When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Summary:
MetadataLoader::MetadataLoaderImpl::parseOneMetadata uses
the following construct in a number of places:
```
MetadataList.assignValue(<...>, NextMetadataNo++);
```
There, NextMetadataNo gets incremented, and since the order
of arguments evaluation is not specified, that can happen
before or after other arguments are evaluated.
In a few cases the other arguments indirectly use NextMetadataNo.
For instance, it's
```
MetadataList.assignValue(
GET_OR_DISTINCT(DIModule,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]), getMDString(Record[3]),
getMDString(Record[4]), getMDString(Record[5]))),
NextMetadataNo++);
```
getMDOrNull calls getMD that uses NextMetadataNo:
```
MetadataList.getMetadataFwdRef(NextMetadataNo);
```
Therefore, the order of evaluation becomes important. That caused
a very subtle LLD crash that only happens if compiled with GCC or
if LLD is built with LTO. In the case if LLD is compiled with Clang
and regular linking mode, everything worked as intended.
This change extracts incrementing of NextMetadataNo outside of
the arguments list to guarantee the correct order of evaluation.
For the record, this has taken 3 days to track to the origin. It all
started with a ThinLTO bot in Chrome not being able to link a target
if debug info is enabled.
Reviewers: pcc, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D29204
llvm-svn: 293291
CFI is using intrinsics that takes MDString as arguments, and this
was broken during lazy-loading of metadata.
Differential Revision: https://reviews.llvm.org/D28916
llvm-svn: 292641
Summary:
Without this, we're stressing the RAUW of unique nodes,
which is a costly operation. This is intended to limit
the number of RAUW, and is very effective on the total
link-time of opt with ThinLTO, before:
real 4m4.587s user 15m3.401s sys 0m23.616s
after:
real 3m25.261s user 12m22.132s sys 0m24.152s
Reviewers: tejohnson, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28751
llvm-svn: 292420
The change in r291362 was too agressive. We still need to flush at the
end of the block because function local metadata can introduce fwd
ref as well.
(Bootstrap with ThinLTO was broken)
llvm-svn: 291379
Summary:
The issue happens with:
%0 = ....., !tbaa !0
%1 = ....., !tbaa !1
With !0 that references !1.
In this case when loading !0 we generates a temporary for the
operand !1. We now flush it immediately and trigger the load of
!1 before moving on. If we don't we get the temporary when
attaching to %1. This is usually not an issue except that we
eagerly try to update TBAA MDNodes, which is obviously not possible
if we only have a temporary.
Differential Revision: https://reviews.llvm.org/D28423
llvm-svn: 291362
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Summary:
This adds a new summary flag NotEligibleToImport that subsumes
several existing flags (NoRename, HasInlineAsmMaybeReferencingInternal
and IsNotViableToInline). It also subsumes the checking of references
on the summary that was being done during the thin link by
eligibleForImport() for each candidate. It is much more efficient to
do that checking once during the per-module summary build and record
it in the summary.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28169
llvm-svn: 291108
Summary:
This is a relatively simple scheme: we use the index emitted in the
bitcode to avoid loading all the global metadata. Instead we load
the index with their position in the bitcode so that we can load each
of them individually. Materializing the global metadata block in this
condition only triggers loading the named metadata, and the ones
referenced from there (transitively). When materializing a function,
metadata from the global block are loaded lazily as they are
referenced.
Two main current limitations are:
1) Global values other than functions are not materialized on demand,
so we need to eagerly load METADATA_GLOBAL_DECL_ATTACHMENT records
(and their transitive dependencies).
2) When we load a single metadata, we don't recurse on the operands,
instead we use a placeholder or a temporary metadata. Unfortunately
tepmorary nodes are very expensive. This is why we don't have it
always enabled and only for importing.
These two limitations can be lifted in a subsequent improvement if
needed.
With this change, the total link time of opt with ThinLTO and Debug
Info enabled is going down from 282s to 224s (~20%).
Reviewers: pcc, tejohnson, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28113
llvm-svn: 291027
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
This recommits 291006, reverted in r291007.
llvm-svn: 291016
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
llvm-svn: 291006
As per post-commit review for r289993 (D27775), we can only safely
import a type as a decl if it has an Identifier, as the Name alone
is not enough to be unique across modules.
llvm-svn: 290915
The Bitstream reader and writer are limited to handle a "size_t" at
most, which means that we can't backpatch and read back a 64bits
value on 32 bits platform.
llvm-svn: 290693
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Recommit r290684 (was reverted in r290686 because a test
was broken) after adding a threshold to avoid emitting
the index when unnecessary (little amount of metadata).
This optimization "hides" a limitation of the ability
to backpatch in the bitstream: we can only backpatch
safely when the position has been flushed. So if we emit
an index for one metadata, it is possible that (part of)
the offset placeholder hasn't been flushed and the backpatch
will fail.
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290690
Summary:
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Reviewers: pcc, tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290684
This makes it explicit what is the exact list to handle, and it
looks much more easy to manipulate and understand that the
previous custom tracking of min/max to express the range where
to look for.
Differential Revision: https://reviews.llvm.org/D28089
llvm-svn: 290507
This is to put the vector into a well defined state. Apparently the state of a
vector after being moved from is valid but unspecified. Found with clang-tidy.
llvm-svn: 290298
Each function summary has an attached list of type identifier GUIDs. The
idea is that during the regular LTO phase we would match these GUIDs to type
identifiers defined by the regular LTO module and store the resolutions in
a top-level "type identifier summary" (which will be implemented separately).
Differential Revision: https://reviews.llvm.org/D27967
llvm-svn: 290280
Also make the summary ref and call graph vectors immutable. This means
a smaller API surface and fewer places to audit for non-determinism.
Differential Revision: https://reviews.llvm.org/D27875
llvm-svn: 290200
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
I'm planning on changing the way we load metadata to enable laziness.
I'm getting lost in this gigantic files, and gigantic class that is the bitcode
reader. This is a first toward splitting it in a few coarse components that
are more easily understandable.
Reviewers: pcc, tejohnson
Subscribers: mgorny, llvm-commits, dexonsmith
Differential Revision: https://reviews.llvm.org/D27646
llvm-svn: 289461
Summary:
Compiling with GCC 5 or later can fail with a bogus error "constructor
required before non-static data member for
llvm::ValueEnumerator::MDRange::First has been parsed".
This was originally fixed upstream in GCC PR 70528, but later this fix
was reverted, and released versions of GCC still show the bogus error.
To work around this, replace MDRange's declaration of a default
constructor with a definition.
Reviewers: dexonsmith, rsmith, rivanvx
Subscribers: llvm-commits, dim, dexonsmith
Differential Revision: https://reviews.llvm.org/D18730
llvm-svn: 289454
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
The assertions were wrong; we need to call getEncodingData() on the element,
not the array. While here, simplify the skipRecord() implementation for Fixed
and Char6 arrays. This is tested by the code I added to llvm-bcanalyzer
which makes sure that we can skip any record.
Differential Revision: https://reviews.llvm.org/D27241
llvm-svn: 288315
This interface allows clients to write multiple modules to a single
bitcode file. Also introduce the llvm-cat utility which can be used
to create a bitcode file containing multiple modules.
Differential Revision: https://reviews.llvm.org/D26179
llvm-svn: 288195
We now expect each module's identification block to appear immediately before
the module block. Any module block that appears without an identification block
immediately before it is interpreted as if it does not have a module block.
Also change the interpretation of VST and function offsets in bitcode.
The offset is always taken as relative to the start of the identification
(or module if not present) block, minus one word. This corresponds to the
historical interpretation of offsets, i.e. relative to the start of the file.
These changes allow for bitcode modules to be concatenated by copying bytes.
Differential Revision: https://reviews.llvm.org/D27184
llvm-svn: 288098
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).
Original description of this part of patch follows:
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
llvm-svn: 286844
Summary:
The change in r285513 to prevent exporting of locals used in
inline asm added all locals in the llvm.used set to the reference
set of functions containing inline asm. Since these locals were marked
NoRename, this automatically prevented importing of the function.
Unfortunately, this caused an explosion in the summary reference lists
in some cases. In my particular example, it happened for a large protocol
buffer generated C++ file, where many of the generated functions
contained an inline asm call. It was exacerbated when doing a ThinLTO
PGO instrumentation build, where the PGO instrumentation included
thousands of private __profd_* values that were added to llvm.used.
We really only need to include a single llvm.used local (NoRename) value
in the reference list of a function containing inline asm to block it
being imported. However, it seems cleaner to add a flag to the summary
that explicitly describes this situation, which is what this patch does.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26402
llvm-svn: 286840
Summary:
This patch adds explicit `(void)` casts to discarded `release()` calls to suppress -Wunused-result.
This patch fixes *all* warnings are generated as a result of [applying `[[nodiscard]]` within libc++](https://reviews.llvm.org/D26596).
Similar fixes were applied to Clang in r286796.
Reviewers: chandlerc, dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26598
llvm-svn: 286797
The functions getBitcodeTargetTriple(), isBitcodeContainingObjCCategory(),
getBitcodeProducerString() and hasGlobalValueSummary() now return errors
via their return value rather than via the diagnostic handler.
To make this work, re-implement these functions using non-member functions
so that they can be used without the LLVMContext required by BitcodeReader.
Differential Revision: https://reviews.llvm.org/D26532
llvm-svn: 286623
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
If the inrange keyword is present before any index, loading from or
storing to any pointer derived from the getelementptr has undefined
behavior if the load or store would access memory outside of the bounds of
the element selected by the index marked as inrange.
This can be used, e.g. for alias analysis or to split globals at element
boundaries where beneficial.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102472.html
Differential Revision: https://reviews.llvm.org/D22793
llvm-svn: 286514
The BitcodeReader no longer produces BitcodeDiagnosticInfo diagnostics.
The only remaining reference was in the gold plugin; the code there has been
dead since we stopped producing InvalidBitcodeSignature error codes in r225562.
While at it remove the InvalidBitcodeSignature error code.
llvm-svn: 286326
Summary:
This patch uses the same approach added for inline asm in r285513 to
similarly prevent promotion/renaming of locals used or defined in module
level asm.
All static global values defined in normal IR and used in module level asm
should be included on either the llvm.used or llvm.compiler.used global.
The former were already being flagged as NoRename in the summary, and
I've simply added llvm.compiler.used values to this handling.
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: johanengelen, krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26146
llvm-svn: 286297
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
Summary:
This kill various depreacated API related to attribute :
- The deprecated C API attribute based on LLVMAttribute enum.
- The Raw attribute set format (planned to be removed in 4.0).
Reviewers: bkramer, echristo, mehdi_amini, void
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23039
llvm-svn: 286062
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
No block info block should need to define local abbreviations, so we can
always use a code width of 2.
Also change all block info block writers to use EnterBlockInfoBlock.
Differential Revision: https://reviews.llvm.org/D26168
llvm-svn: 285660
We already read the flags out of the summary when writing the summary
records for functions and aliases, do the same for variables.
This is an NFC change for now since the flags computed on the fly from
the GlobalValue currently will always match those in the summary
already, but once I send a follow-on patch to set the NoRename flag for
locals in the llvm.used set this becomes a necessary change.
llvm-svn: 285433
Summary:
Previously we were creating the alias summary on the fly while writing
the summary to bitcode. This moves the creation of these summaries to
the module summary index builder where we build the rest of the summary
index.
This is going to be necessary for setting the NoRename flag for values
possibly used in inline asm or module level asm.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26049
llvm-svn: 285379
Summary:
This is in preparation for a change to utilize this flag for symbols
referenced/defined in either inline or module level assembly.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26048
llvm-svn: 285376
Change type of some missed DebugInfo-related alignment variables,
that are still uint64_t, to uint32_t.
Original change introduced in r284482.
llvm-svn: 285242
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
In futher patches we shall have alignment field added to DIVariable family
and switching from uint64_t to uint32_t will save 4 bytes per variable.
Differential Revision: https://reviews.llvm.org/D25620
llvm-svn: 284482
We need to add an entry in the combined-index for modules that have
a hash but otherwise empty summary, this is needed so that we can
get the hash for the module.
Also, if no entry is present in the combined index for a module, we
need to skip it when trying to compute a cache entry.
Differential Revision: https://reviews.llvm.org/D25300
llvm-svn: 283654
Summary:
This patch improves thinlto importer
by importing 3x larger functions that are called from hot block.
I compared performance with the trunk on spec, and there
were about 2% on povray and 3.33% on milc. These results seems
to be consistant and match the results Teresa got with her simple
heuristic. Some benchmarks got slower but I think they are just
noisy (mcf, xalancbmki, omnetpp)- running the benchmarks again with
more iterations to confirm. Geomean of all benchmarks including the noisy ones
were about +0.02%.
I see much better improvement on google branch with Easwaran patch
for pgo callsite inlining (the inliner actually inline those big functions)
Over all I see +0.5% improvement, and I get +8.65% on povray.
So I guess we will see much bigger change when Easwaran patch will land
(it depends on new pass manager), but it is still worth putting this to trunk
before it.
Implementation details changes:
- Removed CallsiteCount.
- ProfileCount got replaced by Hotness
- hot-import-multiplier is set to 3.0 for now,
didn't have time to tune it up, but I see that we get most of the interesting
functions with 3, so there is no much performance difference with higher, and
binary size doesn't grow as much as with 10.0.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D24638
llvm-svn: 282437
Summary:
Emit an empty summary section, instead of no summary section, when
there are no global variables in the index. This ensures that LTO
will treat these files as ThinLTO inputs, instead of as regular
LTO inputs.
In addition to not being what the user likely intended when
compiling with -flto=thin, the current behavior is problematic for
distributed build systems that expect to get ThinLTO index and imports
files back for each input compiled with -flto=thin. Combining into
a single regular LTO module also reduces the backend parallelism.
And in the case where the index was suppressed due to uses in
inline assembly, combining into a single LTO module could provoke
renaming of duplicates that we were trying to prevent by suppressing
the index.
This change required a couple of fixes to handle the empty summary
section.
Reviewers: mehdi_amini
Subscribers: mehdi_amini, llvm-commits, pcc
Differential Revision: https://reviews.llvm.org/D24779
llvm-svn: 282037
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
If TBAA is on an intrinsic and it gets upgraded, it'll delete the call
instruction that we collected in a vector. Even if we were to use
WeakVH, it'll drop the TBAA and we'll hit the assert on the upgrade
path.
r263673 gave a shot to make sure the TBAA upgrade happens before
intrinsics upgrade, but failed to account for all cases.
Instead of collecting instructions in a vector, this patch makes it
just upgrade the TBAA on the fly, because metadata are always
already loaded at this point.
Differential Revision: https://reviews.llvm.org/D24533
llvm-svn: 281549
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
The auto-upgrade path could be called before the VST (global
names) was fully parsed, and thus intrinsic names were not
available and the autoupgrade logic could not operate.
Fix link failures with ThinLTO.
This is a recommit of r278610 with a different fix.
llvm-svn: 278615
The auto-upgrade path could be called before the VST (global
names) was fully parsed, and thus intrinsic names were not
available and the autoupgrade logic could not operate.
Fix link failures with ThinLTO.
llvm-svn: 278610
Summary:
Port the ModuleSummaryAnalysisWrapperPass to the new pass manager.
Use it in the ported BitcodeWriterPass (similar to how we use the
legacy ModuleSummaryAnalysisWrapperPass in the legacy WriteBitcodePass).
Also, pass the -module-summary opt flag through to the new pass
manager pipeline and through to the bitcode writer pass, and add
a test that uses it.
Reviewers: mehdi_amini
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23439
llvm-svn: 278508
Summary:
This patch adds IsVariadicFunction bit to summary in order
to not import variadic functions. Inliner doesn't inline
variadic functions because it is hard to reason about it.
This one small fix improves Importer by about 16%
(going from 86% to 100% of imported functions that are
inlined anywhere)
on some spec benchmarks like 'int' and others.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23339
llvm-svn: 278432
Summary:
To enable profile-guided indirect call promotion in ThinLTO mode, we
simply add call graph edges for each profitable target from the profile
to the summaries, then the summary-guided importing will consider the
callee for importing as usual.
Also we need to enable the indirect call promotion pass creation in the
PassManagerBuilder when PerformThinLTO=true (we are in the ThinLTO
backend), so that the newly imported functions are considered for
promotion in the backends.
The IC promotion profiles refer to callees by GUID, which required
adding GUIDs to the per-module VST in bitcode (and assigning them
valueIds similar to how they are assigned valueIds in the combined
index).
Reviewers: mehdi_amini, xur
Subscribers: mehdi_amini, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21932
llvm-svn: 275707
The linker supports a feature to force load an object from a static
archive if it defines an Objective-C category.
This API supports this feature by looking at every section in the
module to find if a category is defined in the module.
llvm-svn: 275125
I have an LTO snapshot (for which I don't have sources) that can't
be read back by LLVM. It seems the writer emitted broken bitcode
and this assertions aims at catching such cases.
llvm-svn: 274819
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
Summary:
This represents the adjustment applied to the implicit 'this' parameter
in the prologue of a virtual method in the MS C++ ABI. The adjustment is
always zero unless multiple inheritance is involved.
This increases the size of DISubprogram by 8 bytes, unfortunately. The
adjustment really is a signed 32-bit integer. If this size increase is
too much, we could probably win it back by splitting out a subclass with
info specific to virtual methods (virtuality, vindex, thisadjustment,
containingType).
Reviewers: aprantl, dexonsmith
Subscribers: aaboud, amccarth, llvm-commits
Differential Revision: http://reviews.llvm.org/D21614
llvm-svn: 274325
The function name Module::empty() is slightly misleading in that it
only tests for the presence of functions in the module. However we
still want to emit the module summary if the module contains only
global variables or aliases. The presence of such entities can be
determined simply by checking the summary directly, as we are doing
below.
Differential Revision: http://reviews.llvm.org/D21669
llvm-svn: 273638
This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
llvm-svn: 273336
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
r267296 used std::piecewise_construct without using
std::forward_as_tuple, and r267298 hacked it out (using an emplace_back
followed by a couple of reset() calls) because of a problem on a bot.
I'm finally circling back to call forward_as_tuple as I should have to
begin with (thanks to David Blaikie for pointing out the missing piece).
Note that this code uses emplace_back() instead of
push_back(make_pair()) because the move constructor for TrackingMDRef is
expensive (cheaper than a copy, but still expensive).
llvm-svn: 272306
Summary:
Now DISubroutineType has a 'cc' field which should be a DW_CC_ enum. If
it is present and non-zero, the backend will emit it as a
DW_AT_calling_convention attribute. On the CodeView side, we translate
it to the appropriate enum for the LF_PROCEDURE record.
I added a new LLVM vendor specific enum to the list of DWARF calling
conventions. DWARF does not appear to attempt to standardize these, so I
assume it's OK to do this until we coordinate with GCC on how to emit
vectorcall convention functions.
Reviewers: dexonsmith, majnemer, aaboud, amccarth
Subscribers: mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D21114
llvm-svn: 272197
This will be necessary to allow the global merge pass to attach
multiple debug info metadata nodes to global variables once we reverse
the edge from DIGlobalVariable to GlobalVariable.
Differential Revision: http://reviews.llvm.org/D20414
llvm-svn: 271358
This patch adds an IR, assembly and bitcode representation for metadata
attachments for globals. Future patches will port existing features to use
these new attachments.
Differential Revision: http://reviews.llvm.org/D20074
llvm-svn: 271348
When we have "Image Info Version" module flag but don't have "Class Properties"
module flag, set "Class Properties" module flag to 0, so we can correctly emit
errors when one module has the flag set and another module does not.
rdar://26469641
llvm-svn: 270791
Calls are initialized from a DenseMap. We can sort them using the
value id to recover some determinism during serialization.
From: mehdi_amini <mehdi_amini@91177308-0d34-0410-b5e6-96231b3b80d8>
llvm-svn: 269638
GlobalVars Refs are initialized from a DenseSet. We can sort them
using the value id to recover some determinism during serialization.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 269635
Calls are initialized from a DenseMap. We can sort them using the
value id to recover some determinism during serialization.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 269634
Refs are initialized from a DenseSet. We can sort them using the
value id to recover some determinism during serialization.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 269629
This fixes a debug assert on Windows from the new iterator
implementation added in r269059. The Windows std::vector iterator
operator== checks in debug mode that the containers being iterated over
are the same, which they may not be.
Fixed by checking that we are iterating over the same container before
comparing the container iterators.
llvm-svn: 269232
This restores commit r268627:
Summary:
When launching ThinLTO backends in a distributed build (currently
supported in gold via the thinlto-index-only plugin option), emit
an individual index file for each backend process as described here:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098272.html
...
Differential Revision: http://reviews.llvm.org/D19556
Address msan failures by avoiding std::prev on map.end(), the
theory is that this is causing issues due to some known UB problems
in __tree.
llvm-svn: 269059
The bitcode upgrade I added for DISubprogram in r266446 was based on the
assumption that the CU node for the subprogram was already materialized by the
time the DISubprogram is visited. This assumption may not hold true as future
versions of LLVM may decide to write out bitcode in a different order. This
patch corrects this by introducing a versioning bit next to the distinct flag to
unambiguously differentiate the new from the old record layouts.
Note for people stabilizing LLVM out-of-tree: This patch introduces a bitcode
incompatibility with llvm trunk revisions from r266446 — this commit. (But
D19987 will ensure that it degrades gracefully).
http://reviews.llvm.org/D20004
rdar://problem/26074194
llvm-svn: 268816
Summary:
When launching ThinLTO backends in a distributed build (currently
supported in gold via the thinlto-index-only plugin option), emit
an individual index file for each backend process as described here:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098272.html
The individual index file encodes the summary and module information
required for implementing the importing/exporting decisions made
for a given module in the thin link step.
This is in place of the current mechanism that uses the combined index
to make importing decisions in each back end independently. It is an
enabler for doing global summary based optimizations in the thin link
step (which will be recorded in the individual index files), and reduces
the size of the index that must be sent to each backend process, and
the amount of work to scan it in the backends.
Rather than create entirely new ModuleSummaryIndex structures (and all
the included unique_ptrs) for each backend index file, a map is created
to record all of the GUID and summary pointers needed for a particular
index file. The IndexBitcodeWriter walks this map instead of the full
index (hiding the details of managing the appropriate summary iteration
in a new iterator subclass). This is more efficient than walking the
entire combined index and filtering out just the needed summaries during
each backend bitcode index write.
Depends on D19481.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D19556
llvm-svn: 268627
Summary:
With the removal of support for lazy parsing of combined index summary
records (e.g. r267344), we no longer need to include the summary record
bitcode offset in the VST entries for definitions. Change the combined
index format to be similar to the per-module index format in using value
ids to cross-reference from the summary record to the VST entry (rather
than the summary record bitcode offset to cross-reference in the other
direction).
The visible changes are:
1) Add the value id to the combined summary records
2) Remove the summary offset from the combined VST records, which has
the following effects:
- No longer need the VST_CODE_COMBINED_GVDEFENTRY record, as all
combined index VST entries now only contain the value id and
corresponding GUID.
- No longer have duplicate VST entries in the case where there are
multiple definitions of a symbol (e.g. weak/linkonce), as they all
have the same value id and GUID.
An implication of #2 above is that in order to hook up an alias to the
correct aliasee based on the value id of the aliasee recorded in the
combined index alias record, we need to scan the entries in the index
for that GUID to find the one from the same module (i.e. the case where
there are multiple entries for the aliasee). But the reader no longer
has to maintain a special map to hook up the alias/aliasee.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19481
llvm-svn: 267712
There's hardly any functionality change here. Instead of calling
materializeMetadata on the first call to materialize(GlobalValue*), wait
until the first one that's actually going to do something. Noticed by
inspection; I don't have a concrete case where this makes a difference.
Added an assertion in materializeMetadata to be sure this (or a future
change) doesn't delay materializeMetadata after function-level metadata.
llvm-svn: 267345
Summary:
Remove the GlobalValueInfo and change the ModuleSummaryIndex to directly
reference summary objects. The info structure was there to support lazy
parsing of the combined index summary objects, which is no longer
needed and not supported.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19462
llvm-svn: 267344
Add tests for some missing cases to bitcode upgrade in r267296.
- DICompositeType with an 'elements:' field, which will cause it to be
involved in a cycle after the upgrade.
- A DIDerivedType that references a class in 'extraData:'.
I updated test/Bitcode/dityperefs-3.8.ll with the missing cases and
regenerated test/Bitcode/dityperefs-3.8.ll.bc.
llvm-svn: 267332
Right now it only contains the LinkageType, but will be extended
with "hasSection", "isOptSize", "hasInlineAssembly", etc.
Differential Revision: http://reviews.llvm.org/D19404
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267319
Summary:
As discussed in D18298, some local globals can't
be renamed/promoted (because they have a section, or because
they are referenced from inline assembly).
To be able to detect naming collision, we need to keep around
the "GUID" using their original name without taking the linkage
into account.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19454
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 267304
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
Since forward references for uniqued node operands are expensive (and
those for distinct node operands are cheap due to
DistinctMDOperandPlaceholder), minimize forward references in uniqued
node operands.
Moreover, guarantee that when a cycle is broken by a distinct node, none
of the uniqued nodes have any forward references. In
ValueEnumerator::EnumerateMetadata, enumerate uniqued node subgraphs
first, delaying distinct nodes until all uniqued nodes have been
handled. This guarantees that uniqued nodes only have forward
references when there is a uniquing cycle (since r267276 changed
ValueEnumerator::organizeMetadata to partition distinct nodes in front
of uniqued nodes as a post-pass).
Note that a single uniqued subgraph can hit multiple distinct nodes at
its leaves. Ideally these would themselves be emitted in post-order,
but this commit doesn't attempt that; I think it requires an extra pass
through the edges, which I'm not convinced is worth it (since
DistinctMDOperandPlaceholder makes forward references quite cheap
between distinct nodes).
I've added two testcases:
- test/Bitcode/mdnodes-distinct-in-post-order.ll is just like
test/Bitcode/mdnodes-in-post-order.ll, except with distinct nodes
instead of uniqued ones. This confirms that, in the absence of
uniqued nodes, distinct nodes are still emitted in post-order.
- test/Bitcode/mdnodes-distinct-nodes-break-cycles.ll is the minimal
example where a naive post-order traversal would cause one uniqued
node to forward-reference another. IOW, it's the motivating test.
llvm-svn: 267278
When an operand of a distinct node hasn't been read yet, the reader can
use a DistinctMDOperandPlaceholder. This is much cheaper than forward
referencing from a uniqued node. Change
ValueEnumerator::organizeMetadata to partition distinct nodes and
uniqued nodes to reduce the overhead of cycles broken by distinct nodes.
Mehdi measured this for me; this removes most of the RAUW from the
importing step of -flto=thin, even after a WIP patch that removes
string-based DITypeRefs (introducing many more cycles to the metadata
graph).
llvm-svn: 267276
Summary:
As discussed in on the mailing list yesterday, I have refactored
BitcodeWriter.cpp to use classes to manage the bitcode writing process,
instead of passing around long lists of parameters between static
functions. See:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098610.html
I created a parent BitcodeWriter class to own the BitstreamWriter,
write the header, and contain the main entry point into the writing
process. There are two derived classes, one for writing a module and one
for writing a combined index file (for ThinLTO), which manage the
writing process specific to those bitcode file types.
I also changed the functions to conform to LLVM coding standards
(lowercase function name first letter). The only two routines that still
start with an uppercase letter are the two external interfaces, which
can be fixed as a follow-on (I wanted to keep this round just within
BitcodeWriter.cpp).
Reviewers: dexonsmith, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19447
llvm-svn: 267273
Mehdi's pattern recognition pulled this one out. This is cleaner with
std::find_if than with the strange helper function that took an iterator
by reference and updated it.
llvm-svn: 267271
Each reference to an unresolved MDNode is expensive, since the RAUW
support in MDNode uses a separate allocation and side map. Since
a distinct MDNode doesn't require its operands on creation (unlike
uniuqed nodes, there's no need to check for structural equivalence),
use nullptr for any of its unresolved operands. Besides reducing the
burden on MDNode maps, this can avoid allocating temporary MDNodes in
the first place.
We need some way to track operands. Invent DistinctMDOperandPlaceholder
for this purpose, which is a Metadata subclass that holds an ID and
points at its single user. DistinctMDOperandPlaceholder::replaceUseWith
is just like RAUW, but its name highlights that there is only ever
exactly one use.
There is no support for moving (or, obviously, copying) these. Move
support would be possible but expensive; leaving it unimplemented
prevents user error. In the BitcodeReader I originally considered
allocating on a BumpPtrAllocator and keeping a vector of pointers to
them, and then I realized that std::deque implements exactly this.
A couple of obvious follow-ups:
- Change ValueEnumerator to emit distinct nodes first to take more
advantage of this optimization. (How convenient... I think I might
have a couple of patches for this.)
- Change DIBuilder and its consumers (like CGDebugInfo in clang) to
use something like this when constructing debug info in the first
place.
llvm-svn: 267270
Consistently use the IsDistinct variable and start relying on it in
GET_OR_DISTINCT. This change has NFC, but prepares for using IsDistinct
to optimize the behaviour of the getMD() and getMDOrNull() helpers.
llvm-svn: 267268
The only functionality change was removing an error check from the
BitcodeReader (and an assertion from DILocation::getImpl) that is
already caught by Verifier::visitDILocation. The Verifier is a better
place for this anyway, and being inconsistent with other subclasses of
MDNode isn't serving anyone.
llvm-svn: 267267
Re-layer the functions in the new (i.e., newly correct) post-order
traversals in ValueEnumerator (r266947) and ValueMapper (r266949).
Instead of adding a node to the worklist in a helper function and
returning a flag to say what happened, return the node itself. This
makes the code way cleaner: the worklist is local to the main function,
there is no flag for an early loop exit (since we can cleanly bury the
loop), and it's perfectly clear when pointers into the worklist might be
invalidated.
I'm fixing both algorithms in the same commit to avoid repeating the
commit message; if you take the time to understand one the other should
be easy. The diff itself isn't entirely obvious since the traversals
have some noise (i.e., things to do), but here's the high-level change:
auto helper = [&WL](T *Op) { auto helper = [](T **&I, T **E) {
=> while (I != E) {
if (shouldVisit(Op)) { T *Op = *I++;
WL.push(Op, Op->begin()); if (shouldVisit(Op)) {
return true; return Op;
} }
return false; return nullptr;
}; };
=>
WL.push(S, S->begin()); WL.push(S, S->begin());
while (!empty()) { while (!empty()) {
auto *N = WL.top().N; auto *N = WL.top().N;
auto *&I = WL.top().I; auto *&I = WL.top().I;
bool DidChange = false;
while (I != N->end())
if (helper(*I++)) { => if (T *Op = helper(I, N->end()) {
DidChange = true; WL.push(Op, Op->begin());
break; continue;
} }
if (DidChange)
continue;
POT.push(WL.pop()); => POT.push(WL.pop());
} }
Thanks to Mehdi for helping me find a better way to layer this.
llvm-svn: 267099
This removes the interfaces added (and not yet complete) to support
lazy reading of summaries. This support is not expected to be needed
since we are moving to a model where the full index is only being
traversed in the thin link step, instead of the back ends.
(The second part of this that I plan to do next is remove the
GlobalValueInfo from the ModuleSummaryIndex - it was mostly needed to
support lazy parsing of summaries. The index can instead reference the
summary structures directly.)
llvm-svn: 267097
Emit metadata nodes in post-order. The iterative algorithm from r266709
failed to maintain this property. After understanding my mistake, it
wasn't too hard to write a test with llvm-bcanalyzer (and I've actually
made this change once before: see r220340).
This also reverts the "noisy" testcase change from r266709. That should
have been more of a red flag :/.
Note: The same bug crept into the ValueMapper in r265456. I'm still
working on the fix.
llvm-svn: 266947
Don't use std::vector<TrackingMDRef>, since (at least in some versions
of libc++) std::vector apparently copies values on grow operations
instead of moving them. Found this when I was temporarily deleting the
copy constructor for TrackingMDRef to investigate a performance
bottleneck.
llvm-svn: 266909
Summary:
This patch prevents importing from (and therefore exporting from) any
module with a "llvm.used" local value. Local values need to be promoted
and renamed when importing, and their presense on the llvm.used variable
indicates that there are opaque uses that won't see the rename. One such
example is a use in inline assembly.
See also the discussion at:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098047.html
As part of this, move collectUsedGlobalVariables out of Transforms/Utils
and into IR/Module so that it can be used more widely. There are several
other places in LLVM that used copies of this code that can be cleaned
up as a follow on NFC patch.
Reviewers: joker.eph
Subscribers: pcc, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18986
llvm-svn: 266877
Add a new method, DICompositeType::buildODRType, that will create or
mutate the DICompositeType for a given ODR identifier, and use it in
LLParser and BitcodeReader instead of DICompositeType::getODRType.
The logic is as follows:
- If there's no node, create one with the given arguments.
- Else, if the current node is a forward declaration and the new
arguments would create a definition, mutate the node to match the
new arguments.
- Else, return the old node.
This adds a missing feature supported by the current DITypeIdentifierMap
(which I'm slowly making redudant). The only remaining difference is
that the DITypeIdentifierMap has a "the-last-one-wins" rule, whereas
DICompositeType::buildODRType has a "the-first-one-wins" rule.
For now I'm leaving behind DICompositeType::getODRType since it has
obvious, low-level semantics that are convenient for unit testing.
llvm-svn: 266786
Lift the API for debug info ODR type uniquing up a layer. Instead of
clients managing the map directly on the LLVMContext, add a static
method to DICompositeType called getODRType and handle the map in the
background. Also adds DICompositeType::getODRTypeIfExists, so far just
for convenience in the unit tests.
This simplifies the logic in LLParser and BitcodeReader. Because of
argument spam there are actually a few more lines of code now; I'll see
if I come up with a reasonable way to clean that up.
llvm-svn: 266742
Tighten up the API for debug info ODR type uniquing in LLVMContext. The
only reason to allow other DIType subclasses is to make the unit tests
prettier :/.
llvm-svn: 266737
As per David's review, rename everything in the new API for ODR type
uniquing of debug info.
ensureDITypeMap => enableDebugTypeODRUniquing
destroyDITypeMap => disableDebugTypeODRUniquing
hasDITypeMap => isODRUniquingDebugTypes
llvm-svn: 266713
Use a worklist instead of recursing through MDNode operands in
ValueEnumerator. The actual record output order has changed slightly,
but otherwise there's no functionality change.
I had to update test/Bitcode/metadata-function-blocks.ll. I renumbered
nodes so they continue to match the implicit record ids.
llvm-svn: 266709
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
I have no idea how I chose two different spellings in the space of a
couple of weeks, but now I can't remember what to use where. Choose
"Worklist".
llvm-svn: 266582
Rather than relying on the structural equivalence of DICompositeType to
merge type definitions, use an explicit map on the LLVMContext that
LLParser and BitcodeReader consult when constructing new nodes.
Each non-forward-declaration DICompositeType with a non-empty
'identifier:' field is stored/loaded from the type map, and the first
definiton will "win".
This map is opt-in: clients that expect ODR types from different modules
to be merged must call LLVMContext::ensureDITypeMap.
- Clients that just happen to load more than one Module in the same
LLVMContext won't magically merge types.
- Clients (like LTO) that want to continue to merge types based on ODR
identifiers should opt-in immediately.
I have updated LTOCodeGenerator.cpp, the two "linking" spots in
gold-plugin.cpp, and llvm-link (unless -disable-debug-info-type-map) to
set this.
With this in place, it will be straightforward to remove the DITypeRef
concept (i.e., referencing types by their 'identifier:' string rather
than pointing at them directly).
llvm-svn: 266549
To be able to work accurately on the reference graph when taking
decision about internalizing, promoting, renaming, etc. We need
to have the alias information explicit.
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266517
1) We need to add this flag prior to adding any other, in case the user has
specified a -fmodule-cache-path= flag in their custom CXXFLAGS. Such a flag
causes -Werror builds to fail, and thus all config checks fail, until we add
the corresponding -fmodules flag. The modules selfhost bot does this, for
instance.
2) Delete module maps that were putting .cpp files into modules.
3) Enable -fmodules-local-submodule-visibility, to get proper module
visibility rules applied across submodules of the same module. Disable
-fmodules for C builds, since that flag is not available there.
llvm-svn: 266502
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Summary:
To be able to work accurately on the reference graph when taking decision
about internalizing, promoting, renaming, etc. We need to have the alias
information explicit.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18836
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266214
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
This should fix bot failure:
http://bb.pgr.jp/builders/i686-mingw32-RA-on-linux/builds/9873
The bitcode writer unfortunately still needs the Analysis library, as it
replaces old dependence on BFI etc with dependence on new
ModuleSummaryAnalysis pass.
llvm-svn: 265945
Summary:
This is the first step in also serializing the index out to LLVM
assembly.
The per-module summary written to bitcode is moved out of the bitcode
writer and to a new analysis pass (ModuleSummaryIndexWrapperPass).
The pass itself uses a new builder class to compute index, and the
builder class is used directly in places where we don't have a pass
manager (e.g. llvm-as).
Because we are computing summaries outside of the bitcode writer, we no
longer can use value ids created by the bitcode writer's
ValueEnumerator. This required changing the reference graph edge type
to use a new ValueInfo class holding a union between a GUID (combined
index) and Value* (permodule index). The Value* are converted to the
appropriate value ID during bitcode writing.
Also, this enables removal of the BitWriter library's dependence on the
Analysis library that was previously required for the summary computation.
Reviewers: joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18763
llvm-svn: 265941
This patch add support for GCC attribute((ifunc("resolver"))) for
targets that use ELF as object file format. In general ifunc is a
special kind of function alias with type @gnu_indirect_function. Patch
for Clang http://reviews.llvm.org/D15524
Differential Revision: http://reviews.llvm.org/D15525
llvm-svn: 265667
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Add a common parent class for ConstantArray, ConstantVector, and
ConstantStruct called ConstantAggregate. These are the aggregate
subclasses of Constant that take operands.
This is mainly a cleanup, adding common `isa` target and removing
duplicated code. However, it also simplifies caching which constants
point transitively at `GlobalValue` (a possible future direction).
llvm-svn: 265466
Refactor common code that queries the ModuleSummaryIndex for a value's
GlobalValueInfo struct into getGlobalValueInfo helper methods, which
will also be used by D18763.
llvm-svn: 265370
Summary:
Useful for debugging since we lose this correlation after the permodule
summary/VST is read and until we later materialize source modules in the
function importer.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18555
llvm-svn: 265327
Whenever metadata is only referenced by a single function, emit the
metadata just in that function block. This should improve lazy-loading
by reducing the amount of metadata in the global block.
For now, this should catch all DILocations, and anything else that
happens to be referenced only by a single function.
It's also a first step toward a couple of possible future directions
(which this commit does *not* implement):
1. Some debug info metadata is only referenced from compile units and
individual functions. If we can drop the link from the compile
unit, this optimization will get more powerful.
2. Any uniqued metadata that isn't referenced globally can in theory be
emitted in every function block that references it (trading off
bitcode size and full-parse time vs. lazy-load time).
Note: this assumes the new BitcodeReader error checking from r265223.
The metadata stored in function blocks gets purged after parsing each
function, which means unresolved forward references will get lost.
Since all the global metadata should have already been resolved by the
time we get to the function metadata blocks we just need to check for
that case. (If for some reason we need to handle bitcode that fails the
checks in r265223, the fix is to store about-to-be-dropped unresolved
nodes in MetadataList::shrinkTo until they can be handled succesfully by
a future call to MetadataList::tryToResolveCycles.)
llvm-svn: 265226
Further unify the handling of function-local metadata with global
metadata, by exposing the same interface in ValueEnumerator. Both
contexts use the same accessors:
- getMDStrings(): get the strings for this block.
- getNonMDStrings(): get the non-strings for this block.
A future commit will start adding strings to the function-block.
llvm-svn: 265224
A follow-up commit will start using function metadata blocks more
heavily. This commit adds some error checking to confirm that metadata
is fully resolved before (and after) materializing each function.
This is valid even when reading very old bitcode from before the
metadata/value split. The global metadata block always came before the
function blocks. However, in case somehow this causes a regression
(i.e., an old LLVM did produce such bitcode after all) I'm committing
separately.
llvm-svn: 265223
Summary: This should make the code more readable, especially all the map declarations.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18721
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265215
A ``swifterror`` attribute can be applied to a function parameter or an
AllocaInst.
This commit does not include any target-specific change. The target-specific
optimization will come as a follow-up patch.
Differential Revision: http://reviews.llvm.org/D18092
llvm-svn: 265189
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
This is a recommit of r265095 after fixing the Windows issues.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265111
This reverts commit r265096, r265095, and r265094.
Windows build is broken, and the validation does not pass.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265102
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265095
Since we have moved to a model where functions are imported in bulk from
each source module after making summary-based importing decisions, there
is no longer a need to link metadata as a postpass, and all users have
been removed.
This essentially reverts r255909 and follow-on fixes.
llvm-svn: 264763
Change writeFunctionMetadata to call writeMetadataRecords. For now
there's no functionality change, but makes it easy to serialize other
types of metadata in the function block in the future.
llvm-svn: 264557
To match writeMetadataRecords, writeNamedMetadata and
writeMetadataStrings, change:
WriteModuleMetadata => writeModuleMetadata
WriteFunctionLocalMetadata => writeFunctionMetadata
Write##CLASS => write##CLASS
The only major change is "FunctionLocal" => "Function". The point is to
be less specific, in preparation for emitting normal metadata records
inside function metadata blocks (currently we only emit
`LocalAsMetadata` there).
llvm-svn: 264556
We don't really need a separate vector here; instead, point at a range
inside the main MDs array. This matches how r264551 references the
ranges of strings and non-strings.
llvm-svn: 264552
Spiritually reapply commit r264409 (reverted in r264410), albeit with a
bit of a redesign.
Firstly, avoid splitting the big blob into multiple chunks of strings.
r264409 imposed an arbitrary limit to avoid a massive allocation on the
shared 'Record' SmallVector. The bug with that commit only reproduced
when there were more than "chunk-size" strings. A test for this would
have been useless long-term, since we're liable to adjust the chunk-size
in the future.
Thus, eliminate the motivation for chunk-ing by storing the string sizes
in the blob. Here's the layout:
vbr6: # of strings
vbr6: offset-to-blob
blob:
[vbr6]: string lengths
[char]: concatenated strings
Secondly, make the output of llvm-bcanalyzer readable.
I noticed when debugging r264409 that llvm-bcanalyzer was outputting a
massive blob all in one line. Past a small number, the strings were
impossible to split in my head, and the lines were way too long. This
version adds support in llvm-bcanalyzer for pretty-printing.
<STRINGS abbrevid=4 op0=3 op1=9/> num-strings = 3 {
'abc'
'def'
'ghi'
}
From the original commit:
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
llvm-svn: 264551
The implementation is fairly obvious. This is preparation for using
some blobs in bitcode.
For clarity (and perhaps future-proofing?), I moved the call to
JumpToBit in BitstreamCursor::readRecord ahead of calling
MemoryObject::getPointer, since JumpToBit can theoretically (a) read
bytes, which (b) invalidates the blob pointer.
This isn't strictly necessary the two memory objects we have:
- The return of RawMemoryObject::getPointer is valid until the memory
object is destroyed.
- StreamingMemoryObject::getPointer is valid until the next chunk is
read from the stream. Since the JumpToBit call is only going ahead
to a word boundary, we'll never load another chunk.
However, reordering makes it clear by inspection that the blob returned
by BitstreamCursor::readRecord will be valid.
I added some tests for StreamingMemoryObject::getPointer and
BitstreamCursor::readRecord.
llvm-svn: 264549
Add API to SimpleBitstreamCursor to allow users to translate between
byte addresses and pointers.
- jumpToPointer: move the bit position to a particular pointer.
- getPointerToByte: get the pointer for a particular byte.
- getPointerToBit: get the pointer for the byte of the current bit.
- getCurrentByteNo: convenience function for assertions and tests.
Mainly adds unit tests (getPointerToBit/Byte already has a use), but
also preparation for eventually using jumpToPointer.
llvm-svn: 264546
Split out SimpleBitstreamCursor from BitstreamCursor, which is a
lower-level cursor with no knowledge of bitcode blocks, abbreviations,
or records. It just knows how to read bits and navigate the stream.
This is mainly organizational, to separate the API for manipulating raw
bits from that for bitcode concepts like Record and Block.
llvm-svn: 264545
Optimize output of MDStrings in bitcode. This emits them in big blocks
(currently 1024) in a pair of records:
- BULK_STRING_SIZES: the sizes of the strings in the block, and
- BULK_STRING_DATA: a single blob, which is the concatenation of all
the strings.
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
I needed to add support for blobs to streaming input to get the test
suite passing.
- StreamingMemoryObject::getPointer reads ahead and returns the
address of the blob.
- To avoid a possible reallocation of StreamingMemoryObject::Bytes,
BitstreamCursor::readRecord needs to move the call to JumpToEnd
forward so that getPointer is the last bitstream operation.
llvm-svn: 264409
The motivation for MODULE_CODE_METADATA_VALUES was to enable an
-flto=thin scheme where:
1. First, one function is cherry-picked from a bitcode file.
2. Later, another function is cherry-picked.
3. Later, ...
4. Finally, the metadata needed by all the previous functions is
loaded.
This was abandoned in favour of:
1. Calculate the superset of functions needed from a Module.
2. Link all functions at once.
Delayed metadata reading no longer serves a purpose. It also adds
a few complication, since we can't count on metadata being properly
parsed when exiting the BitcodeReader. After discussing with Teresa, we
agreed to remove it.
The code that depended on this was removed/updated in r264326.
llvm-svn: 264378
Remove logic to upgrade !llvm.loop by changing the MDString tag
directly. This old logic would check (and change) arbitrary strings
that had nothing to do with loop metadata. Instead, check !llvm.loop
attachments directly, and change which strings get attached.
Rather than updating the assembly-based upgrade, drop it entirely. It
has been quite a while since we supported upgrading textual IR.
llvm-svn: 264373
Simplify ValueEnumerator and WriteModuleMetadata by shifting the logic
for the METADATA_GENERIC_DEBUG abbreviation into WriteGenericDINode.
(This is just like r264302, but for GenericDINode.)
The only change is that the abbreviation is emitted later in the
bitcode, just before the first `GenericDINode` record. This shouldn't
be observable though.
llvm-svn: 264303
Simplify ValueEnumerator and WriteModuleMetadata by shifting the logic
for the METADATA_LOCATION abbreviation into WriteDILocation.
The only change is that the abbreviation is emitted later in the
bitcode, just before the first `DILocation` record. This shouldn't be
observable though.
llvm-svn: 264302
Split writeNamedMetadata out of WriteModuleMetadata to write named
metadata, and createNamedMetadataAbbrev for the abbreviation.
There should be no effective functionality change, although the layout
of the bitcode will change. Previously, the abbreviation was emitted at
the top of the block, but now it is delayed until immediately before the
named metadata records are emitted.
llvm-svn: 264301
I hit a crash in the bitcode reader on some corrupt input where an
MDString had somehow been attached to an instruction instead of an
MDNode. This input is pretty bogus, but we shouldn't be crashing on bad
input here.
This change adds error handling in all of the places where we
currently have unchecked casts from Metadata to MDNode, which means
we'll error out instead of crashing for that sort of input.
Unfortunately, I don't have tests. Hitting this requires flipping bits
in the input bitcode, and committing corrupt binary files to catch
these cases is a bit too opaque and unmaintainable.
llvm-svn: 263742
Summary: If TBAA is on an intrinsic and it gets upgraded and drops the TBAA we hit an odd assert. We should just upgrade the TBAA first because it doesn't have side-effects.
Reviewers: reames, apilipenko, manmanren
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18229
llvm-svn: 263673
Record all variable defs with a summary record to aid in building a
complete reference graph and locating constant variable defs to import.
llvm-svn: 263576
Since the static getGlobalIdentifier and getGUID methods are now called
for global values other than functions, reflect that by moving these
methods to the GlobalValue class.
llvm-svn: 263524
(Resubmitting after fixing missing file issue)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263513
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
It had a weird artificial limitation on the write side: the comdat name
couldn't be bigger than 2**16. However, the reader had no such
limitation. Make the reader and the writer agree.
llvm-svn: 263377
Summary:
This patch adds support for including a full reference graph including
call graph edges and other GV references in the summary.
The reference graph edges can be used to make importing decisions
without materializing any source modules, can be used in the plugin
to make file staging decisions for distributed build systems, and is
expected to have other uses.
The call graph edges are recorded in each function summary in the
bitcode via a list of <CalleeValueIds, StaticCount> tuples when no PGO
data exists, or <CalleeValueId, StaticCount, ProfileCount> pairs when
there is PGO, where the ValueId can be mapped to the function GUID via
the ValueSymbolTable. In the function index in memory, the call graph
edges reference the target via the CalleeGUID instead of the
CalleeValueId.
The reference graph edges are recorded in each summary record with a
list of referenced value IDs, which can be mapped to value GUID via the
ValueSymbolTable.
Addtionally, a new summary record type is added to record references
from global variable initializers. A number of bitcode records and data
structures have been renamed to reflect the newly expanded scope of the
summary beyond functions. More cleanup will follow.
Reviewers: joker.eph, davidxl
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17212
llvm-svn: 263275
Summary: This make readRecord 20% faster, measured on an LTO build
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17911
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 262811
When emitting the source filename, the encoding of the string
was checked against the name instead of the filename.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 261019
This restores commit r260408, along with a fix for a bot failure.
The bot failure was caused by dereferencing a unique_ptr in the same
call instruction parameter list where it was passed via std::move.
Apparently due to luck this was not exposed when I built the compiler
with clang, only with gcc.
llvm-svn: 260442
Summary:
This patch uses the lower 64-bits of the MD5 hash of a function name as
a GUID in the function index, instead of storing function names. Any
local functions are first given a global name by prepending the original
source file name. This is the same naming scheme and GUID used by PGO in
the indexed profile format.
This change has a couple of benefits. The primary benefit is size
reduction in the combined index file, for example 483.xalancbmk's
combined index file was reduced by around 70%. It should also result in
memory savings for the index file in memory, as the in-memory map is
also indexed by the hash instead of the string.
Second, this enables integration with indirect call promotion, since the
indirect call profile targets are recorded using the same global naming
convention and hash. This will enable the function importer to easily
locate function summaries for indirect call profile targets to enable
their import and subsequent promotion.
The original source file name is recorded in the bitcode in a new
module-level record for use in the ThinLTO backend pipeline.
Reviewers: davidxl, joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D17028
llvm-svn: 260408
Summary:
Adds the linkage type to both the per-module and combined function
summaries, which subsumes the current islocal bit. This will eventually
be used to optimized linkage types based on global summary-based
analysis.
Reviewers: joker.eph
Subscribers: joker.eph, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D16943
llvm-svn: 259993
Iterate over the function list instead of a DenseMap of Function pointers
when emitting the function summary into the module.
This fixes PR26419.
llvm-svn: 259398
This patch enables llvm-bcanalyzer to print the bitcode wrapper header
if the file has one, which is needed to test the changes made in
r258627 (bitcode-wrapper-header-armv7m.ll is the test case for r258627).
Differential Revision: http://reviews.llvm.org/D16642
llvm-svn: 259162
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
target is macho.
It looks like the check for macho was accidentally dropped in r132959.
I don't have a test case, but I'll add one if anyone knows how this can
be tested.
llvm-svn: 258627
This reverts commit r257751, bringing back r256105.
The problem the assert found was fixed in r257915.
Original commit message:
Assert that we have all use/users in the getters.
An error that is pretty easy to make is to use the lazy bitcode reader
and then do something like
if (V.use_empty())
The problem is that uses in unmaterialized functions are not accounted
for.
This patch adds asserts that all uses are known.
llvm-svn: 257920
In r254991 I allowed ConstantDataVectors to contain elements of
HalfTy, but I missed updating the bitcode reader and writer to handle
this, so now we crash if we try to emit bitcode on programs that have
constant vectors of half.
This fixes the issue and adds test coverage for reading and writing
constant sequences in bitcode.
llvm-svn: 256982
As suggested in review for r255909, add a way to ensure that temporary
MD used as keys in the MetadataToID map during ThinLTO importing are not
RAUWed.
Add support for marking an MDNode as not replaceable. Clear the new
CanReplace flag when adding a temporary MD node to the MetadataToID map
and clear it when destroying the map.
llvm-svn: 256648
Add an assert suggested in review for r255909 to ensure that MDNodes
saved in the map used for metadata linking are either temporary or
resolved.
Also add a comment clarifying why we may need to save off non-MDNode
metadata.
llvm-svn: 256646
This fixes a bug introduced by the ThinLTO metadata linking patch
r255909. The assert is overly-strict and while useful in development of
the patch, doesn't seem interesting to keep.
Fixes PR25907.
llvm-svn: 256161
An error that is pretty easy to make is to use the lazy bitcode reader
and then do something like
if (V.use_empty())
The problem is that uses in unmaterialized functions are not accounted
for.
This patch adds asserts that all uses are known.
llvm-svn: 256105
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Includes a fix to scrub value subclass data in dropAllReferences. Does not
use binary literals.
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256095
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Includes a fix to scrub value subclass data in dropAllReferences.
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256093
Make personality functions, prefix data, and prologue data hungoff
operands of Function.
This is based on the email thread "[RFC] Clean up the way we store
optional Function data" on llvm-dev.
Thanks to sanjoyd, majnemer, rnk, loladiro, and dexonsmith for feedback!
Differential Revision: http://reviews.llvm.org/D13829
llvm-svn: 256090
This deprecates:
* LLVMParseBitcode
* LLVMParseBitcodeInContext
* LLVMGetBitcodeModuleInContext
* LLVMGetBitcodeModule
They are replaced with the functions with a 2 suffix which do not record
a diagnostic.
llvm-svn: 256065
This inlines materializeAll into the only caller
(materializeAllPermanently) and renames materializeAllPermanently to
just materializeAll.
llvm-svn: 256024
Type specific declarations have been moved to Type.h and error handling
routines have been moved to ErrorHandling.h. Both are included in Core.h
so nothing should change for projects directly including the headers,
but transitive dependencies may be affected.
llvm-svn: 255965
Summary:
Second patch split out from http://reviews.llvm.org/D14752.
Maps metadata as a post-pass from each module when importing complete,
suturing up final metadata to the temporary metadata left on the
imported instructions.
This entails saving the mapping from bitcode value id to temporary
metadata in the importing pass, and from bitcode value id to final
metadata during the metadata linking postpass.
Depends on D14825.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14838
llvm-svn: 255909
Summary:
This patch introduces two new function attributes
InaccessibleMemOnly: This attribute indicates that the function may only access memory that is not accessible by the program/IR being compiled. This is a weaker form of ReadNone.
inaccessibleMemOrArgMemOnly: This attribute indicates that the function may only access memory that is either not accessible by the program/IR being compiled, or is pointed to by its pointer arguments. This is a weaker form of ArgMemOnly
Test cases have been updated. This revision uses this (d001932f3a) as reference.
Reviewers: jmolloy, hfinkel
Subscribers: reames, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D15499
llvm-svn: 255778
This patch converts code that has access to a LLVMContext to not take a
diagnostic handler.
This has a few advantages
* It is easier to use a consistent diagnostic handler in a single program.
* Less clutter since we are not passing a handler around.
It does make it a bit awkward to implement some C APIs that return a
diagnostic string. I will propose new versions of these APIs and
deprecate the current ones.
llvm-svn: 255571
This patch adds optional fast-math-flags (the same that apply to fmul/fadd/fsub/fdiv/frem/fcmp)
to call instructions in IR. Follow-up patches would use these flags in LibCallSimplifier, add
support to clang, and extend FMF to the DAG for calls.
Motivating example:
%y = fmul fast float %x, %x
%z = tail call float @sqrtf(float %y)
We'd like to be able to optimize sqrt(x*x) into fabs(x). We do this today using a function-wide
attribute for unsafe-math, but we really want to trigger on the instructions themselves:
%z = tail call fast float @sqrtf(float %y)
because in an LTO build it's possible that calls with fast semantics have been inlined into a
function with non-fast semantics.
The code changes and tests are based on the recent commits that added "notail":
http://reviews.llvm.org/rL252368
and added FMF to fcmp:
http://reviews.llvm.org/rL241901
Differential Revision: http://reviews.llvm.org/D14707
llvm-svn: 255555
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Introduced DIMacro and DIMacroFile debug info metadata in the LLVM IR to support macros.
Differential Revision: http://reviews.llvm.org/D14687
llvm-svn: 255245
There is no real reason the index has to have the concept of an
exporting Module. We should be able to have one single unique
instance of the Index, and it should be read-only after creation
for the whole ThinLTO processing.
The linker plugin should be able to process multiple modules (in
parallel or in sequence) with the same index.
The only reason the ExportingModule was present seems to be to
implement hasExportedFunctions() that is used by the Module linker
to decide what to do with the current Module.
For now I replaced it with a query to the map of Modules path to
see if this module was declared in the Index and consider that if
it is the case then it is probably exporting function.
On the long term the Linker interface needs to evolve and this
call should not be needed anymore.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 254581
Summary:
Several fixes to the handling of bitcode files without function summary
sections so that they are skipped during ThinLTO processing in llvm-lto
and the gold plugin when appropriate instead of aborting.
1 Don't assert when trying to add a FunctionInfo that doesn't have
a summary attached.
2 Skip FunctionInfo structures that don't have attached function summary
sections when trying to create the combined function summary.
3 In both llvm-lto and gold-plugin, check whether a bitcode file has
a function summary section before trying to parse the index, and skip
the bitcode file if it does not.
4 Fix hasFunctionSummaryInMemBuffer in BitcodeReader, which had a bug
where we returned to early while looking for the summary section.
Also added llvm-lto and gold-plugin based tests for cases where we
don't have function summaries in the bitcode file. I verified that
either the first couple fixes described above are enough to avoid the
crashes, or fixes 1,3,4. But have combined them all here for added
robustness.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14903
llvm-svn: 253796
This assert was meant to execute at the end of parseMetadata, but
we return early and never reach the end of the function. Caught
by a compile-time warning since the function doesn't return a value
from that location.
llvm-svn: 253762
Summary:
This is split out from the ThinLTO metadata mapping patch
http://reviews.llvm.org/D14752.
To avoid needing to parse the module level metadata during function
importing, a new module-level record is added which holds the
number of module-level metadata values. This is required because
metadata value ids are assigned implicitly during parsing, and the
function-level metadata ids start after the module-level metadata ids.
I made a change to this version of the code compared to D14752
in order to add more consistent and thorough assertion checking of the
new record value. We now unconditionally use the record value to
initialize the MDValueList size, and handle it the same in parseMetadata
for all module level metadata cases (lazy loading or not).
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D14825
llvm-svn: 253668
The LLVMContext was only used for Diagnostic. Pass a DiagnosticHandler
instead.
Differential Revision: http://reviews.llvm.org/D14794
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 253540
Summary:
There are currently two blocks with the METADATA_BLOCK id at module
scope. The first has the module-level metadata values (consisting of
some combination of METADATA_* record codes except for METADATA_KIND).
The second consists only of METADATA_KIND records. The latter is used
only in the METADATA_ATTACHMENT block within function blocks (for
metadata attached to instructions).
For ThinLTO we want to delay the parsing of module level metadata
until all functions have been imported from that module (there is some
bookkeeping used to suture it up when we read it during a post-pass).
However, we do need the METADATA_KIND records when parsing the function
body during importing, since those kinds are used as described above.
To simplify identification and parsing of just the block containing
the metadata kinds, use a different block id (METADATA_KIND_BLOCK_ID).
Support older bitcode without the new block id as well.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14654
llvm-svn: 253154
Summary: Mimic parseTriple(); and exposes it to LTOModule.cpp
Reviewers: dexonsmith, rafael
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 252442
This commit adds enums in LLVMBitCodes.h to improve readability and
maintainability. This is a follow-up to r252368 which was discussed
here:
http://reviews.llvm.org/D12923
llvm-svn: 252395
This marker prevents optimization passes from adding 'tail' or
'musttail' markers to a call. Is is used to prevent tail call
optimization from being performed on the call.
rdar://problem/22667622
Differential Revision: http://reviews.llvm.org/D12923
llvm-svn: 252368
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
No test, since it would depend on what the compiler can optimize/reuse.
My next commit made this bug visible on Linux Release compiles with some
versions of gcc.
llvm-svn: 251909
This reverts commit r251837, due to a number of bot failures of the form:
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to
'llvm::object::FunctionIndexObjectFile::create(llvm::MemoryBufferRef,
llvm::LLVMContext&, llvm::Module const*, bool)'
/home/grosser/buildslave/perf-x86_64-penryn-O3-polly-fast/llvm.obj/tools/llvm-link/Release+Asserts/llvm-link.o:llvm-link.cpp:function
loadIndex(llvm::LLVMContext&, llvm::Module const*): error: undefined
reference to 'llvm::object::FunctionIndexObjectFile::takeIndex()'
I'm not sure why these are happening - I added Object to the requred
libraries in tools/llvm-link/LLVMBuild.txt and the LLVM_LINK_COMPONENTS
in tools/llvm-link/CMakeLists.txt. Confirmed for my build that these
symbols come out of libLLVMObject.a. What am I missing?
llvm-svn: 251841
Summary:
Support for necessary linkage changes and symbol renaming during
ThinLTO function importing.
Also includes llvm-link support for manually importing functions
and associated llvm-link based tests.
Note that this does not include support for intelligently importing
metadata, which is currently imported duplicate times. That support will
be in the follow-on patch, and currently is ignored by the tests.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tobiasvk, tejohnson, llvm-commits
Differential Revision: http://reviews.llvm.org/D13515
llvm-svn: 251837
Use 10 bits to represent calling convention ID's instead of 13, and
update the bitcode compatibility tests accordingly. We now error-out in
the bitcode reader when we see bad calling conv ID's.
Thanks to rnk and dexonsmith for feedback!
Differential Revision: http://reviews.llvm.org/D13826
llvm-svn: 251452
Processing bitcode from a different LLVM version can lead to
unexpected behavior. The LLVM project guarantees autoupdating
bitcode from a previous minor revision for the same major, but
can't make any promise when reading bitcode generated from a
either a non-released LLVM, a vendor toolchain, or a "future"
LLVM release. This patch aims at being more user-friendly and
allows a bitcode produce to emit an optional block at the
beginning of the bitcode that will contains an opaque string
intended to describe the bitcode producer information. The
bitcode reader will dump this information alongside any error it
reports.
The optional block also includes an "epoch" number, monotonically
increasing when incompatible changes are made to the bitcode. The
reader will reject bitcode whose epoch is different from the one
expected.
Differential Revision: http://reviews.llvm.org/D13666
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 251325
Now LLVMBitWriter compiles without implicit ilist iterator conversions.
In these cases, the cleanest thing was to switch to range-based for
loops. Since there wasn't much noise I converted sub-loops and parent
loops as a drive-by.
llvm-svn: 250144
Summary:
The change to use the VST function entries for lazy deserialization did
not handle the case of anonymous functions without aliases. In that case
we must fall back to scanning the function blocks as there is no VST
entry.
Reviewers: dexonsmith, joker.eph, davidxl
Subscribers: tstellarAMD, llvm-commits
Differential Revision: http://reviews.llvm.org/D13596
llvm-svn: 249947
Removed an unused abbrev op in the VST_CODE_COMBINED_FNENTRY abbrev.
I noticed while writing/testing an array string dumper for
llvm-bcanalyze that the combined function's VST entry abbrevs contained
an old field that I am not using. Everything was working fine since the
bitcode writer and reader were in sync on how the record fields were
actually being set up and interpreted.
llvm-svn: 249691
Summary:
The bitcode format is described in this document:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
For more info on ThinLTO see:
https://sites.google.com/site/llvmthinlto
The first customer is ThinLTO, however the data structures are designed
and named more generally based on prior feedback. There are a few
comments regarding how certain interfaces are used by ThinLTO, and the
options added here to gold currently have ThinLTO-specific names as the
behavior they provoke is currently ThinLTO-specific.
This patch includes support for generating per-module function indexes,
the combined index file via the gold plugin, and several tests
(more are included with the associated clang patch D11908).
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13107
llvm-svn: 249270
Summary:
This also adds the first set of tests for operand bundles.
The optimizer has not been audited to ensure that it does the right
thing with operand bundles.
Depends on D12456.
Reviewers: reames, chandlerc, majnemer, dexonsmith, kmod, JosephTremoulet, rnk, bogner
Subscribers: maksfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D12457
llvm-svn: 248551
Since aliases actually use and verify their explicit type already, no
further invalid testing is required here. The
invalid.test:ALIAS-TYPE-MISMATCH case catches errors due to emitting a
non-pointee type in the new format or a non-pointer type in the old
format.
llvm-svn: 247952
This reverts commit r247898 (which reverted r247894).
Patch fixed to address two issues exposed by buildbots:
- unused variable warning in NDEBUG mode
- std::initializer_list lifetime issue causing test failures
Original Summary:
Support for including the function bitcode indices in the Value Symbol
Table. This requires writing the VST after the function blocks, which in
turn requires a new VST forward declaration record encoding the offset of
the full VST (which is backpatched to contain the offset after the VST
is written).
This patch also enables the lazy function reader to use the new function
indices out of the VST. This support will be used by ThinLTO as well, which
will be in a follow on patch. Backwards compatibility with older bitcode
files is maintained.
A new test is also included.
The bitcode format (used for the lazy reader as well as the upcoming
ThinLTO patches) came out of discussions with Duncan and others and is
described here:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12536
llvm-svn: 247927
Temporarily revert to fix some buildbot issues. One is a minor issue
with a variable unused in NDEBUG mode. More concerning are some test
failures on win7 that I need to dig into.
This reverts commit 4e66a74543459832cfd571db42b4543580ae1d1d.
llvm-svn: 247898
Summary:
Support for including the function bitcode indices in the Value Symbol
Table. This requires writing the VST after the function blocks, which in
turn requires a new VST forward declaration record encoding the offset of
the full VST (which is backpatched to contain the offset after the VST
is written).
This patch also enables the lazy function reader to use the new function
indices out of the VST. This support will be used by ThinLTO as well, which
will be in a follow on patch. Backwards compatibility with older bitcode
files is maintained.
A new test is also included.
The bitcode format (used for the lazy reader as well as the upcoming
ThinLTO patches) came out of discussions with Duncan and others and is
described here:
https://drive.google.com/file/d/0B036uwnWM6RWdnBLakxmeDdOeXc/view
Reviewers: dexonsmith, davidxl, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12536
llvm-svn: 247894
This was a flawed change - it just caused the getElementType call to be
deferred until later, when we really need to remove it. Now that the IR
for GlobalAliases has been updated, the root cause is addressed that way
instead and this change is no longer needed (and in fact gets in the way
- because we want to pass the pointee type directly down further).
Follow up patches to push this through GlobalValue, bitcode format, etc,
will come along soon.
This reverts commit 236160.
llvm-svn: 247585
Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
llvm-svn: 246751
Summary:
Constant vectors weren't allowed to have an i1 condition in the
BitcodeReader. Make sure we have the same restrictions that are
documented, not more.
Reviewers: nlewycky, rafael, kschimpf
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12440
llvm-svn: 246459
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Summary:
WinEHPrepare is going to require that cleanuppad and catchpad produce values
of token type which are consumed by any cleanupret or catchret exiting the
pad. This change updates the signatures of those operators to require/enforce
that the type produced by the pads is token type and that the rets have an
appropriate argument.
The catchpad argument of a `CatchReturnInst` must be a `CatchPadInst` (and
similarly for `CleanupReturnInst`/`CleanupPadInst`). To accommodate that
restriction, this change adds a notion of an operator constraint to both
LLParser and BitcodeReader, allowing appropriate sentinels to be constructed
for forward references and appropriate error messages to be emitted for
illegal inputs.
Also add a verifier rule (noted in LangRef) that a catchpad with a catchpad
predecessor must have no other predecessors; this ensures that WinEHPrepare
will see the expected linear relationship between sibling catches on the
same try.
Lastly, remove some superfluous/vestigial casts from instruction operand
setters operating on BasicBlocks.
Reviewers: rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12108
llvm-svn: 245797
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
llvm-svn: 245029
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Swift has a custom calling convention that also requires some new flags
on arguments and one new attribute on alloca instructions. This patch
does not include the implementation of that calling convention - that
will be provided as part of the open-source release of Swift; this only
reserves the bitcode constant values so that they are not used for
other purposes.
llvm-svn: 243379
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
llvm-svn: 241901
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
Summary:
Looking at r241279, I noticed that UpgradedIntrinsics only gets written
to in the following code:
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
Looking through UpgradeIntrinsicFunction, we always return false OR
NewFn will be set to a different function from our source.
This patch pulls the F != NewFn into UpgradeIntrinsicFunction as an
assert, and removes the check from callers of UpgradeIntrinsicFunction.
Reviewers: rafael, chandlerc
Subscribers: llvm-commits-list
Differential Revision: http://reviews.llvm.org/D10915
llvm-svn: 241369
When trying to upgrade @llvm.x86.sse2.psrl.dq while parsing a module,
BitcodeReader adds the function to its worklist twice, resulting in a
crash when accessing it the second time.
This patch replaces the worklist vector by a map.
Patch by Philip Pfaffe.
llvm-svn: 241281
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
Having different code paths for streamed and regular bitcode reading was a
source of bugs in the past and this defines them away.
It has a small but noticeable impact on performance. I timed running
"opt -disable-output -disable-verify" on a ltoed clang. It goes from
14.752845231 seconds time elapsed ( +- 0.16% )
to
15.012463721 seconds time elapsed ( +- 0.11% )
Extracted from a patch by Karl Schimpf.
llvm-svn: 240305
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
Before this patch the bitcode reader would read a module from a file
that contained in order:
* Any number of non MODULE_BLOCK sub blocks.
* One MODULE_BLOCK
* Any number of non MODULE_BLOCK sub blocks.
* 4 '\n' characters to handle OS X's ranlib.
Since we support lazy reading of modules, any information that is relevant
for the module has to be in the MODULE_BLOCK or before it. We don't gain
anything from checking what is after.
This patch then changes the reader to stop once the MODULE_BLOCK has been
successfully parsed.
This avoids the ugly special case for .bc files in an archive and makes it
easier to embed bitcode files.
llvm-svn: 239845
`LLVM_ENABLE_MODULES` builds sometimes fail because `Intrinsics.td`
needs to regenerate `Instrinsics.h` before anyone can include anything
from the LLVM_IR module. Represent the dependency explicitly to prevent
that.
llvm-svn: 239796
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
so DWARF skeleton CUs can be expression in IR. A skeleton CU is a
(typically empty) DW_TAG_compile_unit that has a DW_AT_(GNU)_dwo_name and
a DW_AT_(GNU)_dwo_id attribute. It is used to refer to external debug info.
This is a prerequisite for clang module debugging as discussed in
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2014-November/040076.html.
In order to refer to external types stored in split DWARF (dwo) objects,
such as clang modules, we need to emit skeleton CUs, which identify the
dwarf object (i.e., the clang module) by filename (the SplitDebugFilename)
and a hash value, the dwo_id.
This patch only contains the IR changes. The idea is that a CUs with a
non-zero dwo_id field will be emitted together with a DW_AT_GNU_dwo_name
and DW_AT_GNU_dwo_id attribute.
http://reviews.llvm.org/D9488
rdar://problem/20091852
llvm-svn: 237949
Summary:
Added isLoadableOrStorableType to PointerType.
We were doing some checks in some places, occasionally assert()ing instead
of telling the caller. With this patch, I'm putting all type checking in
the same place for load/store type instructions, and verifying the same
thing every time.
I also added a check for load/store of a function type.
Applied extracted check to Load, Store, and Cmpxcg.
I don't have exhaustive tests for all of these, but all Error() calls in
TypeCheckLoadStoreInst are being tested (in invalid.test).
Reviewers: dblaikie, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9785
llvm-svn: 237619
Somehow I dropped this in r233585, and we haven't had `DEBUG_LOC_AGAIN`
records since. Add it back. Also tests that the output assembly looks
okay.
Fixes PR23436.
llvm-svn: 236661
Many of the callers already have the pointer type anyway, and for the
couple of callers that don't it's pretty easy to call PointerType::get
on the pointee type and address space.
This avoids LLParser from using PointerType::getElementType when parsing
GlobalAliases from IR.
llvm-svn: 236160
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Summary:
We don't seem to need to assert here, since this function's callers expect
to get a nullptr on error. This way we don't assert on user input.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9308
llvm-svn: 236027
As a space optimization, this instruction would just encode the pointer
type of the first operand and use the knowledge that the second and
third operands would be of the pointee type of the first. When typed
pointers go away, this assumption will no longer be available - so
encode the type of the second operand explicitly and rely on that for
the third.
Test case added to demonstrate the backwards compatibility concern,
which only comes up when the definition of the second operand comes
after the use (hence the weird basic block sequence) - at which point
the type needs to be explicitly encoded in the bitcode and the record
length changes to accommodate this.
llvm-svn: 235966
Use a few extra bits in the const field (after widening it from a fixed
single bit) to stash the address space which is no longer provided by
the type (and an extra bit in there to specify that we're using that new
encoding).
llvm-svn: 235911
Add serialization support for function metadata attachments (added in
r235783). The syntax is:
define @foo() !attach !0 {
Metadata attachments are only allowed on functions with bodies. Since
they come before the `{`, they're not really part of the body; since
they require a body, they're not really part of the header. In
`LLParser` I gave them a separate function called from `ParseDefine()`,
`ParseOptionalFunctionMetadata()`.
In bitcode, I'm using the same `METADATA_ATTACHMENT` record used by
instructions. Instruction metadata attachments are included in a
special "attachment" block at the end of a `Function`. The attachment
records are laid out like this:
InstID (KindID MetadataID)+
Note that these records always have an odd number of fields. The new
code takes advantage of this to recognize function attachments (which
don't need an instruction ID):
(KindID MetadataID)+
This means we can use the same attachment block already used for
instructions.
This is part of PR23340.
llvm-svn: 235785
(reverted in r235533)
Original commit message:
"Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)"
The remapping done in ValueMapper for LTO was insufficient as the types
weren't correctly mapped (though I was using the post-mapped operands,
some of those operands might not have been mapped yet so the type
wouldn't be post-mapped yet). Instead use the pre-mapped type and
explicitly map all the types.
llvm-svn: 235651
Summary:
Make sure the abbrev operands are valid and that we can read/skip them
afterwards.
Bug found with AFL fuzz.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9030
llvm-svn: 235595
This reverts commit r235458.
It looks like this might be breaking something LTO-ish. Looking into it
& will recommit with a fix/test case/etc once I've got more to go on.
llvm-svn: 235533
Without pointee types the space optimization of storing only the pointer
type and not the value type won't be viable - so add the extra type
information that would be missing.
llvm-svn: 235475
Without pointee types the space optimization of storing only the pointer
type and not the value type won't be viable - so add the extra type
information that would be missing.
Storeatomic coming soon.
llvm-svn: 235474
Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)
llvm-svn: 235458
Now (with a few carefully placed suppressions relating to general type
serialization, etc) we can round trip a simple load through bitcode and
textual IR without calling getElementType on a PointerType.
llvm-svn: 235221
Use an extra bit in the CCInfo to flag the newer version of the
instructiont hat includes the type explicitly.
Tested the newer error cases I added, but didn't add tests for the finer
granularity improvements to existing error paths.
llvm-svn: 235160
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
llvm-svn: 235132
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them. There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.
As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.
llvm-svn: 234973
Change the callers of `WriteToBitcodeFile()` to pass `true` or
`shouldPreserveBitcodeUseListOrder()` explicitly. I left the callers
that want to send `false` alone.
I'll keep pushing the bit higher until hopefully I can delete the global
`cl::opt` entirely.
llvm-svn: 234957
Canonicalize access to whether to preserve use-list order in bitcode on
a `bool` stored in `ValueEnumerator`. Next step, expose this as a
`bool` through `WriteBitcodeToFile()`.
llvm-svn: 234956
Summary:
Without this check the following case failed:
Skip a SubBlock which is not a MODULE_BLOCK_ID nor a BLOCKINFO_BLOCK_ID
Got to end of file
TheModule would still be == nullptr, and we would subsequentially fail
when materializing the Module (assert at the start of
BitcodeReader::MaterializeModule).
Bug found with AFL.
Reviewers: dexonsmith, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9014
llvm-svn: 234887
Change `MDSubprogram::getFunction()` and
`MDGlobalVariable::getConstant()` to return a `Constant`. Previously,
both returned `ConstantAsMetadata`.
llvm-svn: 234699
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
Require the pointee type to be passed explicitly and assert that it is
correct. For now it's possible to pass nullptr here (and I've done so in
a few places in this patch) but eventually that will be disallowed once
all clients have been updated or removed. It'll be a long road to get
all the way there... but if you have the cahnce to update your callers
to pass the type explicitly without depending on a pointer's element
type, that would be a good thing to do soon and a necessary thing to do
eventually.
llvm-svn: 233938
Keep a note in the materializer that we are stripping debug info so that
user doing a lazy read of the module don't hit outdated formats.
Thanks to Duncan for suggesting the fix.
llvm-svn: 233603
Update lib/IR and lib/Bitcode to use the new `DebugLoc` API. Added an
explicit conversion to `bool` (avoiding a conversion to `MDLocation`),
since a couple of these use cases need to handle broken code.
llvm-svn: 233585
Check accessors of `MDLocation`, and change them to `cast<>` down to the
right types. Also add type-safe factory functions.
All the callers that handle broken code need to use the new versions of
the accessors (`getRawScope()` instead of `getScope()`) that still
return `Metadata*`. This is also necessary for things like
`MDNodeKeyImpl<MDLocation>` (in LLVMContextImpl.h) that need to unique
the nodes when their operands might still be forward references of the
wrong type.
In the `Value` hierarchy, consumers that handle broken code use
`getOperand()` directly. However, debug info nodes have a ton of
operands, and their order (even their existence) isn't stable yet. It's
safer and more maintainable to add an explicit "raw" accessor on the
class itself.
llvm-svn: 233322
Assert that `MDNode::isResolved()`. While in theory the `Verifier`
should catch this, it doesn't descend into all debug info, and the
`DebugInfoVerifier` doesn't call into the `Verifier`. Besides, this
helps to catch bugs when `-disable-verify=true`.
Note that I haven't come across a place where this fails with clang
today, so no testcase.
llvm-svn: 232442
(turns out I had regressed this when sinking handling of this type down
into GetElementPtrInst::Create - since that asserted before the error
handling was performed)
llvm-svn: 232420
This happened to be fairly easy to support backwards compatibility based
on the number of operands (old format had an even number, new format has
one more operand so an odd number).
test/Bitcode/old-aliases.ll already appears to test old gep operators
(if I remove the backwards compatibility in the BitcodeReader, this and
another test fail) so I'm not adding extra test coverage here.
llvm-svn: 232216
I don't think we test invalid bitcode records in any detail, so no test
here - just a change for consistency with existing error checks in
surrounding code.
llvm-svn: 232215
We only defer loading metadata inside ParseModule when ShouldLazyLoadMetadata
is true and we have not loaded any Metadata block yet.
This commit implements all-or-nothing loading of Metadata. If there is a
request to load any metadata block, we will load all deferred metadata blocks.
We make sure the deferred metadata blocks are loaded before we materialize any
function or a module.
The default value of the added parameter ShouldLazyLoadMetadata for
getLazyBitcodeModule is false, so the default behavior stays the same.
We only set the parameter to true when creating LTOModule in local contexts.
These can only really be used for parsing symbols, so it's unnecessary to ever
load the metadata blocks.
If we are going to enable lazy-loading of Metadata for other usages of
getLazyBitcodeModule, where deferred metadata blocks need to be loaded, we can
expose BitcodeReader::materializeMetadata to Module, similar to
Module::materialize.
rdar://19804575
llvm-svn: 232198
Like r230414, add bitcode support including backwards compatibility, for
an explicit type parameter to GEP.
At the suggestion of Duncan I tried coalescing the two older bitcodes into a
single new bitcode, though I did hit a wrinkle: I couldn't figure out how to
create an explicit abbreviation for a record with a variable number of
arguments (the indicies to the gep). This means the discriminator between
inbounds and non-inbounds gep is a full variable-length field I believe? Is my
understanding correct? Is there a way to create such an abbreviation? Should I
just use two bitcodes as before?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7736
llvm-svn: 230415
Summary:
I've taken my best guess at this, but I've cargo culted in places & so
explanations/corrections would be great.
This seems to pass all the tests (check-all, covering clang and llvm) so I
believe that pretty well exercises both the backwards compatibility and common
(same version) compatibility given the number of checked in bitcode files we
already have. Is that a reasonable approach to testing here? Would some more
explicit tests be desired?
1) is this the right way to do back-compat in this case (looking at the number
of entries in the bitcode record to disambiguate between the old schema and
the new?)
2) I don't quite understand the logarithm logic to choose the encoding type of
the type parameter in the abbreviation description, but I found another
instruction doing the same thing & it seems to work. Is that the right
approach?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7655
llvm-svn: 230414
While fuzzing LLVM bitcode files, I discovered that (1) the bitcode reader doesn't check that alignments are no larger than 2**29; (2) downstream code doesn't check the range; and (3) for values out of range, corresponding large memory requests (based on alignment size) will fail. This code fixes the bitcode reader to check for valid alignments, fixing this problem.
This CL fixes alignment value on global variables, functions, and instructions: alloca, load, load atomic, store, store atomic.
Patch by Karl Schimpf (kschimpf@google.com).
llvm-svn: 230180
When writing the bitcode serialization for the new debug info hierarchy,
I assumed two fields would never be null.
Drop that assumption, since it's brittle (and crashes the
`BitcodeWriter` if wrong), and is a check better left for the verifier
anyway. (No need for a bitcode upgrade here, since the new hierarchy is
still not in place.)
The fields in question are `MDCompileUnit::getFile()` and
`MDDerivedType::getBaseType()`, the latter of which isn't null in
test/Transforms/Mem2Reg/ConvertDebugInfo2.ll (see !14, a pointer to
nothing). While the testcase might have bitrotted, there's no reason
for the bitcode format to rely on non-null for metadata operands.
This also fixes a bug in `AsmWriter` where if the `file:` is null it
isn't emitted (caught by the double-round trip in the testcase I'm
adding) -- this is a required field in `LLParser`.
I'll circle back to ConvertDebugInfo2. Once the specialized nodes are
in place, I'll be trying to turn the debug info verifier back on by
default (in the newer module pass form committed r206300) and throwing
more logic in there. If the testcase has bitrotted (as opposed to me
not understanding the schema correctly) I'll fix it then.
llvm-svn: 229960
Follow-up to r229740, which removed `DITemplate*::getContext()` after my
upgrade script revealed that scopes are always `nullptr` for template
parameters. This is the other shoe: drop `scope:` from
`MDTemplateParameter` and its two subclasses. (Note: a bitcode upgrade
would be pointless, since the hierarchy hasn't been moved into place.)
llvm-svn: 229791
The metadata/value split introduced a major regression reading large
bitcode files that contain debug info (or other cyclic (non-self
reference) metadata graphs). For the first time in a while, I dropped
from libLTO.dylib down to `llvm-lto` with a non-trivial bitcode file
(~350MB), and I hit this when reading the result of ld64's `-save-temps`
in `llvm-lto`.
Here's pseudo-code for what was going on:
read-main-metadata-block:
for each md:
if has-fwd-ref: // Only true for cyclic graphs.
any-fwd-refs <- true
if any-fwd-refs:
foreach md:
resolve-cycles(md) // Handle cycles.
foreach function:
read-function-metadata-block: // Such as !alias, !loop
if any-fwd-refs:
foreach md: // (all metadata, not just this block)
resolve-cycles(md) // A no-op, but the loop is expensive!!
This commit resets the `AnyFwdRefs` flag to `false`. This on its own
was enough to change my Release+Asserts `llvm-lto` time for reading this
bitcode from over 20 minutes (I gave up on it) to 20 seconds. I've gone
further by tracking the min/max metadata forward-references in a
metadata block. This protects against a schema that has lots of
functions that each reference their own metadata cycle.
Unfortunately, this regression is in the 3.6 branch as well.
llvm-svn: 229421
Summary:
When creating {insert,extract}value instructions from a BitcodeReader, we
weren't verifying the fields were valid.
Bugs found with afl-fuzz
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7325
llvm-svn: 229345