It's already set in AMDGPUISelLowering for all GPUs
Patch By: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207592
When legalizing ops, with UDIV/UREM set to expand, they automatically
expand to UDIVREM (if legal or custom).
We need to do this manually for legalize types.
v2:
SI should be set to Expand because the type is legal, and it is
automatically lowered to UDIVREM if UDIVREM is Legal/Custom
R600 should set to UDIV/UREM to Custom because it needs to lower them
during type legalization
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207587
Setting vector types to expand will result in scalarization on pre SI hw,
as those gpus don't have vector shifts either.
Expand also i32 vectors, this helps llvm make the correct decision
about scalarizing the vector ops.
v2: move setOperation() calls to R600ISelLowering.cpp.
cleanup the SI code to make it obvious that this patch does is nop for SI
Patch by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 206348
Through some oddity where truncate (sextload x) isn't folded into
an anyextload for vectors, the sextload remains if the
vector isn't immediately scalarized. This keeps the expected
zextload instructions in the kernel-args test when small type
vectors aren't scalarized.
llvm-svn: 206070
Moving these patterns from TableGen files to PerformDAGCombine()
should allow us to generate better code by eliminating unnecessary
shifts and extensions earlier.
This also fixes a bug where the MAD pattern was calling
SimplifyDemandedBits with a 24-bit mask on the first operand
even when the full pattern wasn't being matched. This occasionally
resulted in some instructions being incorrectly deleted from the
program.
v2:
- Fix bug with 64-bit mul
llvm-svn: 205731
The LDS output queue is accessed via the OQAP register. The OQAP
register cannot be live across clauses, so if value is written to the
output queue, it must be retrieved before the end of the clause.
With the machine scheduler, we cannot statisfy this constraint, because
it lacks proper alias analysis and it will mark some LDS accesses as
having a chain dependency on vertex fetches. Since vertex fetches
require a new clauses, the dependency may end up spiltting OQAP uses and
defs so the end up in different clauses. See the lds-output-queue.ll
test for a more detailed explanation.
To work around this issue, we now combine the LDS read and the OQAP
copy into one instruction and expand it after register allocation.
This patch also adds some checks to the EmitClauseMarker pass, so that
it doesn't end a clause with a value still in the output queue and
removes AR.X and OQAP handling from the scheduler (AR.X uses and defs
were already being expanded post-RA, so the scheduler will never see
them).
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 194755
The SelectionDAGBuilder was promoting vector kernel arguments to legal
types, but this won't work for R600 and SI since kernel arguments are
stored in memory and can't be promoted. In order to handle vector
arguments correctly we need to look at the original types from the LLVM IR
function.
llvm-svn: 193215
We were completely ignoring the unorder/ordered attributes of condition
codes and also incorrectly lowering seto and setuo.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 191603
SelectionDAG will now attempt to inverse an illegal conditon in order to
find a legal one and if that doesn't work, it will attempt to swap the
operands using the inverted condition.
There are no new test cases for this, but a nubmer of the existing R600
tests hit this path.
llvm-svn: 191602
This is useful for targets like R600, which only support GT, GE, NE, and EQ
condition codes as it removes the need to handle unsupported condition
codes in target specific code.
There are no tests with this commit, but R600 has been updated to take
advantage of this new feature, so its existing selectcc tests are now
testing the swapped operands path.
llvm-svn: 191601
R600 doesn't need to do any scheduling on the SelectionDAG now that it
has a very good MachineScheduler. Also, using the VLIW SelectionDAG
scheduler was having a major impact on compile times. For example with
the phatk kernel here are the LLVM IR to machine code compile times:
With Sched::VLIW
Total Compile Time: 1.4890 Seconds (User + System)
SelectionDAG Instruction Scheduling: 1.1670 Seconds (User + System)
With Sched::Source
Total Compile Time: 0.3330 Seconds (User + System)
SelectionDAG Instruction Scheduling: 0.0070 Seconds (User + System)
The code ouput was identical with both schedulers. This may not be true
for all programs, but it gives me confidence that there won't be much
reduction, if any, in code quality by using Sched::Source.
llvm-svn: 188215
* Added R600_Reg64 class
* Added T#Index#.XY registers definition
* Added v2i32 register reads from parameter and global space
* Added f32 and i32 elements extraction from v2f32 and v2i32
* Added v2i32 -> v2f32 conversions
Tom Stellard:
- Mark vec2 operations as expand. The addition of a vec2 register
class made them all legal.
Patch by: Dmitry Cherkassov
Signed-off-by: Dmitry Cherkassov <dcherkassov@gmail.com>
llvm-svn: 187582
This increases the number of opportunites we have for folding. With the
previous implementation we were unable to fold into any instructions
other than the first when multiple instructions were selected from a
single SDNode.
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 186919
A side-effect of this is that now the compiler expects kernel arguments
to be 4-byte aligned.
Reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 186916
By default, we expand these operations for both EG and SI. Move the
duplicated code into a common space for now. If the targets ever actually
implement these operations as instructions, we can override that in the relevant
target.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184848
Also add lit test for both cases on SI, and v2i32 for evergreen.
Note: I followed the guidance of the v4i32 EG check... UDIV produces really
complex code, so let's just check that the instruction was lowered
successfully.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 184843
The custom lowering causes llc to crash with a segfault.
Ideally, the custom lowering can be fixed, but this allows
programs which load/store v2i32 to work without crashing.
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry<awatry@gmail.com>
llvm-svn: 184480
Dot4 now uses 8 scalar operands instead of 2 vectors one which allows register
coalescer to remove some unneeded COPY.
This patch also defines some structures/functions that can be used to handle
every vector instructions (CUBE, Cayman special instructions...) in a similar
fashion.
llvm-svn: 182126
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
NOTE: This is a candidate for the 3.3 branch.
llvm-svn: 181579
Fixes piglit test for OpenCL builtin mul24, and allows mad24 to run.
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
NOTE: This is a candidate for the 3.3 branch.
llvm-svn: 181578
v2: Add v4i32 test
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
NOTE: This is a candidate for the 3.3 branch.
llvm-svn: 181577
v2: Add vselect v4i32 test
Patch by: Aaron Watry
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Aaron Watry <awatry@gmail.com>
NOTE: This is a candidate for the 3.3 branch.
llvm-svn: 181576
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
llvm-svn: 178126
Fixes wrong lighting in some corner cases with r600g and radeonsi, e.g.
manifested by failure of two piglit/glean tests and intermittent black
patches in many apps.
Tested on SI and RS880.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=62012 [radeonsi]
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=58150 [r600g]
NOTE: This is a candidate for the Mesa stable branch.
Reviewed-by: Christian König <christian.koenig@amd.com>
llvm-svn: 177730
fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
selectcc x, y, a, b, cc
Reviewed-by: Christian König <christian.koenig@amd.com>
llvm-svn: 176700
Two changes:
1. Prefer SET* instructions when possible
2. Handle the CND*_INT case with floating-point args
Reviewed-by: Christian König <christian.koenig@amd.com>
llvm-svn: 176699
v2: fix R600 regressions
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 176624
Just encode the type as target specific attribute.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 176622
Maintaining CONST_COPY Instructions until Pre Emit may prevent some ifcvt case
and taking them in account for scheduling is difficult for no real benefit.
llvm-svn: 176488