This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.
Note that this could probably be further improved by using information
from the original IV.
Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
Currently, setting the `no-nans-fp-math` attribute to true will allow
loops with fmin/fmax to vectorize, though we should be requiring that
`no-signed-zeros-fp-math` is also set.
This patch adds the check for no-signed-zeros at the function level and includes
tests to make sure we don't vectorize functions with only one of the attributes
associated.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D96604
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.
There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.
Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.
Differential Revision: https://reviews.llvm.org/D95690
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
Currently we unconditionally get the first lane of the condition
operand, even if we later use the full vector condition. This can result
in some unnecessary instructions being generated.
Suggested as follow-up in D80219.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
This is a minimal start to correcting a problem most directly discussed in PR38086:
https://bugs.llvm.org/show_bug.cgi?id=38086
We have been hacking around a limitation for FP select patterns by using the
fast-math-flags on the condition of the select rather than the select itself.
This patch just allows FMF to appear with the 'select' opcode. No changes are
needed to "FPMathOperator" because it already includes select-of-FP because
that definition is based on the (return) value type.
Once we have this ability, we can start correcting and adding IR transforms
to use the FMF on a 'select' instruction. The instcombine and vectorizer test
diffs only show that the IRBuilder change is behaving as expected by applying
an FMF guard value to 'select'.
For reference:
rL241901 - allowed FMF with fcmp
rL255555 - allowed FMF with FP calls
Differential Revision: https://reviews.llvm.org/D61917
llvm-svn: 361401