Summary:
It had a dependency on StringConvert and file reading code, which is not
in Utility. I've replaced that code by equivalent llvm operations.
I've added a unit test to demonstrate that parsing a file still works.
Reviewers: zturner, jingham
Subscribers: kubamracek, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34625
llvm-svn: 306394
Summary:
- Added API to access data types
-- integer, double, array, string, boolean and dictionary data types
-- Earlier user had to parse through the string output to get these
values
- Added Test cases for API testing
- Added new StructuredDataType enum in public include file
-- Replaced locally-defined enum in StructuredData.h with this new
one
-- Modified other internal files using this locally-defined enum
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: clayborg, lldb-commits
Reviewed By: clayborg
Subscribers: labath
Differential Revision: https://reviews.llvm.org/D33434
llvm-svn: 304138
It was returning const std::string& which was leading to
unnecessary copies all over the place, and preventing people
from doing things like Dict->GetValueForKeyAsString("foo", ref);
llvm-svn: 302875
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
print the path being requested.
Change the GetInfoItemByPathAsString docuemtnation in
the .i file to use docstring instead of autodoc so
the function signature is included in the python
help.
<rdar://problem/29999567>
llvm-svn: 293858
I added a "thread-stop-format" to distinguish between the form
that is just the thread info (since the stop printing immediately prints
the frame info) and one with more frame 0 info - which is useful for
"thread list" and the like.
I also added a frame.no-debug boolean to the format entities so you can
print frame information differently between frames with source info and those
without.
This closes https://reviews.llvm.org/D26383.
<rdar://problem/28273697>
llvm-svn: 286288
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The IsValid calls can try to reconstruct the thread & frame, which can
take various internal locks. This can cause A/B locking issues with
the Target lock, so these calls need to that the Target lock.
llvm-svn: 268828
This patch adds ThreadSanitizer support into LLDB:
- Adding a new InstrumentationRuntime plugin, ThreadSanitizerRuntime, in the same way ASan is implemented.
- A breakpoint stops in `__tsan_on_report`, then we extract all sorts of information by evaluating an expression. We then populate this into StopReasonExtendedInfo.
- SBThread gets a new API, SBThread::GetStopReasonExtendedBacktraces(), which returns TSan’s backtraces in the form of regular SBThreads. Non-TSan stop reasons return an empty collection.
- Added some test cases.
Reviewed by Greg Clayton.
llvm-svn: 264162
find the largest address range (possibly combining multiple
LineEntry's for this line number) that is contiguous.
This allows lldb's fast-step stepping algorithm to potentially
run for a longer address range than if we have to stop at every
LineEntry indicating a subexpression in the source line.
http://reviews.llvm.org/D15407
<rdar://problem/23270882>
llvm-svn: 255590
Summary:
The format string was not set up correctly as it was missing the %.
This resulted in a warning (correctly) that the data arguments were
not all used.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12714
llvm-svn: 247111
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
the user level. It adds the ability to invent new stepping modes implemented by python classes,
and to view the current thread plan stack and to some extent alter it.
I haven't gotten to documentation or tests yet. But this should not cause any behavior changes
if you don't use it, so its safe to check it in now and work on it incrementally.
llvm-svn: 218642
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
the SystemRuntime to check if a thread will have any problems
performing an inferior function call so the driver can skip
making that function call on that thread. Often the function
call can be executed on another thread instead.
<rdar://problem/16777874>
llvm-svn: 208732
currently associated with a given thread, on relevant targets.
Change the queue detection code to verify that the queues
associated with all live threads are included in the list.
<rdar://problem/16411314>
llvm-svn: 207160
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
for customizing "step-in" behavior (e.g. step-in doesn't step into code with no debug info), but also
the behavior of step-in/step-out and step-over when they step out of the frame they started in.
I also added as a proof of concept of this reworking a mode for stepping where stepping out of a frame
into a frame with no debug information will continue stepping out till it arrives at a frame that does
have debug information. This is useful when you are debugging callback based code where the callbacks
are separated from the code that initiated them by some library glue you don't care about, among other
things.
llvm-svn: 203747
(and same thing to Thread base class) which can be used when looking
at an ExtendedBacktrace thread; it will try to find the IndexID() of
the original thread that was executing this backtrace when it was
recorded. If lldb can't find a record of that thread, it will return
the same value as IndexID() for the ExtendedBacktrace thread.
llvm-svn: 194912
something; add a new ExtendedThreadList to Process where they can be retained
for the duration of a public stop.
<rdar://problem/15314068>
llvm-svn: 194366
Still working out some of the details of these classes but
I wanted to get the overall structure checked in.
<rdar://problem/15314068>
llvm-svn: 194245
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572
plan providers from a "ThreadPlan *" to a "lldb::ThreadPlanSP". That was needed to fix
a bug where the ThreadPlanStepInRange wasn't checking with its sub-plans to make sure they
succeed before trying to proceed further. If the sub-plan failed and as a result didn't make
any progress, you could end up retrying the same failing algorithm in an infinite loop.
<rdar://problem/14043602>
llvm-svn: 186618
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
Added a "step-in-target" flag to "thread step-in" so if you have something like:
Process 28464 stopped
* thread #1: tid = 0x1c03, function: main , stop reason = breakpoint 1.1
frame #0: 0x0000000100000e08 a.out`main at main.c:62
61
-> 62 int A6 = complex (a(4), b(5), c(6)); // Stop here to step targetting b and hitting breakpoint.
63
and you want to get into "complex" skipping a, b and c, you can do:
(lldb) step -t complex
Process 28464 stopped
* thread #1: tid = 0x1c03, function: complex , stop reason = step in
frame #0: 0x0000000100000d0d a.out`complex at main.c:44
41
42 int complex (int first, int second, int third)
43 {
-> 44 return first + second + third; // Step in targetting complex should stop here
45 }
46
47 int main (int argc, char const *argv[])
llvm-svn: 170008
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
particularly in the SBThread & SBFrame interfaces. Instead of filling the whole context & then getting
the API mutex, we now get only the target, acquire the API mutex from it, then fill out the rest of the
context. This removes a race condition where you get a ThreadSP, then wait on the API mutex while another
command Destroy's the Thread you've just gotten.
Also fixed the ExecutionContextRef::Get*SP calls so they don't return invalid objects.
Also fixed the ExecutionContext::Has*Scope calls so they don't claim to have a scope if the object representing
that scope has been destroyed.
Also fixed a think-o in Thread::IsValid which was causing it to return the opposite of the desired value.
<rdar://problem/11995490>
llvm-svn: 162401
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
should be MasterPlans that want to stay on the plan stack. So make all plans NOT
MasterPlans by default and then have the SB API's and the CommandObjectThread step
commands set this explicitly.
Also added a "clean up" phase to the Thread::ShouldStop so that if plans get stranded
on the stack, we can remove them. This is done by adding an IsPlanStale method to the
thread plans, and if the plan can know that it is no longer relevant, it returns true,
and the plan and its sub-plans will get discarded.
llvm-svn: 156101
Also test for the process to be stopped when many SBValue API calls are made to make sure it is safe to evaluate values, children of values and much more.
llvm-svn: 154160
This abstracts read/write locks on the current host system. It is currently backed by pthread_rwlock_t objects so it should work on all unix systems.
We also need a way to control multi-threaded access to the process through the public API when it is running. For example it isn't a good idea to try and get stack frames while the process is running. To implement this, the lldb_private::Process class now contains a ReadWriteLock member variable named m_run_lock which is used to control the public process state. The public process state represents the state of the process as the client knows it. The private is used to control the actual current process state. So the public state of the process can be stopped, yet the private state can be running when evaluating an expression for example.
Adding the read/write lock where readers are clients that want the process to stay stopped, and writers are clients that run the process, allows us to accurately control multi-threaded access to the process.
Switched the SBThread and SBFrame over to us shared pointers to the ExecutionContextRef class instead of making their own class to track this. This fixed an issue with assigning on SBFrame to another and will also centralize the code that tracks weak references to execution context objects into one location.
llvm-svn: 154099
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
frames might go away (the object itself, not the actual logical frame) when
we are single stepping due to the way we currently sometimes end up flushing
frames when stepping in/out/over. They later will come back to life
represented by another object yet they have the same StackID. Now when you get
a lldb::SBFrame object, it will track the frame it is initialized with until
the thread goes away or the StackID no longer exists in the stack for the
thread it was created on. It uses a weak_ptr to both the frame and thread and
also stores the StackID. These three items allow us to determine when the
stack frame object has gone away (the weak_ptr will be NULL) and allows us to
find the correct frame again. In our test suite we had such cases where we
were just getting lucky when something like this happened:
1 - stop at breakpoint
2 - get first frame in thread where we stopped
3 - run an expression that causes the program to JIT and run code
4 - run more expressions on the frame from step 2 which was very very luckily
still around inside a shared pointer, yet, not part of the current
thread (a new stack frame object had appeared with the same stack ID and
depth).
We now avoid all such issues and properly keep up to date, or we start
returning errors when the frame doesn't exist and always responds with
invalid answers.
Also fixed the UserSettingsController (not going to rewrite this just yet)
so that it doesn't crash on shutdown. Using weak_ptr's came in real handy to
track when the master controller has already gone away and this allowed me to
pull out the previous NotifyOwnerIsShuttingDown() patch as it is no longer
needed.
llvm-svn: 149231
all RTTI types, and since we don't use RTTI anymore since clang and llvm don't
we don't really need this header file. All shared pointer definitions have
been moved into "lldb-forward.h".
Defined std::tr1::weak_ptr definitions for all of the types that inherit from
enable_shared_from_this() in "lldb-forward.h" in preparation for thread
hardening our public API.
The first in the thread hardening check-ins. First we start with SBThread.
We have issues in our lldb::SB API right now where if you have one object
that is being used by two threads we have a race condition. Consider the
following code:
1 int
2 SBThread::SomeFunction()
3 {
4 int result = -1;
5 if (m_opaque_sp)
6 {
7 result = m_opaque_sp->DoSomething();
8 }
9 return result;
10 }
And now this happens:
Thread 1 enters any SBThread function and checks its m_opaque_sp and is about
to execute the code on line 7 but hasn't yet
Thread 2 gets to run and class sb_thread.Clear() which calls m_opaque_sp.clear()
and clears the contents of the shared pointer member
Thread 1 now crashes when it resumes.
The solution is to use std::tr1::weak_ptr. Now the SBThread class contains a
lldb::ThreadWP (weak pointer to our lldb_private::Thread class) and this
function would look like:
1 int
2 SBThread::SomeFunction()
3 {
4 int result = -1;
5 ThreadSP thread_sp(m_opaque_wp.lock());
6 if (thread_sp)
7 {
8 result = m_opaque_sp->DoSomething();
9 }
10 return result;
11 }
Now we have a solid thread safe API where we get a local copy of our thread
shared pointer from our weak_ptr and then we are guaranteed it can't go away
during our function.
So lldb::SBThread has been thread hardened, more checkins to follow shortly.
llvm-svn: 149218
as part of the thread format output.
Currently this is only done for the ThreadPlanStepOut.
Add a convenience API ABI::GetReturnValueObject.
Change the ValueObject::EvaluationPoint to BE an ExecutionContextScope, rather than
trying to hand out one of its subsidiary object's pointers. That way this will always
be good.
llvm-svn: 146806
will allow us to represent a process/thread ID using a pointer for the OS
plug-ins where they might want to represent the process or thread ID using
the address of the process or thread structure.
llvm-svn: 145644
Fixed an issues with the SBType and SBTypeMember classes:
- Fixed SBType to be able to dump itself from python
- Fixed SBType::GetNumberOfFields() to return the correct value for objective C interfaces
- Fixed SBTypeMember to be able to dump itself from python
- Fixed the SBTypeMember ability to get a field offset in bytes (the value
being returned was wrong)
- Added the SBTypeMember ability to get a field offset in bits
Cleaned up a lot of the Stream usage in the SB API files.
llvm-svn: 144493
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
used to do this because we needed to find the shared pointer for a .o
file when the .o file's module was needed in a SymbolContext since the
module in a symbol context was a shared pointer. Now that we are using
intrusive pointers we don't have this limitation anymore since any
instrusive shared pointer can be made from a pointer to an object
all on its own.
Also switched over to having the Module and SymbolVendor use shared
pointers to their object files as had a leak on MacOSX when the
SymbolVendor's object file wasn't the same as the Module's (debug info
in a stand along file (dSYM file)). Now everything will correctly clean
itself up when the module goes away after an executable gets rebuilt.
Now we correctly get rid of .o files that are used with the DWARF with
debug map executables on subsequent runs since the only shared pointer
to the object files in from the DWARF symbol file debug map parser, and
when the module gets replaced, it destroys to old one along with all .o
files.
Also added a small optimization when using BSD archives where we will
remove old BSD containers from the shared list when they are outdated.
llvm-svn: 140002
Set the default Source File & line to main (if it can be found.) at startup. Selecting the current thread & or frame resets
the current source file & line, and "source list" as well as the breakpoint command "break set -l <NUM>" will use the
current source file.
llvm-svn: 139323
select frame #3, you can then do a step out and be able to go directly to the
frame above frame #3!
Added StepOverUntil and StepOutOfFrame to the SBThread API to allow more powerful
stepping.
llvm-svn: 123970
line commands can use the current thread/frame.
Fixed an issue with expressions that get sandboxed in an objective C method
where unichar wasn't being passed down.
Added a "static size_t Scalar::GetMaxByteSize();" function in case we need
to know the max supported by size of something within a Scalar object.
llvm-svn: 122027
by being able to get the data count and data. Each thread stop reason
has one or more data words that can help describe the stop. To do this
I added:
size_t
SBThread::GetStopReasonDataCount();
uint64_t
SBThread::GetStopReasonDataAtIndex(uint32_t idx);
llvm-svn: 119720
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319
than just the entire log channel.
Add checks, where appropriate, to make sure a log channel/category has
not been disabled before attempting to write to it.
llvm-svn: 117715
by type ID (the most common type of type lookup).
Changed the API logging a bit to always show the objects in the OBJECT(POINTER)
format so it will be easy to locate all instances of an object or references
to it when looking at logs.
llvm-svn: 117641