The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
Recommit of 707ce34b06. Don't introduce a
dependency to the LLVMPasses component, instead register the required
passes individually.
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
When preinliner is used for CSSPGO, we try to honor global preinliner decision as much as we can except for uninlinable callees. We rely on InlineCost::Never to prevent us from illegal inlining.
However, it turns out that we use InlineCost::Never for both illeagle inlining and some of the "not-so-beneficial" inlining.
The most common one is recursive inlining, while it can bloat size a lot during CGSCC bottom-up inlining, it's less of a problem when recursive inlining is guided by profile and done in top-down manner.
Ideally it'd be better to have a clear separation between inline legality check vs cost-benefit check, but that requires a bigger change.
This change enables InlineCost computation to allow inlining recursive calls, controlled by InlineParams. In SampleLoader, we now enable recursive inlining for CSSPGO when global preinliner decision is used.
With this change, we saw a few perf improvements on SPEC2017 with CSSPGO and preinliner on: 2% for povray_r, 6% for xalancbmk_s, 3% omnetpp_s, while size is about the same (no noticeable perf change for all other benchmarks)
Differential Revision: https://reviews.llvm.org/D109104
When pre-inliner decision is used for CSSPGO, we should take that into account for ThinLTO importing as well, so post-link sample loader inliner can favor that decision. This is handled by a small tweak in this patch. It also includes a change to transfer preinliner decision when merging context.
Differential Revision: https://reviews.llvm.org/D109088
For CSSPGO, turn on `sample-profile-use-preinliner` by default. This simplifies the use of llvm-profgen preinliner as it's now simply driven by ContextShouldBeInlined flag for each context profile without needing extra compiler switch.
Note that llvm-profgen's preinliner is still off by default, under switch `csspgo-preinliner`.
Differential Revision: https://reviews.llvm.org/D109111
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbinary profile. As a result, the compilation is 15% faster.
There are a few conversion from real names to md5 names that have been made on the sample loader and context tracker side to get it work.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D108342
Performance on GPU targets can be highly variable, sometimes inlining
everything hurts performance and sometimes it greatly improves it. Add
an option to toggle this behaviour to better investigate it.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109014
To support Virtual Function Elimination to Swift, this PR adds support for Swift
vtables which contain "relative pointers" instead of direct pointer references.
These are in the form of:
@symbol = ... {
i32 trunc (i64 sub (i64 ptrtoint (<type> @target to i64), i64 ptrtoint (... @symbol to i64)) to i32)
}
The PR extends GlobalDCE's way of looking up a vtable offset into a dependency
to be able to see through this expression and find the target symbol.
Differential Revision: https://reviews.llvm.org/D107645
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.
A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.
When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.
Testing
This is no-diff change in terms of code quality and profile content (for text profile).
For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.
The compile time of ads is dropped by 25%.
Differential Revision: https://reviews.llvm.org/D107299
Currently, the IROutliner uses a simple metric to outline the largest amount
of IR possible to outline first if it fits the cost model. This is model
loses out on smaller blocks of code that have higher reductions in cost that
are contained within larger blocks of IR.
This reverses the order, where we calculate all of the costs first, and then
reorder and extract items based on the calculated results.
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106440
Occasionally instructions are between the last instruction in a region,
and the following instruction as identified by the Candidate. This
adds an extra check right before splitting a candidate that excludes the region from being split/checked for outlining to remove errors.
Tests Added:
Tranforms/IROuutliner/outlining-extra-bitcasts.ll
Reviewer: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D104142
When the initial relationship between two pairs of values between
similar sections is ambiguous to commutativity, arguments to the
outlined functions can be passed in such that the order is incorrect,
causing miscompilations. This adds a canonical mapping to each
similarity section, so that we can maintain the relationship of global
value numbering from one section to another.
Added Tests:
Transforms/IROutliner/outlining-commutative-operands-opposite-order.ll
unittests/Analysis/IRSimilarityIdentifierTest.cpp - IRSimilarityCandidate:CanonicalNumbering
Reviewers: jroelofs, jpaquette, yroux
Differential Revision: https://reviews.llvm.org/D104143
Recursion can happen when we see a PHI use the second time or when we
look at a store value operand use again. We already visited the
potential copies and doing so again will just cause endless looping.
Reviewed By: kuter
Differential Revision: https://reviews.llvm.org/D108190
For now we do should not treat byval arguments as local copies performed
on the call edge, though, in general we should. To make that happen we
need to teach various passes, e.g., DSE, about the copy effect of a
byval. That would also allow us to mark functions only accessing byval
arguments as readnone again, atguably their acceses have no effect
outside of the function, like accesses to allocas.
Reviewed By: kuter
Differential Revision: https://reviews.llvm.org/D108140
We try to forward a stored-once-constant-value from one global access
to another, but that's not safe if the constant value is an expression
that can trap.
The tests are reduced from the miscompile examples in:
https://llvm.org/PR47578
Differential Revision: https://reviews.llvm.org/D108771
The change adds a switch to allow sample loader to use global pre-inliner's decision instead. The pre-inliner in llvm-profgen makes inline decision globally based on whole program profile and function byte size as cost proxy.
Since pre-inliner also adjusts/merges context profile based on its inline decision, honoring its inline decision in sample loader would lead to better post-inline profile quality especially for thinlto where cross module profile merging isn't possible without pre-inliner.
Minor fix in profile reader is also included. When pre-inliner is use, we now also turn off the default merging and trimming logic unless it's explicitly asked.
Differential Revision: https://reviews.llvm.org/D108677
This is a follow up diff for BinarySizeContextTracker to track zero size for fully optimized inlinee. When an inlinee is fully optimized away, we won't be able to get its size through symbolizing instructions, hence we will treat the corresponding context size as unknown. However by traversing the inlined probe forest, we know what're original inlinees regardless of optimization. If a context show up in inlined probes, but not during symbolization, we know that it's fully optimized away hence its size is zero instead of unknown. It should provide more accurate size cost estimation for pre-inliner to make better inline decisions in llvm-profgen.
Differential Revision: https://reviews.llvm.org/D108350
It would waste time to specialize a function which would inline finally.
This patch did two things:
- Don't specialize functions which are always-inline.
- Don't spescialize functions whose lines of code are less than threshold
(100 by default).
For spec2017int, this patch could reduce the number of specialized
functions by 33%. Then the compile time didn't increase for every
benchmark.
Reviewed By: SjoerdMeijer, xbolva00, snehasish
Differential Revision: https://reviews.llvm.org/D107897
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions.
To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context.
The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed.
Differential Revision: https://reviews.llvm.org/D108180
This patch implements Flow Sensitive Sample FDO (FSAFDO) profile
loader. We have two profile loaders for FS profile,
one before RegAlloc and one before BlockPlacement.
To enable it, when -fprofile-sample-use=<profile> is specified,
add "-enable-fs-discriminator=true \
-disable-ra-fsprofile-loader=false \
-disable-layout-fsprofile-loader=false"
to turn on the FS profile loaders.
Differential Revision: https://reviews.llvm.org/D107878
Currently, AAKernelInfo will fail on an assertion if we attempt to run
it on a kernel without the init / deinit runtime calls. However, this
occurs for global constructors on the device. This will cause OpenMPOpt
to crash whenever global constructors are present. This patch removes
this assertion and just gives up instead.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D108258
In the provided test case, we were trying to set the global's
initializer to `i32* null` when the global's value type was `@0`.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108232
This patch adds an extra option to print the module after running one of
the OpenMPOpt passes if debugging is enabled. This makes it much easier
to inspect the effects of this pass when doing debugging.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D108146
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
Besides SPMDization, other analysis and optimization for original, frontend-generated SPMD regions uses information from the AAKernelInfoFunction attribute. This fix makes sure disabling SPMDization through the corresponding option applies only to generic mode regions, which should not be SPMDized, while it leaves unaffected the attribute state of original SPMD regions.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D108001
PHI nodes are not pass through but change their value, we have to
account for that to avoid missing stores.
Follow up for D107798 to fix PR51249 for good.
Differential Revision: https://reviews.llvm.org/D107808
AAPointerInfoFloating needs to visit all uses and some multiple times if
we go through PHI nodes. Attributor::checkForAllUses keeps a visited set
so we don't recurs endlessly. We now allow recursion for non-phi uses so
we track all pointer offsets via PHI nodes properly without endless
recursion.
This replaces the first attempt D107579.
Differential Revision: https://reviews.llvm.org/D107798
To avoid simplification with wrong constants we need to make sure we
know that we won't perform specific optimizations based on the users
request. The non-SPMDzation and non-CustomStateMachine flags did only
prevent the final transformation but allowed to value simplification
to go ahead.
Differential Revision: https://reviews.llvm.org/D107862
The may get changed before specialization by RunSCCPSolver. In other
words, the pass may change the function without specialization happens.
Add test and comment to reveal this.
And it may return No Changed if the function get changed by
RunSCCPSolver before the specialization. It looks like a potential bug.
Test Plan: check-all
Reviewed By: https://reviews.llvm.org/D107622
Differential Revision: https://reviews.llvm.org/D107622