Commit Graph

40 Commits

Author SHA1 Message Date
Simon Pilgrim 367ec7755f [Orc] Remove unnecessary <string> include dependency from Orc headers. NFC.
At most these use the StringRef/Twine wrappers and don't have any implicit uses of std::string.

Move the include down to any cpp implementation where std::string is actually used.
2021-07-18 12:31:13 +01:00
Lang Hames 1d0676b54c [ORC] Break up OrcJIT library, add Orc-RPC based remote TargetProcessControl
implementation.

This patch aims to improve support for out-of-process JITing using OrcV2. It
introduces two new class templates, OrcRPCTargetProcessControlBase and
OrcRPCTPCServer, which together implement the TargetProcessControl API by
forwarding operations to an execution process via an Orc-RPC Endpoint. These
utilities are used to implement out-of-process JITing from llvm-jitlink to
a new llvm-jitlink-executor tool.

This patch also breaks the OrcJIT library into three parts:
  -- OrcTargetProcess: Contains code needed by the JIT execution process.
  -- OrcShared: Contains code needed by the JIT execution and compiler
     processes
  -- OrcJIT: Everything else.

This break-up allows JIT executor processes to link against OrcTargetProcess
and OrcShared only, without having to link in all of OrcJIT. Clients executing
JIT'd code in-process should start linking against OrcTargetProcess as well as
OrcJIT.

In the near future these changes will enable:
  -- Removal of the OrcRemoteTargetClient/OrcRemoteTargetServer class templates
     which provided similar functionality in OrcV1.
  -- Restoration of Chapter 5 of the Building-A-JIT tutorial series, which will
     serve as a simple usage example for these APIs.
  -- Implementation of lazy, cross-target compilation in lli's -jit-kind=orc-lazy
     mode.
2020-11-13 17:05:13 +11:00
Lang Hames 069919c9ba [ORC] Update Symbol Lookup / DefinitionGenerator system.
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.

The new scheme provides the following benefits and guarantees:

(1) Queries that do not need to attempt definition generation (because all
    requested symbols matched against existing definitions in the JITDylib)
    can proceed without being blocked by any running definition generators.

(2) Definition generators can capture the LookupState to continue their work
    asynchronously. This allows generators to run for an arbitrary amount of
    time without blocking a thread. Definition generators that do not need to
    run asynchronously can return without capturing the LookupState to eliminate
    unnecessary recursion and improve lookup performance.

(3) Definition generators still do not need to worry about concurrency or
    re-entrance: Since they are still run under a (per-dylib) lock, generators
    will never be re-entered concurrently, or given overlapping symbol sets to
    generate.

Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
2020-10-19 01:59:03 -07:00
Lang Hames 0aec49c853 [ORC] Add support for resource tracking/removal (removable code).
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.

Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.

Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.

Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.

RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.

The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).

This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
2020-10-18 21:02:54 -07:00
Lang Hames 777824b49d [llvm-jitlink] Add support for static archives and MachO universal archives.
Archives can now be specified as input files the same way that object
files are. Archives will always be linked after all objects (regardless
of the relative order of the inputs) but before any dynamic libraries or
process symbols.

This patch also relaxes matching for slice triples in
StaticLibraryDefinitionGenerator in order to support this feature:
Vendors need not match if the source vendor is unknown.
2020-08-03 12:58:00 -07:00
Lang Hames 1b39c6f62c [ORC] Add MachO universal binary support to StaticLibraryDefinitionGenerator.
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.

The LLI tool is updated to use this overload.
2020-04-05 20:21:05 -07:00
Lang Hames 8e5a8f620c [ORC] Don't require a null-terminator on MemoryBuffers for objects in archives.
The MemoryBuffer::getMemBuffer method's RequiresNullTerminator parameter
defaults to true, but object files are not null terminated so we need to
explicitly pass false here.
2020-04-01 12:16:38 -07:00
Lang Hames 85fb997659 [ORC] Add generic initializer/deinitializer support.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.

MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).

This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.

The major changes included in this patch are:

(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.

(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:

  - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
    in JITDylibs upon creation. E.g. __dso_handle.

  - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
    used to record initializer symbols.

  - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
    that a module is being removed.

  Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.

This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.

Reviewers: sgraenitz, dblaikie

Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74300
2020-02-19 13:59:32 -08:00
Bill Wendling c55cf4afa9 Revert "Remove redundant "std::move"s in return statements"
The build failed with

  error: call to deleted constructor of 'llvm::Error'

errors.

This reverts commit 1c2241a793.
2020-02-10 07:07:40 -08:00
Bill Wendling 1c2241a793 Remove redundant "std::move"s in return statements 2020-02-10 06:39:44 -08:00
Lang Hames 2cdb18afda [ORC] Fix argv handling in runAsMain / lli.
This fixes an off-by-one error in the argc value computed by runAsMain, and
switches lli back to using the input bitcode (rather than the string "lli") as
the effective program name.

Thanks to Stefan Graenitz for spotting the bug.
2020-01-11 13:03:38 -08:00
Mark de Wever 8dc7b982b4 [NFC] Fixes -Wrange-loop-analysis warnings
This avoids new warnings due to D68912 adds -Wrange-loop-analysis to -Wall.

Differential Revision: https://reviews.llvm.org/D71857
2020-01-01 20:01:37 +01:00
Lang Hames ece8fed609 [ORC] Add a runAsMain utility function to ExecutionUtils.
The runAsMain function takes a pointer to a function with a standard C main
signature, int(*)(int, char*[]), and invokes it using the given arguments and
program name. The arguments are copied into writable temporary storage as
required by the C and C++ specifications, so runAsMain safe to use when calling
main functions that modify their arguments in-place.

This patch also uses the new runAsMain function to replace hand-rolled versions
in lli, llvm-jitlink, and the SpeculativeJIT example.
2019-12-02 01:52:52 -08:00
Lang Hames 674df13b5f [ORC][JITLink] Add support for weak references, and improve handling of static
libraries.

This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:

-- Each symbol being looked for is now associated with a SymbolLookupFlags
   value. If the associated value is SymbolLookupFlags::RequiredSymbol then
   the symbol must be defined in one of the JITDylibs being searched (or be
   able to be generated in one of these JITDylibs via an attached definition
   generator) or the lookup will fail with an error. If the associated value is
   SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
   undefined, in which case it will simply not appear in the resulting
   SymbolMap if the rest of the lookup succeeds.

   Since lookup now requires these flags for each symbol, the lookup method now
   takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
   SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
   responsible for ensuring that the set property (i.e. unique elements) holds,
   though this is usually simple and SymbolLookupSet provides convenience
   methods to support this.

-- Lookups now have an associated LookupKind value, which is either
   LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
   the lookup kind when determining whether or not to generate new definitions.
   The StaticLibraryDefinitionGenerator is updated to only pull in new objects
   from the archive if the lookup kind is Static. This allows lookup to be
   re-used to emulate dlsym for JIT'd symbols without pulling in new objects
   from archives (which would not happen in a normal dlsym call).

-- JITLink is updated to allow externals to be assigned weak linkage, and
   weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
   for lookups. Unresolved weak references will be assigned the default value of
   zero.

Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
2019-11-28 13:30:49 -08:00
Jordan Rose fdaa742174 Second attempt to add iterator_range::empty()
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.

https://reviews.llvm.org/D68439

llvm-svn: 373935
2019-10-07 18:14:24 +00:00
Simon Pilgrim 7efa6e3126 [Orc] Silence static analyzer dyn_cast<ConstantInt> null dereference warning. NFCI.
llvm-svn: 372746
2019-09-24 12:43:55 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Lang Hames 52a34a78d9 [ORC] Refactor definition-generation, add a generator for static libraries.
This patch replaces the JITDylib::DefinitionGenerator typedef with a class of
the same name, and adds support for attaching a sequence of DefinitionGeneration
objects to a JITDylib.

This patch also adds a new definition generator,
StaticLibraryDefinitionGenerator, that can be used to add symbols fom a static
library to a JITDylib. An object from the static library will be added (via
a supplied ObjectLayer reference) whenever a symbol from that object is
referenced.

To enable testing, lli is updated to add support for the --extra-archive option
when running in -jit-kind=orc-lazy mode.

llvm-svn: 368707
2019-08-13 16:05:18 +00:00
Lang Hames d4a8089f03 [ORC] Update symbol lookup to use a single callback with a required symbol state
rather than two callbacks.

The asynchronous lookup API (which the synchronous lookup API wraps for
convenience) used to take two callbacks: OnResolved (called once all requested
symbols had an address assigned) and OnReady to be called once all requested
symbols were safe to access). This patch updates the asynchronous lookup API to
take a single 'OnComplete' callback and a required state (SymbolState) to
determine when the callback should be made. This simplifies the common use case
(where the client is interested in a specific state) and will generalize neatly
as new states are introduced to track runtime initialization of symbols.

Clients who were making use of both callbacks in a single query will now need to
issue two queries (one for SymbolState::Resolved and another for
SymbolState::Ready). Synchronous lookup API clients who were explicitly passing
the WaitOnReady argument will now need neeed to pass a SymbolState instead (for
'WaitOnReady == true' use SymbolState::Ready, for 'WaitOnReady == false' use
SymbolState::Resolved). Synchronous lookup API clients who were using default
arugment values should see no change.

llvm-svn: 362832
2019-06-07 19:33:51 +00:00
Lang Hames 0dcf69eb82 [ORC] Remove some unreachable code.
Fixes http://llvm.org/PR41662.

llvm-svn: 361199
2019-05-20 21:30:33 +00:00
Lang Hames b12867230c [ORC] Allow JITDylib definition generators to return Errors.
Background: A definition generator can be attached to a JITDylib to generate
new definitions in response to queries. For example: a generator that forwards
calls to dlsym can map symbols from a dynamic library into the JIT process on
demand.

If definition generation fails then the generator should be able to return an
error. This allows the JIT API to distinguish between the case where a
generator does not provide a definition, and the case where it was not able to
determine whether it provided a definition due to an error.

The immediate motivation for this is cross-process symbol lookups: If the
remote-lookup generator is attached to a JITDylib early in the search list, and
if a generator failure is misinterpreted as "no definition in this JITDylib" then
lookup may continue and bind to a different definition in a later JITDylib, which
is a bug.

llvm-svn: 359521
2019-04-30 00:03:26 +00:00
Lang Hames 11c8dfa583 Initial implementation of JITLink - A replacement for RuntimeDyld.
Summary:

JITLink is a jit-linker that performs the same high-level task as RuntimeDyld:
it parses relocatable object files and makes their contents runnable in a target
process.

JITLink aims to improve on RuntimeDyld in several ways:

(1) A clear design intended to maximize code-sharing while minimizing coupling.

RuntimeDyld has been developed in an ad-hoc fashion for a number of years and
this had led to intermingling of code for multiple architectures (e.g. in
RuntimeDyldELF::processRelocationRef) in a way that makes the code more
difficult to read, reason about, extend. JITLink is designed to isolate
format and architecture specific code, while still sharing generic code.

(2) Support for native code models.

RuntimeDyld required the use of large code models (where calls to external
functions are made indirectly via registers) for many of platforms due to its
restrictive model for stub generation (one "stub" per symbol). JITLink allows
arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be
added naturally.

(3) Native support for asynchronous linking.

JITLink uses asynchronous calls for symbol resolution and finalization: these
callbacks are passed a continuation function that they must call to complete the
linker's work. This allows for cleaner interoperation with the new concurrent
ORC JIT APIs, while still being easily implementable in synchronous style if
asynchrony is not needed.

To maximise sharing, the design has a hierarchy of common code:

(1) Generic atom-graph data structure and algorithms (e.g. dead stripping and
 |  memory allocation) that are intended to be shared by all architectures.
 |
 + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to
       |  atom-graph parsing.
       |
       + -- (3) Architecture specific code that uses (1) and (2). E.g.
                JITLinkerMachO_x86_64, which adds x86-64 specific relocation
                support to (2) to build and patch up the atom graph.

To support asynchronous symbol resolution and finalization, the callbacks for
these operations take continuations as arguments:

  using JITLinkAsyncLookupContinuation =
      std::function<void(Expected<AsyncLookupResult> LR)>;

  using JITLinkAsyncLookupFunction =
      std::function<void(const DenseSet<StringRef> &Symbols,
                         JITLinkAsyncLookupContinuation LookupContinuation)>;

  using FinalizeContinuation = std::function<void(Error)>;

  virtual void finalizeAsync(FinalizeContinuation OnFinalize);

In addition to its headline features, JITLink also makes other improvements:

  - Dead stripping support: symbols that are not used (e.g. redundant ODR
    definitions) are discarded, and take up no memory in the target process
    (In contrast, RuntimeDyld supported pointer equality for weak definitions,
    but the redundant definitions stayed resident in memory).

  - Improved exception handling support. JITLink provides a much more extensive
    eh-frame parser than RuntimeDyld, and is able to correctly fix up many
    eh-frame sections that RuntimeDyld currently (silently) fails on.

  - More extensive validation and error handling throughout.

This initial patch supports linking MachO/x86-64 only. Work on support for
other architectures and formats will happen in-tree.

Differential Revision: https://reviews.llvm.org/D58704

llvm-svn: 358818
2019-04-20 17:10:34 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Matthias Braun 9fd397b423 ADT/STLExtras: Introduce llvm::empty; NFC
This is modeled after C++17 std::empty().

Differential Revision: https://reviews.llvm.org/D53909

llvm-svn: 345679
2018-10-31 00:23:23 +00:00
Lang Hames 23cb2e7f77 [ORC] Re-apply r345077 with fixes to remove ambiguity in lookup calls.
llvm-svn: 345098
2018-10-23 23:01:39 +00:00
Reid Kleckner db367e952e Revert r345077 "[ORC] Change how non-exported symbols are matched during lookup."
Doesn't build on Windows. The call to 'lookup' is ambiguous. Clang and
MSVC agree, anyway.

http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/787
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): error C2668: 'llvm::orc::ExecutionSession::lookup': ambiguous call to overloaded function
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(823): note: could be 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(llvm::ArrayRef<llvm::orc::JITDylib *>,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(817): note: or       'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(const llvm::orc::JITDylibSearchList &,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): note: while trying to match the argument list '(initializer list, llvm::orc::SymbolStringPtr)'

llvm-svn: 345078
2018-10-23 20:54:43 +00:00
Lang Hames 841796decd [ORC] Change how non-exported symbols are matched during lookup.
In the new scheme the client passes a list of (JITDylib&, bool) pairs, rather
than a list of JITDylibs. For each JITDylib the boolean indicates whether or not
to match against non-exported symbols (true means that they should be found,
false means that they should not). The MatchNonExportedInJD and MatchNonExported
parameters on lookup are removed.

The new scheme is more flexible, and easier to understand.

This patch also updates JITDylib search orders to be lists of (JITDylib&, bool)
pairs to match the new lookup scheme. Error handling is also plumbed through
the LLJIT class to allow regression tests to fail predictably when a lookup from
a lazy call-through fails.

llvm-svn: 345077
2018-10-23 20:20:22 +00:00
Lang Hames 079df9ab2c [ORC] Rename ORC layers to make the "new" ORC layers the default.
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.

The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.

llvm-svn: 344572
2018-10-15 22:56:10 +00:00
Lang Hames 6e66b2a6a3 [ORC] Switch to DenseMap/DenseSet for ORC symbol map/set types.
llvm-svn: 344565
2018-10-15 22:27:02 +00:00
Lang Hames a5157d6f4b [ORC] Simplify naming for JITDylib definition generators.
Renames:
  JITDylib's setFallbackDefinitionGenerator method to setGenerator.
  DynamicLibraryFallbackGenerator class to DynamicLibrarySearchGenerator.
  ReexportsFallbackDefinitionGenerator to ReexportsGenerator.

llvm-svn: 344489
2018-10-15 05:07:54 +00:00
Lang Hames 7899ccbcca [ORC] During lookup, do not match against hidden symbols in other JITDylibs.
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.

A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.

llvm-svn: 344467
2018-10-13 21:53:40 +00:00
Lang Hames bf6603e918 [ORC] Promote and rename private symbols inside the CompileOnDemand layer,
rather than require them to have been promoted before being passed in.

Dropping this precondition is better for layer composition (CompileOnDemandLayer
was the only one that placed pre-conditions on the modules that could be added).
It also means that the promoted private symbols do not show up in the target
JITDylib's symbol table. Instead, they are confined to the hidden implementation
dylib that contains the actual definitions.

For the 403.gcc testcase this cut down the public symbol table size from ~15,000
symbols to ~4000, substantially reducing symbol dependence tracking costs.

llvm-svn: 344078
2018-10-09 20:44:32 +00:00
Lang Hames 47d0a37704 [ORC] Add convenience methods for creating DynamicLibraryFallbackGenerators for
libraries on disk, and for the current process.

Avoids more boilerplate during JIT construction.

llvm-svn: 343430
2018-10-01 00:59:28 +00:00
Lang Hames d435ce4343 [ORC] Extract and tidy up JITTargetMachineBuilder, add unit test.
(1) Adds comments for the API.

(2) Removes the setArch method: This is redundant: the setArchStr method on the
    triple should be used instead.

(3) Turns EmulatedTLS on by default. This matches EngineBuilder's behavior.

llvm-svn: 343423
2018-09-30 19:12:23 +00:00
Lang Hames d5f56c5979 [ORC] Rename VSO to JITDylib.
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.

JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).

llvm-svn: 340084
2018-08-17 21:18:18 +00:00
Lang Hames 2f17824463 [ORC] Don't call isa<> on a null value.
This should fix the recent builder failures in the test-global-ctors.ll testcase.

llvm-svn: 335680
2018-06-26 22:43:01 +00:00
Lang Hames 8f9dbb1d64 [ORC] Fix a missing return value.
llvm-svn: 335677
2018-06-26 22:30:42 +00:00
Lang Hames 6a94134b11 [ORC] Add LLJIT and LLLazyJIT, and replace OrcLazyJIT in LLI with LLLazyJIT.
LLJIT is a prefabricated ORC based JIT class that is meant to be the go-to
replacement for MCJIT. Unlike OrcMCJITReplacement (which will continue to be
supported) it is not API or bug-for-bug compatible, but targets the same
use cases: Simple, non-lazy compilation and execution of LLVM IR.

LLLazyJIT extends LLJIT with support for function-at-a-time lazy compilation,
similar to what was provided by LLVM's original (now long deprecated) JIT APIs.

This commit also contains some simple utility classes (CtorDtorRunner2,
LocalCXXRuntimeOverrides2, JITTargetMachineBuilder) to support LLJIT and
LLLazyJIT.

Both of these classes are works in progress. Feedback from JIT clients is very
welcome!

llvm-svn: 335670
2018-06-26 21:35:48 +00:00
Lang Hames 5721ee48a2 [ORC] Re-apply r327566 with a fix for test-global-ctors.ll.
Also clang-formats the patch, which I should have done the first time around.

llvm-svn: 327594
2018-03-15 00:30:14 +00:00
Lang Hames b1cd98a18d [Orc] Add support classes for inspecting and running C++ static ctor/dtors, and
use these to add support for C++ static ctors/dtors to the Orc-lazy JIT in LLI.

Replace the trivial_retval_1 regression test - the new 'hello' test is covering
strictly more code. 

llvm-svn: 233885
2015-04-02 04:34:45 +00:00