I think currently isImpliedViaMerge can incorrectly return true for phis
in a loop/cycle, if the found condition involves the previous value of
Consider the case in exit_cond_depends_on_inner_loop.
At some point, we call (modulo simplifications)
isImpliedViaMerge(<=, %x.lcssa, -1, %call, -1).
The existing code tries to prove IncV <= -1 for all incoming values
InvV using the found condition (%call <= -1). At the moment this succeeds,
but only because it does not compare the same runtime value. The found
condition checks the value of the last iteration, but the incoming value
is from the *previous* iteration.
Hence we incorrectly determine that the *previous* value was <= -1,
which may not be true.
I think we need to be more careful when looking at the incoming values
here. In particular, we need to rule out that a found condition refers to
any value that may refer to one of the previous iterations. I'm not sure
there's a reliable way to do so (that also works of irreducible control
flow).
So for now this patch adds an additional requirement that the incoming
value must properly dominate the phi block. This should ensure the
values do not change in a cycle. I am not entirely sure if will catch
all cases and I appreciate a through second look in that regard.
Alternatively we could also unconditionally bail out in this case,
instead of checking the incoming values
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D101829
We can end up with two loop exits whose exit counts are equivalent, but whose textual representation is different and non-obvious. For the sub-case where we have a series of exits which dominate one another (common), eliminate any exits which would iterate *after* a previous exit on the exiting iteration.
As noted in the TODO being removed, I'd always thought this was a good idea, but I've now seen this in a real workload as well.
Interestingly, in review, Nikita pointed out there's let another oppurtunity to leverage SCEV's reasoning. If we kept track of the min of dominanting exits so far, we could discharge exits with EC >= MDE. This is less powerful than the existing transform (since later exits aren't considered), but potentially more powerful for any case where SCEV can prove a >= b, but neither a == b or a > b. I don't have an example to illustrate that oppurtunity, but won't be suprised if we find one and return to handle that case as well.
Differential Revision: https://reviews.llvm.org/D69009
llvm-svn: 375379
Continue in the spirit of D63618, and use exit count reasoning to prove away loop exits which can not be taken since the backedge taken count of the loop as a whole is provably less than the minimal BE count required to take this particular loop exit.
As demonstrated in the newly added tests, this triggers in a number of cases where IndVars was previously unable to discharge obviously redundant exit tests. And some not so obvious ones.
Differential Revision: https://reviews.llvm.org/D63733
llvm-svn: 365920