e. to fold a load, they are no different
than the 132 variant. The addition operand (op3) in both cases can come from
memory. Again the ony difference is which operand is destructed.
There could be a post-RA pass that would convert a 213 or 132 into a 231.
Part of <rdar://problem/17082571>
llvm-svn: 220540
This multiclass generates the different forms: 213, 231, 132 in AVX.
132 in AVX512 is a separate class but I am planning to use this same
multiclass to generate 231 relying on the nice the null_frag trick from AVX to
disable codegen pattern for 231.
No functionality change, no change in X86.td.expanded except for the different
instruction definition names.
llvm-svn: 220539
Currently, @llvm.smul.with.overflow.i8 expands to 9 instructions, where
3 are really needed.
This adds X86ISD::UMUL8/SMUL8 SD nodes, and custom lowers them to
MUL8/IMUL8 + SETO.
i8 is a special case because there is no two/three operand variants of
(I)MUL8, so the first operand and return value need to go in AL/AX.
Also, we can't write patterns for these instructions: TableGen refuses
patterns where output operands don't match SDNode results. In this case,
instructions where the output operand is an implicitly defined register.
A related special case (and FIXME) exists for MUL8 (X86InstrArith.td):
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]
Ideally, these go away with UMUL8, but we still need to improve TableGen
support of implicit operands in patterns.
Before this change:
movsbl %sil, %eax
movsbl %dil, %ecx
imull %eax, %ecx
movb %cl, %al
sarb $7, %al
movzbl %al, %eax
movzbl %ch, %esi
cmpl %eax, %esi
setne %al
After:
movb %dil, %al
imulb %sil
seto %al
Also, remove a made-redundant testcase for PR19858, and enable more FastISel
ALU-overflow tests for SelectionDAG too.
Differential Revision: http://reviews.llvm.org/D5809
llvm-svn: 220516
This updates check for double precision zero floating point constant to allow
use of instruction with immediate value rather than temporary register.
Currently "a == 0.0", where "a" is of "double" type generates:
vmov.i32 d16, #0x0
vcmpe.f64 d0, d16
With this change it becomes:
vcmpe.f64 d0, #0
Patch by Sergey Dmitrouk.
llvm-svn: 220486
Currently, the ARM disassembler will disassemble the Thumb2 memory hint
instructions (PLD, PLDW and PLI), even for targets which do not have
these instructions. This patch adds the required checks to the
disassmebler.
llvm-svn: 220472
This has been implement using the MCTargetStreamer interface as is done in the
ARM, Mips and PPC backends.
Phabricator: http://reviews.llvm.org/D5891
PR20964
llvm-svn: 220422
A previous patch enabled SELECT_VSRC and SELECT_CC_VSRC for VSX to
handle <2 x double> cases. This patch adds SELECT_VSFRC and
SELECT_CC_VSFRC to allow use of all 64 vector-scalar registers for the
f64 type when VSX is enabled. The changes are analogous to those in
the previous patch. I've added a new variant to vsx.ll to test the
code generation.
(I also cleaned up a little formatting in PPCInstrVSX.td from the
previous patch.)
llvm-svn: 220395
The tests test/CodeGen/Generic/select-cc.ll and
test/CodeGen/PowerPC/select-cc.ll both fail with VSX enabled. The
problem is that the lowering logic for the SELECT and SELECT_CC
operations doesn't currently support the VSX registers. This patch
fixes that.
In lib/Target/PowerPC/PPCInstrInfo.td, we have pseudos to handle this
for other register classes. Similar pseudos are added in
PPCInstrVSX.td (they must be there, because the "vsrc" register class
definition appears there) for the VSRC register class. The
SELECT_VSRC pseudo is then used in pattern matching for SELECT_CC.
The rest of the patch just adds logic for SELECT_VSRC wherever similar
logic appears for SELECT_VRRC.
There are no new test cases because the existing tests above test
this, along with a variant in test/CodeGen/PowerPC/vsx.ll.
After discussion with Hal, a future patch will add similar _VSFRC
variants to override f64 type handling (currently using F8RC).
llvm-svn: 220385
This enables targets to adapt their pass pipeline to the register
allocator in use. For example, with the AArch64 backend, using PBQP
with the cortex-a57, the FPLoadBalancing pass is no longer necessary.
llvm-svn: 220321
With VSX enabled, test/CodeGen/PowerPC/recipest.ll exposes a bug in
the FMA mutation pass. If we have a situation where a killed product
register is the same register as the FMA target, such as:
%vreg5<def,tied1> = XSNMSUBADP %vreg5<tied0>, %vreg11, %vreg5,
%RM<imp-use>; VSFRC:%vreg5 F8RC:%vreg11
then the substitution makes no sense. We end up getting a crash when
we try to extend the interval associated with the killed product
register, as there is already a live range for %vreg5 there. This
patch just disables the mutation under those circumstances.
Since recipest.ll generates different code with VMX enabled, I've
modified that test to use -mattr=-vsx. I've borrowed the code from
that test that exposed the bug and placed it in fma-mutate.ll, where
it tests several mutation opportunities including the "bad" one.
llvm-svn: 220290
The 32-bit variants of the NEON scalar<->GPR move instructions are
also available in VFPv2. The 8- and 16-bit variants do require NEON.
Note that the checks in the test file are all -DAG because they are
checking a mixture of stdout and stderr, and the ordering is not
guaranteed.
llvm-svn: 220288
Summary: Fixed memory accesses with rbp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5819
llvm-svn: 220283
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
llvm-svn: 220256
X86 code to lower VSELECT messed a bit with the bits set in the mask of VSELECT
when it knows it can be lowered into BLEND. Indeed, only the high bits need to be
set for those and it optimizes those accordingly.
However, when the mask is a compile time constant, the lowering will be handled
by the generic optimizer and those modifications will generate bad code in the
generic optimizer.
This patch fixes that by preventing the optimization if the VSELECT will be
handled by the generic optimizer.
<rdar://problem/18675020>
llvm-svn: 220242
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.
Added additional regression test case provided by Joerg Sonnenberger.
Differential Revision: http://reviews.llvm.org/D5818
llvm-svn: 220239
The previous code had a few problems, motivating the choices here.
1. It could create instructions clobbering CPSR, but the incoming MachineInstr
didn't reflect this. A potential source of corruption. This is why the patch
has a new PseudoInst for before lowering.
2. Similarly, there was some code to handle the incoming instruction not being
ARMCC::AL, but this would have caused massive problems if it was actually
invoked when a complex offset needing more than one instruction was requested.
3. It wasn't designed to handle unaligned pointers (or offsets). These should
probably be minimised anyway, but the code needs to deal with them properly
regardless.
4. It had some rather dubious ad-hoc code to avoid calling
emitThumbRegPlusImmediate, a function which should be designed to do precisely
this job.
We seem to cover the common cases correctly now, and hopefully can enhance
emitThumbRegPlusImmediate to handle any extra optimisations we need to add in
future.
llvm-svn: 220236
The current instruction selection patterns for SMULW[BT] and SMLAW[BT]
are incorrect. These instructions multiply a 32-bit and a 16-bit value
(both signed) and return the top 32 bits of the 48-bit result. This
preserves the 16 bits of overflow, whereas the patterns they currently
match truncate the result to 16 bits then sign extend.
To select these instructions, we would need to match an ISD::SMUL_LOHI,
a sign extend, two shifts and an or. There is no way to match SMUL_LOHI
in an instruction pattern as it defines multiple values, so this would
have to be done in C++. I have raised
http://llvm.org/bugs/show_bug.cgi?id=21297 to cover allowing correct
selection of these instructions.
This fixes http://llvm.org/bugs/show_bug.cgi?id=19396
llvm-svn: 220196
This function can, for some offsets from the SP, split one instruction
into two. Since it re-uses the original instruction as the first
instruction of the result, we need ensure its result register is not
marked as dead before we use it in the second instruction.
llvm-svn: 220194
With VSX enabled, LLVM crashes when compiling
test/CodeGen/PowerPC/fma.ll. I traced this to the liveness test
that's revised in this patch. The interval test is designed to only
work for virtual registers, but in this case the AddendSrcReg is
physical. Since there is already a walk of the MIs between the
AddendMI and the FMA, I added a check for def/kill of the AddendSrcReg
in that loop. At Hal Finkel's request, I converted the liveness test
to an assert restricted to virtual registers.
I've changed the fma.ll test to have VSX and non-VSX variants so we
can test both kinds of multiply-adds.
llvm-svn: 220090
The generic code trying to use findCommutedOpIndices won't
understand that it needs to swap the modifier operands also,
so it should fail if they are set.
llvm-svn: 220064
When the input to a store instruction was a zero vector, the backend
always selected a normal vector store regardless of the non-temporal
hint. This is fixed by this patch.
This fixes PR19370.
llvm-svn: 220054
We should be talking about the number of source elements, not the number of destination elements, given we know at this point that the source and dest element numbers are not the same.
While we're at it, avoid writing to std::vector::end()...
Bug found with random testing and a lot of coffee.
llvm-svn: 220051
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
llvm-svn: 220047
The bug is in ARMConstantIslands::createNewWater where the upper bound of the
new water split point is computed:
// This could point off the end of the block if we've already got constant
// pool entries following this block; only the last one is in the water list.
// Back past any possible branches (allow for a conditional and a maximally
// long unconditional).
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
}
The split point is supposed to be somewhere between the machine instruction that
loads from the constant pool entry and the end of the basic block, before branch
instructions. The code above is fine if the basic block is large enough and
there are a sufficient number of instructions following the machine instruction.
However, if the machine instruction is near the end of the basic block,
BaseInsertOffset can point to the machine instruction or another instruction
that precedes it, and this can lead to convergence failure.
This commit fixes this bug by ensuring BaseInsertOffset is larger than the
offset of the instruction following the constant-loading instruction.
rdar://problem/18581150
llvm-svn: 220015
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
It happens to mostly work for the other targets because they are extremely
conservative, but Power for example had to switch to AtomicExpand to be
able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
x.store(1);
Thread 1:
y.store(1);
Thread 2:
r1 = x.load();
r2 = y.load();
Thread 3:
r3 = y.load();
r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
llvm-svn: 219957
When the constant divisor was larger than 32bits, then the optimized code
generated for the AArch64 backend would emit the wrong code, because the shift
was defined as a shift of a 32bit constant '(1<<Lg2(divisor))' and we would
loose the upper 32bits.
This fixes rdar://problem/18678801.
llvm-svn: 219934
Summary:
In order to support big endian targets for the BuildPairF64 nodes we
just need to swap the low/high pair registers. Additionally, for the
ExtractElementF64 nodes we have to calculate the correct stack offset
with respect to the node's register/operand that we want to extract.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5753
llvm-svn: 219931
In AVX512f we support 64x2 and 32x8 inserts via matching them to 32x4 and 64x4
respectively. These are matched by "Alt" Pat<>'s (Alt stands for alternative
VTs).
Since DQ has native support for these intructions, I peeled off the non-"Alt"
part of the baseclass into vinsert_for_size_no_alt. The DQ instructions are
derived from this multiclass. The "Alt" Pat<>'s are disabled with DQ.
Fixes <rdar://problem/18426089>
llvm-svn: 219874
The new attributes are NumElts and the CD8TupleForm. This prepares the code
to enable x8 and x2 inserts.
NFC, no change in X86.td.expanded except for the new attributes.
llvm-svn: 219871
It's the W bit that selects between 32 or 64 elt type and not the opcode. The
opcode selects between the width of the insert (128 or 256).
llvm-svn: 219870
The SelectDS1Addr1Offset complex pattern always tries to store constant
lds pointers in the offset operand and store a zero value in the addr operand.
Since the addr operand does not accept immediates, the zero value
needs to first be copied to a register.
This newly created zero value will not go through normal instruction
selection, so we need to manually insert a V_MOV_B32_e32 in the complex
pattern.
This bug was hidden by the fact that if there was another zero value
in the DAG that had not been selected yet, then the CSE done by the DAG
would use the unselected node for the addr operand rather than the one
that was just created. This would lead to the zero value being selected
and the DAG automatically inserting a V_MOV_B32_e32 instruction.
llvm-svn: 219848
This original fix for the build break was correct. LLVM_ATTRIBUTE_USED
removes the warning message because it keeps the function in the object
file. LLVM_ATTRIBUTE_UNUSED indicates that it may or may not be used
depending on build settings.
llvm-svn: 219846
This is mostly a copy of the existing FastISel GEP code, but we have to
duplicate it for AArch64, because otherwise we would bail out even for simple
cases. This is because the standard fastEmit functions don't cover MUL at all
and ADD is lowered very inefficientily.
The original commit had a bug in the add emit logic, which has been fixed.
llvm-svn: 219831
This adds the MCInstPrinter to the LLVMHexagonDesc library and removes
the dependency LLVMHexagonAsmPrinter had on LLVMHexagonDesc. This is
a prerequisite needed by the disassembler.
Phabricator Revision: http://reviews.llvm.org/D5734
llvm-svn: 219826
Early attempts to support AAPCS bare metal MachO targets based the decision on
the CPU being compiled for. This was not a particularly great idea and we've
got a better option now, but this check remained.
No functional change for any target we care about.
llvm-svn: 219767
This is a follow up to commit r219742. It removes the CCInMI variable
and accesses the CC in CSCINC directly. In the case of a conditional
branch accessing the CC with CCInMI was wrong.
llvm-svn: 219748
Peephole optimization that generates a single conditional branch
for csinc-branch sequences like in the examples below. This is
possible when the csinc sets or clears a register based on a condition
code and the branch checks that register. Also the condition
code may not be modified between the csinc and the original branch.
Examples:
1. Convert csinc w9, wzr, wzr, <CC>;tbnz w9, #0, 0x44
to b.<invCC>
2. Convert csinc w9, wzr, wzr, <CC>; tbz w9, #0, 0x44
to b.<CC>
rdar://problem/18506500
llvm-svn: 219742
Patch to provide shuffle decodes and asm comments for the sse pslldq/psrldq SSE2/AVX2 byte shift instructions.
Differential Revision: http://reviews.llvm.org/D5598
llvm-svn: 219738
Thumb1 has legitimate reasons for preferring 32-bit alignment of types
i1/i8/i16, since the 16-bit encoding of "add rD, sp, #imm" requires #imm to be
a multiple of 4. However, this is a trade-off betweem code size and RAM usage;
the DataLayout string is not the best place to represent it even if desired.
So this patch removes the extra Thumb requirements, hopefully making ARM and
Thumb completely compatible in this respect.
llvm-svn: 219734
There's no hard requirement on LLVM to align local variable to 32-bits, so the
Thumb1 frame handling needs to be able to deal with variables that are only
naturally aligned without falling over.
llvm-svn: 219733
This is mostly a copy of the existing FastISel GEP code, but on AArch64 we bail
out even for simple cases, because the standard fastEmit functions don't cover
MUL and ADD is lowered inefficientily.
llvm-svn: 219726
Before, ARM and Thumb mode code had different preferred alignments, which could
lead to some rather unexpected results. There's justification for reducing it
from the default 64-bits (wasted space), but I don't think there is for going
below 32-bits.
There's no actual ABI change here, just to reassure people.
llvm-svn: 219719
Sign-/zero-extend folding depended on the load and the integer extend to be
both selected by FastISel. This cannot always be garantueed and SelectionDAG
might interfer. This commit adds additonal checks to load and integer extend
lowering to catch this.
Related to rdar://problem/18495928.
llvm-svn: 219716
This effectively reverts revert 219707. After fixing the test to work with
new function name format and renamed intrinsic.
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219710
v2: Add SI lowering
Add test
v3: Place work dimensions after the kernel arguments.
v4: Calculate offset while lowering arguments
v5: rebase
v6: change prefix to AMDGPU
Reviewed-by: Tom Stellard <tom@stellard.net>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 219705
Summary:
In order to facilitate use of common code, checking by reviewers of other fast-isel ports, and hopefully to eventually move most of Mips and other fast-isel ports into target independent code, I've tried to get the two implementations to line up.
There is no functional code change. Just methods moved in the file to be in the same order as in AArch64.
Test Plan: No functional change.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, aemerson, rfuhler
Differential Revision: http://reviews.llvm.org/D5692
llvm-svn: 219703
e.g Currently we'll generate following instructions if the immediate is too wide:
MOV X0, WideImmediate
ADD X1, BaseReg, X0
LDR X2, [X1, 0]
Using [Base+XReg] addressing mode can save one ADD as following:
MOV X0, WideImmediate
LDR X2, [BaseReg, X0]
Differential Revision: http://reviews.llvm.org/D5477
llvm-svn: 219665
Summary:
Make Mips fast-isel track the form of AArch64 where practical.
This makes it easier for people to review the code, to borrow similar code, and to see how to eventually move a lot of this
target code for fast-isels into target independent code.
These are just cosmetic changes. Should be no functional difference.
Test Plan:
make check
test-suite for 4 flavors mips32 r1/r2 , -O0/-O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: aemerson, llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5595
llvm-svn: 219633
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
llvm-svn: 219603
Summary: [asan-asm-instrumentation] Fixed memory references which includes %rsp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5599
llvm-svn: 219602
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.
This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.
Differential Revision: http://reviews.llvm.org/D5701
llvm-svn: 219584
On x86_64 this brings it from 80 bytes to 64 bytes. Also make any member
variables private and clean up uses to go through the existing accessors.
NFC.
llvm-svn: 219573
Summary: Implement the most basic form of conditional branches in Mips fast-isel.
Test Plan:
br1.ll
run 4 flavors of test-suite. mips32 r1/r2 and at -O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5583
llvm-svn: 219556
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
llvm-svn: 219533
is over a subset of condition codes.
This fixes the -Werror build which warns about use of uninitialized
variables in the default case.
llvm-svn: 219531
Summary: Add the ability to convert 64 or 32 bit floating point values to integer in mips fast-isel
Test Plan:
fpintconv.ll
ran 4 flavors of test-suite with no errors, misp32 r1/r2 O0/O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, rfuhler, mcrosier
Differential Revision: http://reviews.llvm.org/D5562
llvm-svn: 219511
The current VSX feature for PowerPC specifies availability of the VSX
instructions added with the 2.06 architecture version. With 2.07, the
architecture adds new instructions to both the Category:Vector and
Category:VSX instruction sets. Additionally, unaligned vector storage
operations have improved performance.
This patch adds a feature to provide access to the new instructions
and performance capabilities of Power8. For compatibility with GCC,
the feature is controlled via a new -mpower8-vector switch, and the
feature causes the __POWER8_VECTOR__ builtin define to be generated by
the preprocessor.
There is a companion patch for cfe being committed at the same time.
llvm-svn: 219501
This is dangerous for numerous reasons. The primary risk here is with
floating point or double types where if the wrong header files are
included in a strange order this can implicitly convert to integers and
then call the C abs function on the integers. There is a secondary risk
that even impacts integers where if the namespace the code is written in
ever defines an abs overload for types within that namespace the global
abs will be hidden. The correct form is to call std::abs or write 'using
std::abs' for builtin types (and only the latter is correct in any
generic context).
I've also added the requisite header to be a bit more explicit here.
llvm-svn: 219484
The current implementation of GPR->FPR register moves uses a stack slot. This mechanism writes a double word and reads a word. In big-endian the load address must be displaced by 4-bytes in order to get the right value. In little endian this is no longer required. This patch fixes the issue and adds LE regression tests to fast-isel-conversion which currently expose this problem.
llvm-svn: 219441
This patch removes the PBQPBuilder class and its subclasses and replaces them
with a composable constraints class: PBQPRAConstraint. This allows constraints
that are only required for optimisation (e.g. coalescing, soft pairing) to be
mixed and matched.
This patch also introduces support for target writers to supply custom
constraints for their targets by overriding a TargetSubtargetInfo method:
std::unique_ptr<PBQPRAConstraints> getCustomPBQPConstraints() const;
This patch should have no effect on allocations.
llvm-svn: 219421
LLVM assumes INSERT_SUBREG will always have register operands, so
we need to legalize non-register operands, like FrameIndexes, to
avoid random assertion failures.
llvm-svn: 219420
The VSX instruction definitions for lxsdx, lxvd2x, lxvdsx, and lxvw4x
incorrectly use the XForm_1 instruction format, rather than the
XX1Form instruction format. This is likely a pasto when creating
these instructions, which were based on lvx and so forth. This patch
uses the correct format.
The existing reformatting test (test/MC/PowerPC/vsx.s) missed this
because the two formats differ only in that XX1Form has an extension
to the target register field in bit 31. The tests for these
instructions used a target register of 7, so the default of 0 in bit
31 for XForm_1 didn't expose a problem. For register numbers 32-63
this would be noticeable. I've changed the test to use higher
register numbers to verify my change is effective.
llvm-svn: 219416
No functional change.
This is the current AVX512_maskable multiclass hierarchy:
maskable_custom
/ \
/ \
maskable_common maskable_in_asm
/ \
/ \
maskable maskable_3src
llvm-svn: 219363
This adds the Pat<>'s for the intrinsics. These are necessary because we
don't lower these intrinsics to SDNodes but match them directly. See the
rational in the previous commit.
llvm-svn: 219362
These derive from the new asm-only masking definitions.
Unfortunately I wasn't able to find a ISel pattern that we could legally
generate for the masking variants. The problem is that since the destination
is v4* we would need VK4 register classes and v4i1 value types to express the
masking. These are however not legal types/classes in AVX512f but only in VL,
so things get complicated pretty quickly. We can revisit this question later
if we have a more pressing need to express something like this.
So the ISel patterns are empty for the masking instructions and the next patch
will add Pat<>s instead to match the intrinsics calls with instructions.
llvm-svn: 219361
No functional change.
No change in X86.td.expanded except for the appearance of the new attributes.
The new attributes will be used in the subsequent patch.
llvm-svn: 219360
Summary:
I had forgotten to check for NotSlowIncDec in the patterns that can generate
inc/dec for the above pattern (added in D4796).
This currently applies to Atom Silvermont, KNL and SKX.
Test Plan: New checks on atomic_mi.ll
Reviewers: jfb, nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5677
llvm-svn: 219336
This must be enforced for all v6M cores, not just the cortex-m0,
irregardless of the user-specified alignment.
Patch by Charlie Turner.
llvm-svn: 219300
Summary:
Fix pr21099
The pseudocode of what we were doing (spread through two functions) was:
if (operand.doesNotFitIn32Bits())
Opc.initializeWithFoo();
if (operand < 0)
operand = -operand;
if (operand.doesFitIn8Bits())
Opc.initializeWithBar();
else if (operand.doesFitIn32Bits())
Opc.initializeWithBlah();
doStuff(Opc);
So for operand == INT32_MIN, Opc was never initialized because the operand changes
from fitting in 32 bits to not fitting, causing the various bugs/error messages
noted by pr21099.
This patch adds an extra test at the beginning for this case, and an
llvm_unreachable to have better error message if the operand ends up
not fitting in 32-bits at the end.
Test Plan: new test + make check
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5655
llvm-svn: 219257
The main reason for this is that the MCAsmInfo class,
which we were previously using as the base class, sets
PrivateGlobalPrefix to "L", which causes all global
functions that start with L to be treated as local symbols.
MCAsmInfoELF sets PrivateGlobalPrefix to ".L", which is what
we want, and it is probably a good idea to use this as the
base class anyway, since we are emitting ELF binaries.
llvm-svn: 219237
Added a FIXME coment instead, we need to handle the case where the
two DS instructions being compared have different numbers of operands.
llvm-svn: 219236
Summary:
According to the ABI documentation, f128 and {f128} should both be returned
in $f0 and $f2. However, this doesn't match GCC's behaviour which is to
return f128 in $f0 and $f2, but {f128} in $f0 and $f1.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5578
llvm-svn: 219196
Unfortunately, this isn't easy to fix since there's no simple way to figure out from the disassembler tables whether the W-bit is being used to select a 64-bit GPR or if its a required part of the opcode. The fix implemented here just looks for "64" in the instruction name and ignores the W-bit in 32-bit mode if its present.
Fixes PR21169.
llvm-svn: 219194
The code already folds sign-/zero-extends, but only if they are arguments to
mul and shift instructions. This extends the code to also fold them when they
are direct inputs.
llvm-svn: 219187
Tiny enhancement to the address computation code to also fold sub instructions
if the rhs is constant and can be folded into the offset.
llvm-svn: 219186
This commit fixes an issue with sign-/zero-extending loads that was discovered
by Richard Barton.
We use now the correct load instructions for sign-extending loads to 64bit. Also
updated and added more unit tests.
llvm-svn: 219185
These will make it easier to test further changes to the
code generation and optimization pipelines as those are
moved to subtargets initialized with target feature and
target cpu.
llvm-svn: 219106
This trades a (register-renamer-friendly) movaps for a floating point
/ integer domain cross. That is a very bad trade, even on architectures
where domain crossing is relatively fast. On any chip where there is
even a cycle stall, this is a Very Bad Idea. It doesn't even seem likely
to cause a spill to be introduced because the reason for the copy is to
destructively shuffle in place.
Thanks to Ben Kramer for fixing a bug in this code that my new shuffle
lowering exposed and highlighting that perhaps it should just go away.
=]
llvm-svn: 219090
new vector shuffle lowering.
This is loosely based on a patch by Marius Wachtler to the PR (thanks!).
I refactored it a bi to use std::count_if and a mutable array ref but
the core idea was exactly right. I also added some direct testing of
this case.
I believe PR21137 is now the only remaining regression.
llvm-svn: 219081
shuffles using AVX and AVX2 instructions. This fixes PR21138, one of the
few remaining regressions impacting benchmarks from the new vector
shuffle lowering.
You may note that it "regresses" many of the vperm2x128 test cases --
these were actually "improved" by the naive lowering that the new
shuffle lowering previously did. This regression gave me fits. I had
this patch ready-to-go about an hour after flipping the switch but
wasn't sure how to have the best of both worlds here and thought the
correct solution might be a completely different approach to lowering
these vector shuffles.
I'm now convinced this is the correct lowering and the missed
optimizations shown in vperm2x128 are actually due to missing
target-independent DAG combines. I've even written most of the needed
DAG combine and will submit it shortly, but this part is ready and
should help some real-world benchmarks out.
llvm-svn: 219079
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
It turns out this combine was always somewhat flawed -- there are cases
where nested VZEXT nodes *can't* be combined: if their types have
a mismatch that can be observed in the result. While none of these show
up in currently, once I switch to the new vector shuffle lowering a few
test cases actually form such nested VZEXT nodes. I've not come up with
any IR pattern that I can sensible write to exercise this, but it will
be covered by tests once I flip the switch.
llvm-svn: 219044
nodes to the DAG combining of them.
This will allow the combine to fire on both old vector shuffle lowering
and the new vector shuffle lowering and generally seems like a cleaner
design. I've trimmed down the code a bit and tried to make it and the
surrounding combine fairly clean while moving it around.
llvm-svn: 219042
the various ways in which blends can be used to do vector element
insertion for lowering with the scalar math instruction forms that
effectively re-blend with the high elements after performing the
operation.
This then allows me to bail on the element insertion lowering path when
we have SSE4.1 and are going to be doing a normal blend, which in turn
restores the last of the blends lost from the new vector shuffle
lowering when I got it to prioritize insertion in other cases (for
example when we don't *have* a blend instruction).
Without the patterns, using blends here would have regressed
sse-scalar-fp-arith.ll *completely* with the new vector shuffle
lowering. For completeness, I've added RUN-lines with the new lowering
here. This is somewhat superfluous as I'm about to flip the default, but
hey, it shows that this actually significantly changed behavior.
The patterns I've added are just ridiculously repetative. Suggestions on
making them better very much welcome. In particular, handling the
commuted form of the v2f64 patterns is somewhat obnoxious.
llvm-svn: 219033
perform a load to use blendps rather than movss when it is available.
For non-loads, blendps is *much* faster. It can execute on two ports in
Sandy Bridge and Ivy Bridge, and *three* ports on Haswell. This fixes
one of the "regressions" from aggressively taking the "insertion" path
in the new vector shuffle lowering.
This does highlight one problem with blendps -- it isn't commuted as
heavily as it should be. That's future work though.
llvm-svn: 219022
C++14 adds new builtin signatures for 'operator delete'. This change allows
new/delete pairs to be removed in C++14 onwards, as they were in C++11 and
before.
llvm-svn: 219014
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends. During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.
However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node. In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE. Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.
Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat. Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node). We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed. On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.
I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask. This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user. Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).
So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE. This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly. (Previous patches used HandleSDNode to detect the
CSE but that's not practical here). The listener is only installed on X86.
I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc. The only thing we pay for is the
creation of the listener. The callback never ever triggers in spec2k since
this is a corner case.
Fixes rdar://problem/18206171
llvm-svn: 219009
Summary:
hwsync is only required for seq_cst fences, acquire and release one can use
the cheaper lwsync.
Test Plan: Added some cases to atomics.ll + make check-all
Reviewers: jfb, wschmidt
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5317
llvm-svn: 218995
Summary:
The register names t4-t7 are not available in the N32 and N64 ABIs.
This patch prints a warning, when those names are used in N32/64,
along with a fix-it with the correct register names.
Patch by Vasileios Kalintiris
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5272
llvm-svn: 218989
Adding and modifying CMakeLists.txt files to run unit tests under
unittests/Target/* if the directory exists. Adding basic unit test to check
that code emitter object can be retrieved.
Differential Revision: http://reviews.llvm.org/D5523
Change by: Colin LeMahieu
llvm-svn: 218986
and MOVSD nodes for single element vector inserts.
This is particularly important because a number of patterns in the
backend detect these patterns and leverage them to simplify things. It
also fixes quite a few of the insertion bad code examples. However, it
regresses a specific area: when available, blendps and blendpd are
*dramatically* faster than movss and movsd respectively. But it doesn't
really work to form the blend logic first because the blends *aren't* as
crazy efficient when the data is coming from memory anyways, and thus
will have a movss or movsd regardless. Also, doing that would block
a bunch of the patterns that this is designed to hit.
So my plan is to go into the patterns for lowering MOVSS and MOVSD and
lower them via blends when available. However that's a pretty invasive
restructuring so it will need to be a follow-up patch.
I have already gone into the patterns to lower MOVSS and MOVSD from
memory using MOVLPD, etc. Without that, several of the test cases
I already have regress.
llvm-svn: 218985
That commit was introduced in order to help investigate a problem in ARM
codegen breaking from commit 202304 (Add a limit to the heuristic that register
allocates instructions in local order). Recent analisys indicated that the
problem no longer exists, so I'm reverting this change.
See PR18996.
llvm-svn: 218981
lowering to handle the potential mirroring of 2-element vectors (because
we can't reliably sort them one way) in the caller rather than in the
insertion logic.
This will simplify things considerably as more ways to fail to match the
insertion are added because now we have a nice try and retry point.
llvm-svn: 218980
lowering to match VZEXT_MOVL patterns.
I hadn't realized that these had sufficient pattern smarts in the
backend to lower zext-ing from the low element of a vector without it
being a scalar_to_vector node. They do, and this is how to match a bunch
of patterns for movq, movss, etc.
There is a weird propensity to end up using pshufd to place the element
afterward even though it means domain crossing (or rather, to use
xorps+movss to zext the element rather than movq) but that's an
orthogonal problem with VZEXT_MOVL that someone should probably look at.
llvm-svn: 218977
element types to form illegal vector types.
I've added a special SSE1 test case here that makes sure we don't break
this going forward.
llvm-svn: 218974
No functional change intended.
Very similar to the change I made for subvector extract in r218480.
test/CodeGen/X86/avx512-insert-extract.ll covers this.
llvm-svn: 218928
Older Book-E cores, such as the PPC 440, support only msync (which has the same
encoding as sync 0), but not any of the other sync forms. Newer Book-E cores,
however, do support sync, and for performance reasons we should allow the use
of the more-general form.
This refactors msync use into its own feature group so that it applies by
default only to older Book-E cores (of the relevant cores, we only have
definitions for the PPC440/450 currently).
llvm-svn: 218923
Summary:
Atomic loads and store of up to the native size (32 bits, or 64 for PPC64)
can be lowered to a simple load or store instruction (as the synchronization
is already handled by AtomicExpand, and the atomicity is guaranteed thanks to
the alignment requirements of atomic accesses). This is exactly what this patch
does. Previously, these were implemented by complex
load-linked/store-conditional loops.. an obvious performance problem.
For example, this patch turns
```
define void @store_i8_unordered(i8* %mem) {
store atomic i8 42, i8* %mem unordered, align 1
ret void
}
```
from
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
rlwinm r2, r3, 3, 27, 28
li r4, 42
xori r5, r2, 24
rlwinm r2, r3, 0, 0, 29
li r3, 255
slw r4, r4, r5
slw r3, r3, r5
and r4, r4, r3
LBB4_1: ; =>This Inner Loop Header: Depth=1
lwarx r5, 0, r2
andc r5, r5, r3
or r5, r4, r5
stwcx. r5, 0, r2
bne cr0, LBB4_1
; BB#2:
blr
```
into
```
_store_i8_unordered: ; @store_i8_unordered
; BB#0:
li r2, 42
stb r2, 0(r3)
blr
```
which looks like a pretty clear win to me.
Test Plan:
fixed the tests + new test for indexed accesses + make check-all
Reviewers: jfb, wschmidt, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5587
llvm-svn: 218922
Do not eliminate the frame pointer if there is a stackmap or patchpoint in the
function. All stackmap references should be FP relative.
This fixes PR21107.
llvm-svn: 218920
elements as well as integer elements in order to form simpler shuffle
patterns.
This is the primary reason why we were failing to match some of the
2-and-2 floating point shuffles such as PR21140. Even after fixing this
we need to support some extra patterns in the backend in order to match
the resulting X86ISD::UNPCKL nodes into the correct instructions. This
commit should fix PR21140 and includes more comprehensive testing of
insertion patterns in v4 shuffles.
Not all of the added tests are beautiful. For example, we don't have
clever instructions to insert-via-load in the integer domain. There are
also some places where we aren't sufficiently cunning with our use of
movq and movd, but that's future work.
llvm-svn: 218911
matching and lowering 64-bit insertions.
The first problem was that we weren't looking through bitcasts to
discover that we *could* lower as insertions. Once fixed, we in turn
weren't looking through bitcasts to discover that we could fold a load
into the lowering. Once fixed, we weren't forming a SCALAR_TO_VECTOR
node around the inserted element and instead were passing a scalar to
a DAG node that expected a vector. It turns out there are some patterns
that will "lower" this into the correct asm, but the rest of the X86
backend is very unhappy with such antics.
This should fix a few more edge case regressions I've spotted going
through the regression test suite to enable the new vector shuffle
lowering.
llvm-svn: 218839
Negative FABS of either a scalar or vector should be handled the same way
on x86 with SSE/AVX: a single OR instruction of the FP operand with a
constant to light up the sign bit(s).
http://llvm.org/bugs/show_bug.cgi?id=20578
Differential Revision: http://reviews.llvm.org/D5201
llvm-svn: 218822
As with x86 and AArch64, certain situations can arise where we need to spill
CPSR in the middle of a calculation. These should be avoided where possible
(MRS/MSR is rather expensive), which ARM is actually better at than the other
two since it tries to Glue defs to uses, but as a last ditch effort, copying is
better than crashing.
rdar://problem/18011155
llvm-svn: 218789
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
Summary: Implement conversion of 64 to 32 bit floating point numbers (fptrunc) in mips fast-isel
Test Plan:
fptrunc.ll
checked also with 4 internal mips build bot flavors mip32r1/miprs32r2 and at -O0 and -O2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: rfuhler
Differential Revision: http://reviews.llvm.org/D5553
llvm-svn: 218785
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Summary: It's better if we have a consistent name for .cpload-related functions.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5437
llvm-svn: 218768
Currently, we only codegen the VRINT[APMXZR] and VCVT[BT] instructions
when targeting ARMv8, but they are actually present on any target with
FP-ARMv8. Note that FP-ARMv8 is called FPv5 when is is part of an
M-profile core, but they have the same instructions so we model them
both as FPARMv8 in the ARM backend.
llvm-svn: 218763
that keep cropping up in the regression test suite.
This also addresses one of the issues raised on the mailing list with
failing to form 'movsd' in as many cases as we realistically should.
There will be corresponding patches forthcoming for v4f32 at least. This
was a lot of fuss for a relatively small gain, but all the fuss was on
my end trying different ways of holding the pieces of the x86 fragment
patterns *just right*. Now that it works, the code is reasonably simple.
In the new test cases I'm adding here, v2i64 sticks out as just plain
horrible. I've not come up with any great ideas here other than that it
would be nice to recognize when we're *going* to take a domain crossing
hit and cross earlier to get the decent instructions. At least with AVX
it is slightly less silly....
llvm-svn: 218756
Nothing was relying on this and there are potentially some edge cases
that it would not be correct under. Removing it seems better than trying
to "fix" it as nothing was relying on it.
llvm-svn: 218755
The A64 instruction set includes a generic register syntax for accessing
implementation-defined system registers. The syntax for these registers is:
S<op0>_<op1>_<CRn>_<CRm>_<op2>
The encoding space permitted for implementation-defined system registers
is:
op0 op1 CRn CRm op2
11 xxx 1x11 xxxx xxx
The full encoding space can now be accessed:
op0 op1 CRn CRm op2
xx xxx xxxx xxxx xxx
This is useful to anyone needing to write assembly code supporting new
system registers before the assembler has learned the official names for
them.
llvm-svn: 218753
Summary: The natual vector cast node (similar to bitcast) AArch64ISD::NVCAST
was introduced in r217159 and r217138. This patch adds a missing cast from
v2f32 to v1i64 which is causing some compilation failures. Also added test
cases to cover various modimm types and BUILD_VECTORs with i64 elements.
llvm-svn: 218751
The Cortex-M7 has 3 options for its FPU: none, FPv5-SP-D16 and
FPv5-DP-D16. FPv5 has the same instructions as FP-ARMv8, so it can be
modelled using the same target feature, and all double-precision
operations are already disabled by the fp-only-sp target features.
llvm-svn: 218747
doesn't generate lazy binding stub for a function whose address is taken in
the program.
Differential Revision: http://reviews.llvm.org/D5067
llvm-svn: 218744
in exposing the scalar value to the broadcast DAG fragment so that we
can catch even reloads and fold them into the broadcast.
This is somewhat magical I'm afraid but seems to work. It is also what
the old lowering did, and I've switched an old test to run both
lowerings demonstrating that we get the same result.
Unlike the old code, I'm not lowering f32 or f64 scalars through this
path when we only have AVX1. The target patterns include pretty heinous
code to re-cast those as shuffles when the scalar happens to not be
spilled because AVX1 provides no broadcast mechanism from registers
what-so-ever. This is terribly brittle. I'd much rather go through our
generic lowering code to get this. If needed, we can add a peephole to
get even more opportunities to broadcast-from-spill-slots that are
exposed post-RA, but my suspicion is this just doesn't matter that much.
llvm-svn: 218734
the same speed as pshufd but we can fold loads into the pmovzx
instructions.
This fixes some regressions that came up in the regression test suite
for the new vector shuffle lowering.
llvm-svn: 218733
VPBROADCAST.
This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.
llvm-svn: 218724
It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...
llvm-svn: 218698
Note: This version fixed an issue with the TBZ/TBNZ instructions that were
generated in FastISel. The issue was that the 64bit version of TBZ (TBZX)
automagically sets the upper bit of the immediate field that is used to specify
the bit we want to test. To test for any of the lower 32bits we have to first
extract the subregister and use the 32bit version of the TBZ instruction (TBZW).
Original commit message:
Teach selectBranch to fold bit test and branch into a single instruction (TBZ or
TBNZ).
llvm-svn: 218693
No tests for omod since nothing uses it yet, but
this should get rid of the remaining annoying trailing
zeros after some instructions.
llvm-svn: 218692
Fixed lowering of this intrinsics in case when mask is v2i1 and v4i1.
Now cmp intrinsics lower in the following way:
(i8 (int_x86_avx512_mask_pcmpeq_q_128
(v2i64 %a), (v2i64 %b), (i8 %mask))) ->
(i8 (bitcast
(v8i1 (insert_subvector undef,
(v2i1 (and (PCMPEQM %a, %b),
(extract_subvector
(v8i1 (bitcast %mask)), 0))), 0))))
llvm-svn: 218669
a flawed direction and causing miscompiles. Read on for details.
Fundamentally, the premise of this patch series was to map
VECTOR_SHUFFLE DAG nodes into VSELECT DAG nodes for all blends because
we are going to *have* to lower to VSELECT nodes for some blends to
trigger the instruction selection patterns of variable blend
instructions. This doesn't actually work out so well.
In order to match performance with the existing VECTOR_SHUFFLE
lowering code, we would need to re-slice the blend in order to fit it
into either the integer or floating point blends available on the ISA.
When coming from VECTOR_SHUFFLE (or other vNi1 style VSELECT sources)
this works well because the X86 backend ensures that these types of
operands to VSELECT get sign extended into '-1' and '0' for true and
false, allowing us to re-slice the bits in whatever granularity without
changing semantics.
However, if the VSELECT condition comes from some other source, for
example code lowering vector comparisons, it will likely only have the
required bit set -- the high bit. We can't blindly slice up this style
of VSELECT. Reid found some code using Halide that triggers this and I'm
hopeful to eventually get a test case, but I don't need it to understand
why this is A Bad Idea.
There is another aspect that makes this approach flawed. When in
VECTOR_SHUFFLE form, we have very distilled information that represents
the *constant* blend mask. Converting back to a VSELECT form actually
can lose this information, and so I think now that it is better to treat
this as VECTOR_SHUFFLE until the very last moment and only use VSELECT
nodes for instruction selection purposes.
My plan is to:
1) Clean up and formalize the target pre-legalization DAG combine that
converts a VSELECT with a constant condition operand into
a VECTOR_SHUFFLE.
2) Remove any fancy lowering from VSELECT during *legalization* relying
entirely on the DAG combine to catch cases where we can match to an
immediate-controlled blend instruction.
One additional step that I'm not planning on but would be interested in
others' opinions on: we could add an X86ISD::VSELECT or X86ISD::BLENDV
which encodes a fully legalized VSELECT node. Then it would be easy to
write isel patterns only in terms of this to ensure VECTOR_SHUFFLE
legalization only ever forms the fully legalized construct and we can't
cycle between it and VSELECT combining.
llvm-svn: 218658
The sign-/zero-extension of the loaded value can be performed by the memory
instruction for free. If the result of the load has only one use and the use is
a sign-/zero-extend, then we emit the proper load instruction. The extend is
only a register copy and will be optimized away later on.
Other instructions that consume the sign-/zero-extended value are also made
aware of this fact, so they don't fold the extend too.
This fixes rdar://problem/18495928.
llvm-svn: 218653
No functionality change.
Makes the code more compact (see the FMA part).
This needs a new type attribute MemOpFrag in X86VectorVTInfo. For now I only
defined this in the simple cases. See the commment before the attribute.
Diff of X86.td.expanded before and after is empty except for the appearance of
the new attribute.
llvm-svn: 218637
map, this makes sure that we can compile the same code for two different
ABIs (hard and soft float) in the same module.
Update one testcase accordingly (and fix some confusing naming) and
add a new testcase as well with the ordering swapped which would
highlight the problem.
llvm-svn: 218632
Primarily refines all of the instructions with accurate latency
and micro-op information. Refinements largely focus on the NEON
instructions.
Additionally, a few advanced features are modeled, including
forwarding for MAC instructions and hazards for floating point SQRT
and DIV.
Lastly, the issue-width is reduced to three so that the scheduler
will better accommodate the narrower decode and dispatch width.
llvm-svn: 218627
This patch improves the target-specific cost model to better handle signed
division by a power of two. The immediate result is that this enables the SLP
vectorizer to do a better job.
http://reviews.llvm.org/D5469
PR20714
llvm-svn: 218607
nodes, and rely exclusively on its logic. This removes a ton of
duplication from the blend lowering and centralizes it in one place.
One downside is that it requires a bunch of hacks to make this work with
the current legalization framework. We have to manually speculate one
aspect of legalizing VSELECT nodes to get everything to work nicely
because the existing legalization framework isn't *actually* bottom-up.
The other grossness is that we somewhat duplicate the analysis of
constant blends. I'm on the fence here. If reviewers thing this would
look better with VSELECT when it has constant operands dumping over tho
VECTOR_SHUFFLE, we could go that way. But it would be a substantial
change because currently all of the actual blend instructions are
matched via patterns in the TD files based around VSELECT nodes (despite
them not being perfect fits for that). Suggestions welcome, but at least
this removes the rampant duplication in the backend.
llvm-svn: 218600
X86 target-specific DAG combining that tried to convert VSELECT nodes
into VECTOR_SHUFFLE nodes that it "knew" would lower into
immediate-controlled blend nodes.
Turns out, we have perfectly good lowering of all these VSELECT nodes,
and indeed that lowering already knows how to handle lowering through
BLENDI to immediate-controlled blend nodes. The code just wasn't getting
used much because this thing forced the world to go through the vector
shuffle lowering. Yuck.
This also exposes that I was too aggressive in avoiding domain crossing
in v218588 with that lowering -- when the other option is to expand into
two 128-bit vectors, it is worth domain crossing. Restore that behavior
now that we have nice tests covering it.
The test updates here fall into two camps. One is where previously we
ended up with an unsigned encoding of the blend operand and now we get
a signed encoding. In most of those places there were elaborate comments
explaining exactly what these operands really mean. Rather than that,
just switch these tests to use the nicely decoded comments that make it
obvious that the final shuffle matches.
The other updates are just removing pointless domain crossing by
blending integers with PBLENDW rather than BLENDPS.
llvm-svn: 218589
crossing and generally work more like the blend emission code in the new
vector shuffle lowering.
My goal is to have the new vector shuffle lowering just produce VSELECT
nodes that are either matched here to BLENDI or are legal and matched in
the .td files to specific blend instructions. That seems much cleaner as
there are other ways to produce a VSELECT anyways. =]
No *observable* functionality changed yet, mostly because this code
appears to be near-dead. The behavior of this lowering routine did
change though. This code being mostly dead and untestable will change
with my next commit which will also point some new tests at it.
llvm-svn: 218588
AVX-512.
There is no interesting logic yet. Everything ends up eventually
delegating to the generic code to split the vector and shuffle the
halves. Interestingly, that logic does a significantly better job of
lowering all of these types than the generic vector expansion code does.
Mostly, it lets most of the cases fall back to nice AVX2 code rather
than all the way back to SSE code paths.
Step 2 of basic AVX-512 support in the new vector shuffle lowering. Next
up will be to incrementally add direct support for the basic instruction
set to each type (adding tests first).
llvm-svn: 218585
assertion, making the name generic, and improving the documentation.
Step 1 in adding very primitive support for AVX-512. No functionality
changed yet.
llvm-svn: 218584
vectors.
Someone will need to build the AVX512 lowering, which should follow
AVX1 and AVX2 *very* closely for AVX512F and AVX512BW resp. I've added
a dummy test which is a port of the v8f32 and v8i32 tests from AVX and
AVX2 to v8f64 and v8i64 tests for AVX512F and AVX512BW. Hopefully this
is enough information for someone to implement proper lowering here. If
not, I'll be happy to help, but right now the AVX-512 support isn't
a priority for me.
llvm-svn: 218583
lowerings.
This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.
Anyways, thanks to Hal for helping me sort out what these *should* be.
llvm-svn: 218582
new vector shuffle target DAG combines -- it helps to actually test for
the value you want rather than just using an integer in a boolean
context.
Have I mentioned that I loathe implicit conversions recently? :: sigh ::
llvm-svn: 218576
of widening masks.
We can't widen a zeroing mask unless both elements that would be merged
are either zeroed or undef. This is the only way to widen a mask if it
has a zeroed element.
Also clean up the code here by ordering the checks in a more logical way
and by using the symoblic values for undef and zero. I'm actually torn
on using the symbolic values because the existing code is littered with
the assumption that -1 is undef, and moreover that entries '< 0' are the
special entries. While that works with the values given to these
constants, using the symbolic constants actually makes it a bit more
opaque why this is the case.
llvm-svn: 218575
I spotted this by inspection when debugging something else, so I have no
test case what-so-ever, and am not even sure it is possible to
realistically trigger the bug. But this is what was intended here.
llvm-svn: 218565
and in the target shuffle combining when trying to widen vector
elements.
Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.
There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.
I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.
llvm-svn: 218562
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.
This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.
llvm-svn: 218561
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
that managed to elude all of my fuzz testing historically. =/
Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.
llvm-svn: 218540
Instead of moving the first SGPR that is different than the first,
legalize the operand that requires the fewest moves if one
SGPR is used for multiple operands.
This saves extra moves and is also required for some instructions
which require that the same operand be used for multiple operands.
llvm-svn: 218532
Disable the SGPR usage restriction parts of the DAG legalizeOperands.
It now should only be doing immediate folding until it can be replaced
later. The real legalization work is now done by the other
SIInstrInfo::legalizeOperands
llvm-svn: 218531
The base implementation of commuteInstruction is used
in some cases, but it turns out this has been broken for a
long time since modifiers were inserted between the real operands.
The base implementation of commuteInstruction also fails on immediates,
which also needs to be fixed.
llvm-svn: 218530
e.g. v_cndmask_b32 requires the condition operand be an SGPR.
If one of the source operands were an SGPR, that would be considered
the one SGPR use and the condition operand would be illegally moved.
llvm-svn: 218529
This needs a test, but I'm not sure if it is currently possible and
I originally hit it due to a bug. Right now the only global address
operands have no reason to be VALU instructions, although it
theoretically could be a problem.
llvm-svn: 218528
No test since the current SIISelLowering::legalizeOperands
effectively hides this, and the general uses seem to only fire
on SALU instructions which don't have modifiers between
the operands.
When trying to use legalizeOperands immediately after
instruction selection, it now sees a lot more patterns
it did not see before which break on this.
llvm-svn: 218527
No tests hit this, and I don't see any way a GlobalAddress
node would survive beyond lowering on SI. It it would, the
move should probably be inserted by selection.
llvm-svn: 218526
layer of tie-breaking sorting, it really helps to check that you're in
a tie first. =] Otherwise the whole thing cycles infinitely. Test case
added, another one found through fuzz testing.
llvm-svn: 218523
AVX support.
New test cases included. Note that none of the existing test cases
covered these buggy code paths. =/ Also, it is clear from this that
SHUFPS and SHUFPD are the most bug prone shuffle instructions in x86. =[
These were all detected by fuzz-testing. (I <3 fuzz testing.)
llvm-svn: 218522
This patch makes the ARM backend transform 3 operand instructions such as
'adds/subs' to the 2 operand version of the same instruction if the first
two register operands are the same.
Example: 'adds r0, r0, #1' will is transformed to 'adds r0, #1'.
Currently for some instructions such as 'adds' if you try to assemble
'adds r0, r0, #8' for thumb v6m the assembler would throw an error message
because the immediate cannot be encoded using 3 bits.
The backend should be smart enough to transform the instruction to
'adds r0, #8', which allows for larger immediate constants.
Patch by Ranjeet Singh.
llvm-svn: 218521
The SSE rsqrt instruction (a fast reciprocal square root estimate) was
grouped in the same scheduling IIC_SSE_SQRT* class as the accurate (but very
slow) SSE sqrt instruction. For code which uses rsqrt (possibly with
newton-raphson iterations) this poor scheduling was affecting performances.
This patch splits off the rsqrt instruction from the sqrt instruction scheduling
classes and creates new IIC_SSE_RSQER* classes with latency values based on
Agner's table.
Differential Revision: http://reviews.llvm.org/D5370
Patch by Simon Pilgrim.
llvm-svn: 218517
Summary:
This will allow us to handle f128 arguments without duplicating code from
CCState::AnalyzeFormalArguments() or CCState::AnalyzeCallOperands().
No functional change.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5292
llvm-svn: 218509
based on the Function. This is currently used to implement
mips16 support in the mips backend via the existing module
pass resetting the subtarget.
Things to note:
a) This involved running resetTargetOptions before creating a
new subtarget so that code generation options like soft-float
could be recognized when creating the new subtarget. This is
to deal with initialization code in isel lowering that only
paid attention to the initial value.
b) Many of the existing testcases weren't using the soft-float
feature correctly. I've corrected these based on the check
values assuming that was the desired behavior.
c) The mips port now pays attention to the target-cpu and
target-features strings when generating code for a particular
function. I've removed these from one function where the
requested cpu and features didn't match the check lines in
the testcase.
llvm-svn: 218492
No functional change.
I initially thought that pulling the Pat<> into the instruction pattern was
not possible because it was doing a transform on the index in order to convert
it from a per-element (extract_subvector) index into a per-chunk (vextract*x4)
index.
Turns out this also works inside the pattern because the vextract_extract
PatFrag has an OperandTransform EXTRACT_get_vextract{128,256}_imm, so the
index in $idx goes through the same conversion.
The existing test CodeGen/X86/avx512-insert-extract.ll extended in the
previous commit provides coverage for this change.
llvm-svn: 218480
No functional change.
These are now implemented as two levels of multiclasses heavily relying on the
new X86VectorVTInfo class. The multiclass at the first level that is called
with float or int provides the 128 or 256 bit subvector extracts. The second
level provides the register and memory variants and some more Pat<>s.
I've compared the td.expanded files before and after. One change is that
ExeDomain for 64x4 is SSEPackedDouble now. I think this is correct, i.e. a
bugfix.
(BTW, this is the change that was blocked on the recent tablegen fix. The
class-instance values X86VectorVTInfo inside vextract_for_type weren't
properly evaluated.)
Part of <rdar://problem/17688758>
llvm-svn: 218478
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
llvm-svn: 218455
These instructions do not indicate they are extendable or the
number of bits in the extendable operand. Rename to match
architected names. Add a testcase for the intrinsics.
llvm-svn: 218453
Summary:
The N32/N64 ABI's require that structs passed in registers are laid out
such that spilling the register with 'sd' places the struct at the lowest
address. For little endian this is trivial but for big-endian it requires
that structs are shifted into the upper bits of the register.
We also require that structs passed in registers have the 'inreg'
attribute for big-endian N32/N64 to work correctly. This is because the
tablegen-erated calling convention implementation only has access to the
lowered form of struct arguments (one or more integers of up to 64-bits
each) and is unable to determine the original type.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5286
llvm-svn: 218451
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.
This patch also fixes the validation routines for NEON splat immediates which
were wrong.
Fixes PR20702.
llvm-svn: 218450
v4f64 and v8f32 shuffles when they are lane-crossing. We have fully
general lane-crossing permutation functions in AVX2 that make this easy.
Part of this also changes exactly when and how these vectors are split
up when we don't have AVX2. This isn't always a win but it usually is
a win, so on the balance I think its better. The primary regressions are
all things that just need to be fixed anyways such as modeling when
a blend can be completely accomplished via VINSERTF128, etc.
Also, this highlights one of the few remaining big features: we do
a really poor job of inserting elements into AVX registers efficiently.
This completes almost all of the big tricks I have in mind for AVX2. The
only things left that I plan to add:
1) element insertion smarts
2) palignr and other fairly specialized lowerings when they happen to
apply
llvm-svn: 218449
256-bit vectors with lane-crossing.
Rather than immediately decomposing to 128-bit vectors, try flipping the
256-bit vector lanes, shuffling them and blending them together. This
reduces our worst case shuffle by a pretty significant margin across the
board.
llvm-svn: 218446
The Thumb2 BXJ instruction (Branch and Exchange Jazelle) is not
defined for v7M or v8A. It is defined for all other Thumb2-supporting
architectures (v6T2, v7A and v7R).
llvm-svn: 218445
lowering where it only used the mask of the low 128-bit lane rather than
the entire mask.
This allows the new lowering to correctly match the unpack patterns for
v8i32 vectors.
For reference, the reason that we check for the the entire mask rather
than checking the repeated mask is because the repeated masks don't
abide by all of the invariants of normal masks. As a consequence, it is
safer to use the full mask with functions like the generic equivalence
test.
llvm-svn: 218442
reduce the amount of checking we do here.
The first realization is that only non-crossing cases between 128-bit
lanes are handled by almost the entire function. It makes more sense to
handle the crossing cases first.
THe second is that until we actually are going to generate fancy shared
lowering strategies that use the repeated semantics of the v8i16
lowering, we should waste time checking for repeated masks. It is
simplest to directly test for the entire unpck masks anyways, so we
gained nothing from this.
This also matches the structure of v32i8 more closely.
No functionality changed here.
llvm-svn: 218441
lowering.
This completes the basic AVX2 feature support, but there are still some
improvements I'd like to do to really get the last mile of performance
here.
llvm-svn: 218440
for this now.
Should prevent folks from running afoul of this and not knowing why
their code won't instruction select the way I just did...
llvm-svn: 218436
missing test cases for it.
Unsurprisingly, without test cases, there were bugs here. Surprisingly,
this bug wasn't caught at compile time. Yep, there is an X86ISD::BLENDV.
It isn't wired to anything. Oops. I'll fix than next.
llvm-svn: 218434
lowering.
This also implements the fancy blend lowering for v16i16 using AVX2 and
teaches the X86 backend to print shuffle masks for 256-bit PSHUFB
and PBLENDW instructions. It also makes the mask decoding correct for
PBLENDW instructions. The yaks, they are legion.
Tests are updated accordingly. There are some missing tests for the
VBLENDVB lowering, but I'll add those in a follow-up as this commit has
accumulated enough cruft already.
llvm-svn: 218430
into unblended shuffles and a blend.
This is the consistent fallback for the lowering paths that have fast
blend operations available, and its getting quite repetitive.
No functionality changed.
llvm-svn: 218399
If it's safe to clobber the condition flags, we can do a few extra things:
it's then possible to reset the base register writeback using a SUBS, so
we can try to merge even if the base register isn't dead after the merged
instruction.
This is effectively a (heavily bug-fixed) rewrite of r208992.
llvm-svn: 218386
v7M only allows the 16-bit encoding of the 'cps' (Change Processor
State) instruction, and does not have the 32-bit encoding which is
valid from v6T2 onwards.
llvm-svn: 218382
pool data being loaded into a vector register.
The comments take the form of:
# ymm0 = [a,b,c,d,...]
# xmm1 = <x,y,z...>
The []s are used for generic sequential data and the <>s are used for
specifically ConstantVector loads. Undef elements are printed as the
letter 'u', integers in decimal, and floating point values as floating
point values. Suggestions on improving the formatting or other aspects
of the display are very welcome.
My primary use case for this is to be able to FileCheck test masks
passed to vector shuffle instructions in-register. It isn't fantastic
for that (no decoding special zeroing semantics or other tricks), but it
at least puts the mask onto an instruction line that could reasonably be
checked. I've updated many of the new vector shuffle lowering tests to
leverage this in their test cases so that we're actually checking the
shuffle masks remain as expected.
Before implementing this, I tried a *bunch* of different approaches.
I looked into teaching the MCInstLower code to scan up the basic block
and find a definition of a register used in a shuffle instruction and
then decode that, but this seems incredibly brittle and complex.
I talked to Hal a lot about the "right" way to do this: attach the raw
shuffle mask to the instruction itself in some form of unencoded
operands, and then use that to emit the comments. I still think that's
the optimal solution here, but it proved to be beyond what I'm up for
here. In particular, it seems likely best done by completing the
plumbing of metadata through these layers and attaching the shuffle mask
in metadata which could have fully automatic dropping when encoding an
actual instruction.
llvm-svn: 218377
attempt didn't work out so well. It looks like it will be much better
for introducing extra logic to find a shuffle mask if the finding logic
is totally separate. This also makes it easy to sink the opcode logic
completely out of the routine so we don't re-dispatch across it.
Still no functionality changed.
llvm-svn: 218363
asm. This can be somewhat expensive and there is no reason to do it
outside of tests or debugging sessions. I'm also likely to make it
significantly more expensive to support more styles of shuffles.
llvm-svn: 218362
from the MachineInstr into the caller which is already doing a switch
over the instruction.
This will make it more clear how to compute different operands to feed
the comment selection for example.
Also, in a drive-by-fix, don't append an empty comment string (which is
a no-op ultimately).
No functionality changed.
llvm-svn: 218361
vector shuffles.
This is just the beginning by hoisting it into its own function and
making use of early exit to dramatically simplify the flow of the
function. I'm going to be incrementally refactoring this until it is
a bit less magical how this applies to other instructions, and I can
teach it how to dig a shuffle mask out of a register. Then I plan to
hook it up to VPERMD so we get our mask comments for it.
No functionality changed yet.
llvm-svn: 218357
The previous implementation was extending the live range of SGPRs
by modifying the live intervals directly. This was causing a lot
of machine verification errors when the machine scheduler was enabled.
The new implementation adds pseudo instructions with implicit uses to
extend the live ranges of SGPRs, which works much better.
llvm-svn: 218351
Correctly handle special registers: EXEC, EXEC_LO, EXEC_HI, VCC_LO,
VCC_HI, and M0. The previous implementation would assertion fail
when passed these registers.
llvm-svn: 218349
VGPRs are spilled to LDS. This still needs more testing, but
we need to at least enable it at -O0, because the fast register
allocator spills all registers that are live at the end of blocks
and without this some future commits will break the
flat-address-space.ll test.
v2: Only calculate thread id once
v3: Move insertion of spill instructions to
SIRegisterInfo::eliminateFrameIndex()
llvm-svn: 218348
the native AVX2 instructions.
Note that the test case is really frustrating here because VPERMD
requires the mask to be in the register input and we don't produce
a comment looking through that to the constant pool. I'm going to
attempt to improve this in a subsequent commit, but not sure if I will
succeed.
llvm-svn: 218347
detection. It was incorrectly handling undef lanes by actually treating
an undef lane in the first 128-bit lane as a *numeric* shuffle value.
Fortunately, this almost always DTRT and disabled detecting repeated
patterns. But not always. =/ This patch introduces a much more
principled approach and fixes the miscompiles I spotted by inspection
previously.
llvm-svn: 218346
shuffles using the AVX2 instructions. This is the first step of cutting
in real AVX2 support.
Note that I have spotted at least one bug in the test cases already, but
I suspect it was already present and just is getting surfaced. Will
investigate next.
llvm-svn: 218338
e.g., add w1, w2, w3, lsl #(2 - 1)
This sort of thing comes up in pre-processed assembly playing macro games.
Still validate that it's an assembly time constant. The early exit error check
was just a bit overzealous and disallowed a left paren.
rdar://18430542
llvm-svn: 218336
add VPBLENDD to the InstPrinter's comment generation so we get nice
comments everywhere.
Now that we have the nice comments, I can see the bug introduced by
a silly typo in the commit that enabled VPBLENDD, and have fixed it. Yay
tests that are easy to inspect.
llvm-svn: 218335
There are new register classes VCSrc_* which represent operands that
can take an SGPR, VGPR or inline constant. The VSrc_* class is now used
to represent operands that can take an SGPR, VGPR, or a 32-bit
immediate.
This allows us to have more accurate checks for legality of
immediates, since before we had no way to distinguish between operands
that supported any 32-bit immediate and operands which could only
support inline constants.
llvm-svn: 218334
Summary:
AtomicExpand already had logic for expanding wide loads and stores on LL/SC
architectures, and for expanding wide stores on CmpXchg architectures, but
not for wide loads on CmpXchg architectures. This patch fills this hole,
and makes use of this new feature in the X86 backend.
Only one functionnal change: we now lose the SynchScope attribute.
It is regrettable, but I have another patch that I will submit soon that will
solve this for all of AtomicExpand (it seemed better to split it apart as it
is a different concern).
Test Plan: make check-all (lots of tests for this functionality already exist)
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5404
llvm-svn: 218332
Summary:
This patch makes use of AtomicExpandPass in Power for inserting fences around
atomic as part of an effort to remove fence insertion from SelectionDAGBuilder.
As a big bonus, it lets us use sync 1 (lightweight sync, often used by the mnemonic
lwsync) instead of sync 0 (heavyweight sync) in many cases.
I also added a test, as there was no test for the barriers emitted by the Power
backend for atomic loads and stores.
Test Plan: new test + make check-all
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5180
llvm-svn: 218331
Summary:
The goal is to eventually remove all the code related to getInsertFencesForAtomic
in SelectionDAGBuilder as it is wrong (designed for ARM, not really portable, works
mostly by accident because the backends are overly conservative), and repeats the
same logic that goes in emitLeading/TrailingFence.
In this patch, I make AtomicExpandPass insert the fences as it knows better
where to put them. Because this requires getting the fences and not just
passing an IRBuilder around, I had to change the return type of
emitLeading/TrailingFence.
This code only triggers on ARM for now. Because it is earlier in the pipeline
than SelectionDAGBuilder, it triggers and lowers atomic accesses to atomic so
SelectionDAGBuilder does not add barriers anymore on ARM.
If this patch is accepted I plan to implement emitLeading/TrailingFence for all
backends that setInsertFencesForAtomic(true), which will allow both making them
less conservative and simplifying SelectionDAGBuilder once they are all using
this interface.
This should not cause any functionnal change so the existing tests are used
and not modified.
Test Plan: make check-all, benefits from existing tests of atomics on ARM
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5179
llvm-svn: 218329
VPBLENDD where appropriate even on 128-bit vectors.
According to Agner's tables, this instruction is significantly higher
throughput (can execute on any port) on Haswell chips so we should
aggressively try to form it when available.
Sadly, this loses our delightful shuffle comments. I'll add those back
for VPBLENDD next.
llvm-svn: 218322
undef in the shuffle mask. This shows up when we're printing comments
during lowering and we still have an IR-level constant hanging around
that models undef.
A nice consequence of this is *much* prettier test cases where the undef
lanes actually show up as undef rather than as a particular set of
values. This also allows us to print shuffle comments in cases that use
undef such as the recently added variable VPERMILPS lowering. Now those
test cases have nice shuffle comments attached with their details.
The shuffle lowering for PSHUFB has been augmented to use undef, and the
shuffle combining has been augmented to comprehend it.
llvm-svn: 218301
trick that I missed.
VPERMILPS has a non-immediate memory operand mode that allows it to do
asymetric shuffles in the two 128-bit lanes. Use this rather than two
shuffles and a blend.
However, it turns out the variable shuffle path to VPERMILPS (and
VPERMILPD, although that one offers no functional differenc from the
immediate operand other than variability) wasn't even plumbed through
codegen. Do such plumbing so that we can reasonably emit
a variable-masked VPERMILP instruction. Also plumb basic comment parsing
and printing through so that the tests are reasonable.
There are still a few tests which don't show the shuffle pattern. These
are tests with undef lanes. I'll teach the shuffle decoding and printing
to handle undef mask entries in a follow-up. I've looked at the masks
and they seem reasonable.
llvm-svn: 218300
td pattern). Currently we only model the immediate operand variation of
VPERMILPS and VPERMILPD, we should make that clear in the pseudos used.
Will be adding support for the variable mask variant in my next commit.
llvm-svn: 218282
Shift-left immediate with sign-/zero-extensions also works for boolean values.
Update the assert and the test cases to reflect that fact.
This should fix a bug found by Chad.
llvm-svn: 218275
Summary:
This fixes a couple of issues. One is ensuring that AOK_Label rewrite
rules have a lower priority than AOK_Skip rules, as AOK_Skip needs to
be able to skip the brackets properly. The other part of the fix ensures
that we don't overwrite Identifier when looking up the identifier, and
that we use the locally available information to generate the AOK_Label
rewrite in ParseIntelIdentifier. Doing that in CreateMemForInlineAsm
would be problematic since the Start location there may point to the
beginning of a bracket expression, and not necessarily the beginning of
an identifier.
This also means that we don't need to carry around the InternlName field,
which helps simplify the code.
Test Plan: This will be tested on the clang side.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5445
llvm-svn: 218270
We generate broadcast instructions on CPUs with AVX2 to load some constant splat vectors.
This patch should preserve all existing behavior with regular optimization levels,
but also use splats whenever possible when optimizing for *size* on any CPU with AVX or AVX2.
The tradeoff is up to 5 extra instruction bytes for the broadcast instruction to save
at least 8 bytes (up to 31 bytes) of constant pool data.
Differential Revision: http://reviews.llvm.org/D5347
llvm-svn: 218263
This reverts commit r218254.
The global_atomics.ll test fails with asserts disabled. For some reason,
the compiler fails to produce the atomic no return variants.
llvm-svn: 218257
BypassSlowDiv is used by codegen prepare to insert a run-time
check to see if the operands to a 64-bit division are really 32-bit
values and if they are it will do 32-bit division instead.
This is not useful for R600, which has predicated control flow since
both the 32-bit and 64-bit paths will be executed in most cases. It
also increases code size which can lead to more instruction cache
misses.
llvm-svn: 218252
ISD::MUL and ISD:UMULO are the same except that UMULO sets an overflow
bit. Since we aren't using the overflow bit, we should use ISD::MUL.
llvm-svn: 218251
Summary:
Update segmented-stacks*.ll tests with x32 target case and make
corresponding changes to make them pass.
Test Plan: tests updated with x32 target
Reviewers: nadav, rafael, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D5245
llvm-svn: 218247
The PSHUFB mask decode routine used to assert if the mask index was out of
range (<0 or greater than the size of the vector). The problem is, we can
legitimately have a PSHUFB with a large index using intrinsics. The
instruction only uses the least significant 4 bits. This change removes the
assert and masks the index to match the instruction behaviour.
llvm-svn: 218242
The implementation of the callback in clang's Sema will return an
internal name for labels.
Test Plan: Will be tested in clang.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4587
llvm-svn: 218229
a more sane approach to AVX2 support.
Fundamentally, there is no useful way to lower integer vectors in AVX.
None. We always end up with a VINSERTF128 in the end, so we might as
well eagerly switch to the floating point domain and do everything
there. This cleans up lots of weird and unlikely to be correct
differences between integer and floating point shuffles when we only
have AVX1.
The other nice consequence is that by doing things this way we will make
it much easier to write the integer lowering routines as we won't need
to duplicate the logic to check for AVX vs. AVX2 in each one -- if we
actually try to lower a 256-bit vector as an integer vector, we have
AVX2 and can rely on it. I think this will make the code much simpler
and more comprehensible.
Currently, I've disabled *all* support for AVX2 so that we always fall
back to AVX. This keeps everything working rather than asserting. That
will go away with the subsequent series of patches that provide
a baseline AVX2 implementation.
Please note, I'm going to implement AVX2 *without access to hardware*.
That means I cannot correctness test this path. I will be relying on
those with access to AVX2 hardware to do correctness testing and fix
bugs here, but as a courtesy I'm trying to sketch out the framework for
the new-style vector shuffle lowering in the context of the AVX2 ISA.
llvm-svn: 218228
input v8f32 shuffles which are not 128-bit lane crossing but have
different shuffle patterns in the low and high lanes. This removes most
of the extract/insert traffic that was unnecessary and is particularly
good at lowering cases where only one of the two lanes is shuffled at
all.
I've also added a collection of test cases with undef lanes because this
lowering is somewhat more sensitive to undef lanes than others.
llvm-svn: 218226
This is purely a plumbing patch. No functional changes intended.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
The first step is to add a target hook for RSQRTE, take the already target-independent code selfishly hoarded by PPC, and put it into DAGCombiner.
Next steps:
The code in DAGCombiner::BuildRSQRTE() should be refactored further; tests that exercise that logic need to be added.
Logic in PPCTargetLowering::BuildRSQRTE() should be hoisted into DAGCombiner.
X86 and AArch64 overrides for TargetLowering.BuildRSQRTE() should be added.
Differential Revision: http://reviews.llvm.org/D5425
llvm-svn: 218219
lowering when it can use a symmetric SHUFPS across both 128-bit lanes.
This required making the SHUFPS lowering tolerant of other vector types,
and adjusting our canonicalization to canonicalize harder.
This is the last of the clever uses of symmetry I've thought of for
v8f32. The rest of the tricks I'm aware of here are to work around
assymetry in the mask.
llvm-svn: 218216
a generic vector shuffle mask into a helper that isn't specific to the
other things that influence which choice is made or the specific types
used with the instruction.
No functionality changed.
llvm-svn: 218215
of a single element into a zero vector for v4f64 and v4i64 in AVX.
Ironically, there is less to see here because xor+blend is so crazy fast
that we can't really beat that to zero the high 128-bit lane.
llvm-svn: 218214
UNPCKHPS with AVX vectors by recognizing those patterns when they are
repeated for both 128-bit lanes.
With this, we now generate the exact same (really nice) code for
Quentin's avx_test_case.ll which was the most significant regression
reported for the new shuffle lowering. In fact, I'm out of specific test
cases for AVX lowering, the rest were AVX2 I think. However, there are
a bunch of pretty obvious remaining things to improve with AVX...
llvm-svn: 218213
important bits of cleverness: to detect and lower repeated shuffle
patterns between the two 128-bit lanes with a single instruction.
This patch just teaches it how to lower single-input shuffles that fit
this model using VPERMILPS. =] There is more that needs to happen here.
llvm-svn: 218211
v8f32 shuffles in the new vector shuffle lowering code.
This is very cheap to do and makes it much more clear that anything more
expensive but overlapping with this lowering should be selected
afterward (for example using AVX2's VPERMPS). However, no functionality
changed here as without this code we would fall through to create no-op
shuffles of each input and a blend. =]
llvm-svn: 218209
VBLENDPD over using VSHUFPD. While the 256-bit variant of VBLENDPD slows
down to the same speed as VSHUFPD on Sandy Bridge CPUs, it has twice the
reciprocal throughput on Ivy Bridge CPUs much like it does everywhere
for 128-bits. There isn't a downside, so just eagerly use this
instruction when it suffices.
llvm-svn: 218208
awkward conditions. The readability improvement of this will be even
more important as I generalize it to handle more types.
No functionality changed.
llvm-svn: 218205
128-bit lane crossings, not 'half' crossings. This came up in code
review ages ago, but I hadn't really addresesd it. Also added some
documentation for the helper.
No functionality changed.
llvm-svn: 218203
actual support for complex AVX shuffling tricks. We can do independent
blends of the low and high 128-bit lanes of an avx vector, so shuffle
the inputs into place and then do the blend at 256 bits. This will in
many cases remove one blend instruction.
The next step is to permute the low and high halves in-place rather than
extracting them and re-inserting them.
llvm-svn: 218202
single-input shuffles with doubles. This allows them to fold memory
operands into the shuffle, etc. This is just the analog to the v4f32
case in my prior commit.
llvm-svn: 218193
instruction for single-vector floating point shuffles. This in turn
allows the shuffles to fold a load into the instruction which is one of
the common regressions hit with the new shuffle lowering.
llvm-svn: 218190
tricky case of single-element insertion into the zero lane of a zero
vector.
We can't just use the same pattern here as we do in every other vector
type because the general insertion logic can handle insertion into the
non-zero lane of the vector. However, in SSE4.1 with v4f32 vectors we
have INSERTPS that is a much better choice than the generic one for such
lowerings. But INSERTPS can do lots of other lowerings as well so
factoring its logic into the general insertion logic doesn't work very
well. We also can't just extract the core common part of the general
insertion logic that is faster (forming VZEXT_MOVL synthetic nodes that
lower to MOVSS when they can) because VZEXT_MOVL is often *faster* than
a blend while INSERTPS is slower! So instead we do a restrictive
condition on attempting to use the generic insertion logic to narrow it
to those cases where VZEXT_MOVL won't need a shuffle afterward and thus
will do better than INSERTPS. Then we try blending. Then we go back to
INSERTPS.
This still doesn't generate perfect code for some silly reasons that can
be fixed by tweaking the td files for lowering VZEXT_MOVL to use
XORPS+BLENDPS when available rather than XORPS+MOVSS when the input ends
up in a register rather than a load from memory -- BLENDPSrr has twice
the reciprocal throughput of MOVSSrr. Don't you love this ISA?
llvm-svn: 218177
analysis used elsewhere. This removes the last duplicate of this logic.
Also simplify the code here quite a bit. No functionality changed.
llvm-svn: 218176
floating point types and use it for both v2f64 and v2i64 single-element
insertion lowering.
This fixes the last non-AVX performance regression test case I've gotten
of for the new vector shuffle lowering. There is obvious analogous
lowering for v4f32 that I'll add in a follow-up patch (because with
INSERTPS, v4f32 requires special treatment). After that, its AVX stuff.
llvm-svn: 218175
vector lanes can be modeled as zero with a call to the new function that
computes a bit-vector representing that information.
No functionality changed here, but will allow doing more clever things
with the zero-test.
llvm-svn: 218174
I just tried reproducing some of the optimization failures in README.txt in the
X86 backend, and many of them could not be reproduced. In general the entire
file appears quite bit-rotted, whatever interesting parts remain should be
moved to bugzilla, and the rest deleted. I did not spend the time to do that,
so I just deleted the few I tried reproducing which are obsolete, to save some
time to whoever will find the courage to do it.
llvm-svn: 218170
When looking through sign/zero-extensions the code would always assume there is
such an extension instruction and use the wrong operand for the address.
There was also a minor issue in the handling of 'AND' instructions. I
accidentially used a 'cast' instead of a 'dyn_cast'.
llvm-svn: 218161
In r217636, the value stored in KernelInfo.Num[VS]GPRSs was changed from
the highest GPR index used to the number of gprs in order to be
consistent with the name of the variable.
The code writing the config values still assumed that the value in this
variable was the highest GPR index used, which caused the compiler to
over report the number of GPRs being used.
https://bugs.freedesktop.org/show_bug.cgi?id=84089
llvm-svn: 218150
lowering to support both anyext and zext and to custom lower for many
different microarchitectures.
Using this allows us to get *exactly* the right code for zext and anyext
shuffles in all the vector sizes. For v16i8, the improvement is *huge*.
The new SSE2 test case added I refused to add before this because it was
sooooo muny instructions.
llvm-svn: 218143
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
llvm-svn: 218120
to undef lanes as well as defined widenable lanes. This dramatically
improves the lowering we use for undef-shuffles in a zext-ish pattern
for SSE2.
llvm-svn: 218115
shuffles that are zext-ing.
Not a lot to see here; the undef lane variant is better handled with
pshufd, but this improves the actual zext pattern.
llvm-svn: 218112
to the new vector shuffle lowering code.
This allows us to emit PMOVZX variants consistently for patterns where
it is a viable lowering. This instruction is both fast and allows us to
fold loads into it. This only hooks the new lowering up for i16 and i8
element widths, mostly so I could manage the change to the tests. I'll
add the i32 one next, although it is significantly less interesting.
One thing to note is that we already had some tests for these patterns
but those tests had far less horrible instructions. The problem is that
those tests weren't checking the strict start and end of the instruction
sequence. =[ As a consequence something changed in the lowering making
us generate *TERRIBLE* code for these patterns in SSE2 through SSSE3.
I've consolidated all of the tests and spelled out the madness that we
currently emit for these shuffles. I'm going to try to figure out what
has gone wrong here.
llvm-svn: 218102
The fix is slightly different then x86 (see r216117) because the number of values
attached to a return can vary even for a single returned value (e.g., f64 yields
two returned values).
<rdar://problem/18352998>
llvm-svn: 218076
Summary:
This patch was originally in D5304 (I could not find a way to reopen that revision).
It was accepted, commited and broke the build bots because the overloading of
the constructor of ArrayRef for braced initializer lists is not supported by all
toolchains. I then reverted it, and propose this fixed version that uses a plain
C array instead in makeDMB (that array is then converted implicitly to an
ArrayRef, but that is not behind an ifdef). Could someone confirm me whether
initialization lists for plain C arrays are supported by every toolchain used
to build llvm ? Otherwise I can just initialize the array in the old way:
args[0] = ...; .. ; args[5] = ...;
Below is the description of the original patch:
```
I had only tested this code for ARMv7 and ARMv8. This patch adds several
fallback paths if the processor does not support dmb ish:
- dmb sy if a cortex-M with support for dmb
- mcr p15, #0, r0, c7, c10, #5 for ARMv6 (special instruction equivalent to a DMB)
These fallback paths were chosen based on the code for fence seq_cst.
Thanks to luqmana for having noticed this bug.
```
Test Plan: Added more cases to atomic-load-store.ll + make check-all
Reviewers: jfb, t.p.northover, luqmana
Subscribers: llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D5386
llvm-svn: 218066
There is no purpose in using it for single-input shuffles as
pshufd is just as fast and doesn't tie the two operands. This removes
a substantial amount of wrong-domain blend operations in SSSE3 mode. It
also completes the usage of PALIGNR for integer shuffles and addresses
one of the test cases Quentin hit with the new vector shuffle lowering.
There is still the question of whether and when to use this for floating
point shuffles. It is faster than shufps or shufpd but in the integer
domain. I don't yet really have a good heuristic here for when to use
this instruction for floating point vectors.
llvm-svn: 218038
Summary:
The N32/N64 ABI's return f128 values in $f0 and $f2 for hard-float and $v0 and
$a0 for soft-float. The registers used in the soft-float case differ from the
usual $v0, and $v1 specified for return values.
Both cases were previously handled by duplicating the CCState::AnalyzeReturn()
and CCState::AnalyzeCallReturn() functions and modifying them to delegate to
a different assignment function for f128 and further replace the register type
for the hard-float case. There is a simpler way to do both of these.
We now use the common functions and select an initial assignment function based
on whether the original type is f128 or not. We then handle the hard-float case
using CCBitConvertToType<>.
No functional change.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5269
llvm-svn: 218036
When folding the intrinsic flag into the branch or select we also have to
consider the fact if the intrinsic got simplified, because it changes the
flag we have to check for.
llvm-svn: 218034
Small optimization in 'simplifyAddress'. When the offset cannot be encoded in
the load/store instruction, then we need to materialize the address manually.
The add instruction can encode a wider range of immediates than the load/store
instructions. This change tries to fold the offset into the add instruction
first before materializing the offset in a register.
llvm-svn: 218031
The 'AND' instruction could be used to mask out the lower 32 bits of a register.
If this is done inside an address computation we might be able to fold the
instruction into the memory instruction itself.
and x1, x1, #0xffffffff ---> ldrb x0, [x0, w1, uxtw]
ldrb x0, [x0, x1]
llvm-svn: 218030
Certain directives are unsupported on Windows (some of which could/should be
supported). We would not diagnose the use but rather crash during the emission
as we try to access the Target Streamer. Add an assertion to prevent creating a
NULL reference (which is not permitted under C++) as well as a test to ensure
that we can diagnose the disabled directives.
llvm-svn: 218014
PALIGNR. This just adds it to the v8i16 and v16i8 lowering steps where
it is completely unmatched. It also introduces the logic for detecting
rotation shuffle masks even in the presence of single input or blend
masks and arbitrarily undef lanes.
I've added fairly comprehensive tests for the matching logic in v8i16
because the tests at that size are much easier to write and manage.
I've not checked the SSE2 code generated for these tests because the
code is *horrible*. It is absolute madness. Testing it will just make
the test brittle without giving any interesting improvements in the
correctness confidence.
llvm-svn: 218013
Rather than relying on support for a specific directive to determine if we are
targeting MachO, explicitly check the output format.
As an additional bonus, cleanup the caret diagnostic for the non-MachO case and
avoid the spurious error caused by not discarding the statement.
llvm-svn: 218012
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
llvm-svn: 218004
For PPC targets, FastISel does not take the sign extension information into account when selecting return instructions whose operands are constants. A consequence of this is that the return of boolean values is not correct. This patch fixes the problem by evaluating the sign extension information also for constants, forwarding this information to PPCMaterializeInt which takes this information to drive the sign extension during the materialization.
llvm-svn: 217993
It is breaking the build on the buildbots but works fine on my machine, I revert
while trying to understand what happens (it appears to depend on the compiler used
to build, I probably used a C++11 feature that is not perfectly supported by some
of the buildbots).
This reverts commit feb3176c4d006f99af8b40373abd56215a90e7cc.
llvm-svn: 217973
This takes advanatage of the CBZ and CBNZ instruction to further optimize the
common null check pattern into a single instruction.
This is related to rdar://problem/18358882.
llvm-svn: 217972
Since read2 / write2 are emitted for 4-byte aligned 8-byte
accesses, these are seen by the scheduler.
The DAG scheduler is semi-deprecated, so just
ignore these for now.
llvm-svn: 217969
This adds the last two missing floating-point condition codes (FCMP_UEQ and
FCMP_ONE) also to the branch selection. In these two cases an additonal branch
instruction is required.
This also adds unit tests to checks all the different condition codes.
This is related o rdar://problem/18358882.
llvm-svn: 217966
Summary:
I had only tested this code for ARMv7 and ARMv8. This patch adds several
fallback paths if the processor does not support dmb ish:
- dmb sy if a cortex-M with support for dmb
- mcr p15, #0, r0, c7, c10, #5 for ARMv6 (special instruction equivalent to a DMB)
These fallback paths were chosen based on the code for fence seq_cst.
Thanks to luqmana for having noticed this bug.
Test Plan: Added more cases to atomic-load-store.ll + make check-all
Reviewers: jfb, t.p.northover, luqmana
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5304
llvm-svn: 217965
Only 1 decimal place should be printed for inline immediates.
Other constants should be hex constants.
Does not include f64 tests because folding those inline
immediates currently does not work.
llvm-svn: 217964
Instructions are now generally selected to the e64 forms originally,
and shrunk down later. Rename foldOperands to legalizeOperands,
since that's really most of what it tries to do.
llvm-svn: 217959
Summary: This directive is used to tell the assembler to reject DSP-specific instructions.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D5142
llvm-svn: 217946
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
llvm-svn: 217928