This is an alternative to D124530. In getUniformBase() only create
scales that match the gather/scatter element size. If targets also
support other scales, then they can produce those scales in target
DAG combines. This is what X86 already does (as long as the
resulting scale would be 1, 2, 4 or 8).
This essentially restores the pre-opaque-pointer state of things.
Fixes https://github.com/llvm/llvm-project/issues/55021.
Differential Revision: https://reviews.llvm.org/D124605
This change introduces a new intrinsic, `llvm.is.fpclass`, which checks
if the provided floating-point number belongs to any of the the specified
value classes. The intrinsic implements the checks made by C standard
library functions `isnan`, `isinf`, `isfinite`, `isnormal`, `issubnormal`,
`issignaling` and corresponding IEEE-754 operations.
The primary motivation for this intrinsic is the support of strict FP
mode. In this mode using compare instructions or other FP operations is
not possible, because if the value is a signaling NaN, floating-point
exception `Invalid` is raised, but the aforementioned functions must
never raise exceptions.
Currently there are two solutions for this problem, both are
implemented partially. One of them is using integer operations to
implement the check. It was implemented in https://reviews.llvm.org/D95948
for `isnan`. It solves the problem of exceptions, but offers one
solution for all targets, although some can do the check in more
efficient way.
The other, implemented in https://reviews.llvm.org/D96568, introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects a target
specific code into IR to implement `isnan` and some other functions. It is
convenient for targets that have dedicated instruction to determine FP data
class. However using target-specific intrinsic complicates analysis and can
prevent some optimizations.
A special intrinsic for value class checks allows representing data class
tests with enough flexibility. During IR transformations it represents the
check in target-independent way and saves it from undesired transformations.
In the instruction selector it allows efficient lowering depending on the
used target and mode.
This implementation is an extended variant of `llvm.isnan` introduced
in https://reviews.llvm.org/D104854. It is limited to minimal intrinsic
support. Target-specific treatment will be implemented in separate
patches.
Differential Revision: https://reviews.llvm.org/D112025
The lowering code did not use the scale operand of MGATHER/MSCATTER
nodes, but instead assumed scaled indices were always scaled based
on the element type of the memory type. This patch adds the missing
support by rewritting the nodes as unscaled variants.
Differential Revision: https://reviews.llvm.org/D123670
This patch adds support for inline assembly address operands using the "p"
constraint on X86 and SystemZ.
This was in fact broken on X86 (see example at
https://reviews.llvm.org/D110267, Nov 23).
These operands should probably be treated the same as memory operands by
CodeGenPrepare, which have been commented with "TODO" there.
Review: Xiang Zhang and Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D122220
Materializing constants on RISCV is simpler if the constant is sign
extended from i32. By default i32 constant operands of phis are
zero extended.
This patch adds a hook to allow RISCV to override this for i32. We
have an existing isSExtCheaperThanZExt, but it operates on EVT which
we don't have at these places in the code.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D122951
This patch aims to overcome an issue in these mappings where, when an ISD
node was registered with BEGIN_REGISTER_VP_SDNODE but outwidth the scope
of a pair of BEGIN_REGISTER_VP_INTRINSIC/END_REGISTER_VP_INTRINSIC
macros, the switch cases fell apart. This in particular happened with
VP_SETCC, where we'd end up with something along the lines of:
case Intrinsic::vp_fcmp:
break;
case Intrinsic::vp_icmp:
break;
ResOpc = ISD::VP_SETCC;
case Intrinsic::vp_store:
...
To remedy this, we introduce a special-purpose mapping macro which can
map any number of VP intrinsic opcodes to an ISD opcode.
As a result, we no longer need to special-case the mapping from vp.icmp
and vp.fcmp to VP_SETCC, as the new helper macro does it for us.
Thanks to @craig.topper for noticing this and to @rogfer01 for the idea.
Reviewed By: rogfer01
Differential Revision: https://reviews.llvm.org/D123324
This patch adds the minimum required to successfully lower vp.icmp via
the new ISD::VP_SETCC node to RVV instructions.
Regular ISD::SETCC goes through a lot of canonicalization which targets
may rely on which has not hereto been ported to VP_SETCC. It also
supports expansion of individual condition codes and a non-boolean
return type. Support for all of that will follow in later patches.
In the case of RVV this largely isn't a problem as the vector integer
comparison instructions are plentiful enough that it can lower all
VP_SETCC nodes on legal integer vectors except for boolean vectors,
which regular SETCC folds away immediately into logical operations.
Floating-point VP_SETCC operations aren't as well supported in RVV and
the backend relies on condition code expansion, so support for those
operations will come in later patches.
Portions of this code were taken from the VP reference patches.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D122743
The reason why I am making this change is that before this commit,
EmitFuncArgumentDbgValue relied on a boolean flag IsDbgDeclare both to signal
that a DBG_VALUE should be made to be indirect /and/ that the original intrinsic
was a dbg.declare. This is no longer always true if we add support for handling
dbg.addr since we will have an indirect DBG_VALUE that is a different intrinsic
from dbg.declare.
With that in mind, in this NFC patch, we prepare for future fixes by introducing
a 3 case-enum argument to EmitFuncArgumentDbgValue that allows the caller to
explicitly specify how the argument's DBG_VALUE should be emitted. This then
allows us to turn the indirect checks into a != FuncArgumentDbgValueKind::Value
and prepare us for a future where we add support here for llvm.dbg.addr
directly.
rdar://83957028
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D122945
D122053 set the ExtendType for ConstantSDNodes in getCopyToRegs to
ZERO_EXTEND to match assumptions in ComputePHILiveOutRegInfo. PHIs
are probably not the only way ConstantSDNodeNodes can get to
getCopyToRegs.
This patch adds an ExtendType parameter to CopyValueToVirtualRegister and
has HandlePHINodesInSuccessorBlocks pass ISD::ZERO_EXTEND for ConstantInts.
This way we only affect ConstantSDNodes for PHIs.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D122171
ComputePHILiveOutRegInfo assumes that constant incoming values to
Phis will be zero extended if they aren't a legal type. To guarantee
that we should zero_extend rather than any_extend constants.
This fixes a bug for RISCV where any_extend of constants can be
treated as a sign_extend.
Differential Revision: https://reviews.llvm.org/D122053
This patch introduces two new experimental IR intrinsics and SDAG nodes
to represent vector strided loads and stores.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D114884
This code was detecting whether the value returned by getShiftAmountTy
can represent all shift amounts. If not, it would use MVT::i32 as a
placeholder. getShiftAmountTy was updated last year to return i32
if the type returned by the target couldn't represent all values.
This means the MVT::i32 case here is dead and can the logic can
be simplified.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120164
getShiftAmountTy will return MVT::i32 if the shift amount
coming from the target's getScalarShiftAmountTy can't reprsent
all possible values. That should eliminate the need to use the
pointer type which is what we do when LegalTypes is false.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D120165
Add a new llvm.fptrunc.round intrinsic to precisely control
the rounding mode when converting from f32 to f16.
Differential Revision: https://reviews.llvm.org/D110579
Fixes a crash ('Invalid size request on a scalable vector') in visitAlloca()
when we call this function for a scalable alloca instruction, caused
by the implicit conversion of TySize to uint64_t.
This patch changes TySize to a TypeSize as returned by getTypeAllocSize()
and ensures the allocation size is multiplied by vscale for scalable vectors.
Reviewed By: sdesmalen, david-arm
Differential Revision: https://reviews.llvm.org/D118372
Use the llvm flag `-pgo-function-entry-coverage` to create single byte "counters" to track functions coverage. This mode has significantly less size overhead in both code and data because
* We mark a function as "covered" with a store instead of an increment which generally requires fewer assembly instructions
* We use a single byte per function rather than 8 bytes per block
The trade off of course is that this mode only tells you if a function has been covered. This is useful, for example, to detect dead code.
When combined with debug info correlation [0] we are able to create an instrumented Clang binary that is only 150M (the vanilla Clang binary is 143M). That is an overhead of 7M (4.9%) compared to the default instrumentation (without value profiling) which has an overhead of 31M (21.7%).
[0] https://groups.google.com/g/llvm-dev/c/r03Z6JoN7d4
Reviewed By: kyulee
Differential Revision: https://reviews.llvm.org/D116180
This patch fixes a case where the 'align' parameter attribute on the
pointer operands to llvm.vp.gather and llvm.vp.scatter was being dropped
during the conversion to the SelectionDAG. The default alignment equal
to the ABI type alignment of the vector type was kept. It also updates
the documentation to reflect the fact that the parameter attribute is
now properly supported.
The default alignment of these intrinsics was previously documented as
being equal to the ABI alignment of the *scalar* type, when in fact that
wasn't the case: the ABI alignment of the vector type was used instead.
This has also been fixed in this patch.
Reviewed By: simoll, craig.topper
Differential Revision: https://reviews.llvm.org/D114423
Original patch by @hussainjk.
This patch was split off from D109377 to keep vector legalization
(widening/splitting) separate from vector element legalization
(promoting).
While the original patch added a third overload of
SelectionDAG::getVPStore, this patch takes the liberty of collapsing
those all down to 1, as three overloads seems excessive for a
little-used node.
The original patch also used ModifyToType in places, but that method
still crashes on scalable vector types. Seeing as the other VP
legalization methods only work when all operands need identical
widening, this patch follows in that vein.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117235
This seems to be a leftover from a long time ago when there was
an ISD::VBIT_CONVERT and a MVT::Vector. It looks like in those days
the vector type was carried in a VTSDNode.
As far as I know, these days ComputeValueTypes would have already
assigned "Result" the same type we're getting from TLI.getValueType
here. Thus the BITCAST is always a NOP. Verified by adding an assert
and running check-llvm.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D117335
Completely rework how we handle X constrained labels for inline asm.
X should really be treated as i. Then existing tests can be moved to use
i D115410 and clang can just emit i D115311. (D115410 and D115311 are
callbr, but this can be done for label inputs, too).
Coincidentally, this simplification solves an ICE uncovered by D87279
based on assumptions made during D69868.
This is the third approach considered. See also discussions v1 (D114895)
and v2 (D115409).
Reported-by: kernel test robot <lkp@intel.com>
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1512
Reviewed By: void, jyknight
Differential Revision: https://reviews.llvm.org/D115688
I've changed the definition of the experimental.vector.splice
instrinsic to reject indices that are known to be or possibly
out-of-bounds. In practice, this means changing the definition so that
the index is now only valid in the range [-VL, VL-1] where VL is the
known minimum vector length. We use the vscale_range attribute to
take the minimum vscale value into account so that we can permit
more indices when the attribute is present.
The splice intrinsic is currently only ever generated by the vectoriser,
which will never attempt to splice vectors with out-of-bounds values.
Changing the definition also makes things simpler for codegen since we
can always assume that the index is valid.
This patch was created in response to review comments on D115863
Differential Revision: https://reviews.llvm.org/D115933
This is the last part of D116531. Fetch the type of the indirect
inline asm operand from the elementtype attribute, rather than
the pointer element type.
Fixes https://github.com/llvm/llvm-project/issues/52928.
With Control-Flow Integrity (CFI), the LowerTypeTests pass replaces
function references with CFI jump table references, which is a problem
for low-level code that needs the address of the actual function body.
For example, in the Linux kernel, the code that sets up interrupt
handlers needs to take the address of the interrupt handler function
instead of the CFI jump table, as the jump table may not even be mapped
into memory when an interrupt is triggered.
This change adds the no_cfi constant type, which wraps function
references in a value that LowerTypeTestsModule::replaceCfiUses does not
replace.
Link: https://github.com/ClangBuiltLinux/linux/issues/1353
Reviewed By: nickdesaulniers, pcc
Differential Revision: https://reviews.llvm.org/D108478
-(Za + Zm * Zn) != (-Za + Zm * (-Zn))
when the FMA produces a zero output (e.g. all zero inputs can produce -0
output)
Add a PatFrag to check presence of nsz on the fneg, add tests which
ensure the combine does not fire in the absense of nsz.
See https://reviews.llvm.org/D90901 for a similar discussion on X86.
Differential Revision: https://reviews.llvm.org/D109525
This patch fixes an issue during SelectionDAG construction. When the
target is unable to lower the function's return value, a hidden sret
parameter is created. It is initialized and copied to a stored variable
(DemoteRegister) with CopyToReg and is later fetched with
CopyFromReg. The bug is that the chains used for each copy are
inconsistent, and thus in rare cases the scheduler may issue them out of
order.
The fix is to ensure that the CopyFromReg uses the DAG root which is set
as the chain corresponding to the initial CopyToReg.
Fixes https://llvm.org/PR52475
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D114795
Previously we were using UADDO to generate a two-result value with
the unsigned addition and the overflow mask. We then combined the
overflow mask with the trip count comparison to get a result.
However, we don't need to do this - we can simply use a UADDSAT
saturating add node to add the vector index splat and the stepvector
together. Then we can just compare this to a splat of the trip count.
This results in overall better code quality for both Thumb2 and AArch64.
Differential Revision: https://reviews.llvm.org/D115354
There is a pointer to the DataLayout in SelectionDAGBuilder called
'DL' that is hardly ever used. In most cases the code seems to just
use `DAG.getDataLayout()` instead. Given that DL is also often used
as a shadowed variable for the debug location it seems sensible to
just kill off the few remaining uses and be consistent with the rest
of the code.
Differential Revision: https://reviews.llvm.org/D114451
In the style of D113888, this patch updates the various VP memory
operations (load, store, gather, scatter) to use UnknownSize. This is
for the same reason as for masked loads and stores: the number of
elements accessed is not generally known at compile time.
This is somewhat pessimistic in the sense that we may still find
un-canonicalized intrinsics featuring both an all-true mask and an EVL
equal to the vector size. Arguably those should be canonicalized before
the SelectionDAG, so those have been left for future work.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D115036
This patch fixes a case where the 'align' parameter attribute on the
pointer operands to llvm.vp.load and llvm.vp.store was being dropped
during the conversion to the SelectionDAG. The default alignment
equal to the ABI type alignment of the vector type was kept. It also
updates the documentation to reflect the fact that the parameter
attribute is now properly supported.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D114422
In most common cases the @llvm.get.active.lane.mask intrinsic maps directly
to the SVE whilelo instruction, which already takes overflow into account.
However, currently in SelectionDAGBuilder::visitIntrinsicCall we always lower
this immediately to a generic sequence of instructions that explicitly
take overflow into account. This makes it very difficult to then later
transform back into a single whilelo instruction. Therefore, this patch
introduces a new TLI function called shouldExpandGetActiveLaneMask that asks if
we should lower/expand this to a sequence of generic ISD nodes, or instead
just leave it as an intrinsic for the target to lower.
You can see the significant improvement in code quality for some of the
tests in this file:
CodeGen/AArch64/active_lane_mask.ll
Differential Revision: https://reviews.llvm.org/D114542
Currently the generic lowering of llvm.get.active.lane.mask is done
in SelectionDAGBuilder::visitIntrinsicCall and currently assumes
only fixed-width vectors are used. This patch changes the code to be
more generic and support scalable vectors too. I have added tests
for SVE here:
CodeGen/AArch64/active_lane_mask.ll
although the code quality leaves a lot to be desired. The code will
be improved significantly in a later patch that makes use of the
SVE whilelo instruction.
Differential Revision: https://reviews.llvm.org/D114541
In quite a few places we were calling getCurSDLoc() to get the debug
location, but this is already a local variable `sdl`.
Differential Revision: https://reviews.llvm.org/D114447
Usage and naming of macros in VPIntrinsics.def has been inconsistent. Rename all property macros to VP_PROPERTY_<name>. Use BEGIN/END scope macros to attach properties to vp intrinsics and SDNodes (instead of specifying either directly with the property macro).
A follow-up patch has documentation on how the macros are (intended) to be used.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D114144
A masked load or store will load a potentially unknown number of bytes
from a memory location - that is not generally known at compile time.
They do not necessarily load/store the entire vector width, and treating
them as such can lead to incorrect aliasing information (for example, if
the underlying object is smaller than the size of the vector).
This makes sure that the MMO is given an unknown size to represent this.
which is less accurate that "may load/store from up to 16 bytes", but
less incorrect that "will load/store from 16 bytes".
Differential Revision: https://reviews.llvm.org/D113888
Fixes PR#48678. `X86TargetLowering::getRegForInlineAsmConstraint()` can adjust the register class to match the type, e.g. change `VR128X` to `VR256X` if the type needs 256 bits. However, the function currently returns the unadjusted register and the adjusted register class, e.g. `xmm15` and `VR256X`, which then causes an assertion failure later because the register class does not contain that register. This patch fixes this behavior.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D113834
Based on the reasoning of D53903, register operands of DBG_VALUE are
invariably treated as RegState::Debug operands. This change enforces
this invariant as part of MachineInstr::addOperand so that all passes
emit this flag consistently.
RegState::Debug is inconsistently set on DBG_VALUE registers throughout
LLVM. This runs the risk of a filtering iterator like
MachineRegisterInfo::reg_nodbg_iterator to process these operands
erroneously when not parsed from MIR sources.
This issue was observed in the development of the llvm-mos fork which
adds a backend that relies on physical register operands much more than
existing targets. Physical RegUnit 0 has the same numeric encoding as
$noreg (indicating an undef for DBG_VALUE). Allowing debug operands into
the machine scheduler correlates $noreg with RegUnit 0 (i.e. a collision
of register numbers with different zero semantics). Eventually, this
causes an assert where DBG_VALUE instructions are prohibited from
participating in live register ranges.
Reviewed By: MatzeB, StephenTozer
Differential Revision: https://reviews.llvm.org/D110105
This is a port of the feature that allows the StackProtector pass to omit
checking code for stack canary checks, and rely on SelectionDAG to do it at a
later stage. The reasoning behind this seems to be to prevent the IR checking
instructions from hindering tail-call optimizations during codegen.
Here we allow GlobalISel to also use that scheme. Doing so requires that we
do some analysis using some factored-out code to determine where to generate
code for the epilogs.
Not every case is handled in this patch since we don't have support for all
targets that exercise different stack protector schemes.
Differential Revision: https://reviews.llvm.org/D98200