Commit Graph

10 Commits

Author SHA1 Message Date
Florian Hahn 23c2f2e6b2
[LV] Mark increment of main vector loop induction variable as NUW.
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.

If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.

This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.

At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.

Note that this could probably be further improved by using information
from the original IV.

Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g

Part of a set of fixes required for PR50412.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D103255
2021-06-07 10:47:52 +01:00
Juneyoung Lee 4a8e6ed2f7 [SLP,LV] Use poison constant vector for shufflevector/initial insertelement
This patch makes SLP and LV emit operations with initial vectors set to poison constant instead of undef.
This is a part of efforts for using poison vector instead of undef to represent "doesn't care" vector.
The goal is to make nice shufflevector optimizations valid that is currently incorrect due to the tricky interaction between undef and poison (see https://bugs.llvm.org/show_bug.cgi?id=44185 ).

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D94061
2021-01-06 11:22:50 +09:00
Juneyoung Lee 278aa65cc4 [IR] Let IRBuilder's CreateVectorSplat/CreateShuffleVector use poison as placeholder
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93793
2020-12-30 04:21:04 +09:00
Philip Reames 0c866a3d6a [LoopVec] Support non-instructions as argument to uniform mem ops
The initial step of the uniform-after-vectorization (lane-0 demanded only) analysis was very awkwardly written. It would revisit use list of each pointer operand of a widened load/store. As a result, it was in the worst case O(N^2) where N was the number of instructions in a loop, and had restricted operand Value types to reduce the size of use lists.

This patch replaces the original algorithm with one which is at most O(2N) in the number of instructions in the loop. (The key observation is that each use of a potentially interesting pointer is visited at most twice, once on first scan, once in the use list of *it's* operand. Only instructions within the loop have their uses scanned.)

In the process, we remove a restriction which required the operand of the uniform mem op to itself be an instruction.  This allows detection of uniform mem ops involving global addresses.

Differential Revision: https://reviews.llvm.org/D92056
2020-12-03 14:51:44 -08:00
Sjoerd Meijer 9529597cf4 Recommit #2: "[LV] Induction Variable does not remain scalar under tail-folding."
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:

If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.
2020-05-13 13:50:09 +01:00
Benjamin Kramer f936457f80 Revert "Recommit "[LV] Induction Variable does not remain scalar under tail-folding.""
This reverts commit ae45b4dbe7. It
causes miscompilations, test case on the mailing list.
2020-05-08 14:49:10 +02:00
Sjoerd Meijer ae45b4dbe7 Recommit "[LV] Induction Variable does not remain scalar under tail-folding."
With 3 llvm regr tests fixed/updated that I had missed.
2020-05-07 11:52:20 +01:00
Sjoerd Meijer 20d67ffeae Revert "[LV] Induction Variable does not remain scalar under tail-folding."
This reverts commit 617aa64c84.

while I investigate buildbot failures.
2020-05-07 09:29:56 +01:00
Sjoerd Meijer 617aa64c84 [LV] Induction Variable does not remain scalar under tail-folding.
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.

Thanks to Ayal Zaks for the direction how to fix this.

Differential Revision: https://reviews.llvm.org/D78911
2020-05-07 09:15:23 +01:00
Florian Hahn f14f2a8568 [LV] Fix predication for branches with matching true and false succs.
Currently due to the edge caching, we create wrong predicates for
branches with matching true and false successors. We will cache the
condition for the edge from the true successor, and then lookup the same
edge (src and dst are the same) for the edge to the false successor.

If both successors match, the condition should always be true. At the
moment, we cannot really create constant VPValues, but we can just
create a true condition as X | !X. Later passes will clean that up.

Fixes PR44488.

Reviewers: rengolin, hsaito, fhahn, Ayal, dorit, gilr

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D73079
2020-01-22 18:34:11 -08:00