In the spirit of TRegions [0], this patch creates a custom state
machine for a generic target region based on the potentially called
parallel regions.
The code analysis is done interprocedurally via an abstract attribute
(AAKernelInfo). All outermost parallel regions are collected and we
check if there might be unknown outermost parallel regions for which
we need an indirect call. Other AAKernelInfo extensions are expected.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
Differential Revision: https://reviews.llvm.org/D101977
The metadata added in D102361 introduces a module flag that we can check
to determine if the module was compiled with `-fopenmp` enables. We can
now check for the precense of this instead of scanning the call graph
for OpenMP runtime functions.
Depends on D102361
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102423
After landing the globalization optimizations, the precense of globalization on
the device that was not put in shared or stack memory is a failed optimization
with performance consequences so it should indicate a missed remark.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104735
Summary:
The changes to globalization introduced in D97680 introduce a large amount of overhead by default. The old globalization method would always ignore globalization code if executing in SPMD mode. This wasn't strictly correct as data sharing is still possible in SPMD mode. The new interface is correct but introduces globalization code even when unnecessary. This optimization will use the existing HeapToStack transformation in the attributor to allow for unneeded globalization to be replaced with thread-private stack memory. This is done using the newly introduced library instances for the RTL functions added in D102087.
Depends on D97818
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102197
Summary:
Memory globalization is required to maintain OpenMP standard semantics for data sharing between
worker and master threads. The GPU cannot share data between its threads so must allocate global or
shared memory to store the data in. Currently this is implemented fully in the frontend using the
`__kmpc_data_sharing_push_stack` and __kmpc_data_sharing_pop_stack` functions to emulate standard
CPU stack sharing. The front-end scans the target region for variables that escape the region and
must be shared between the threads. Each variable then has a field created for it in a global record
type.
This patch replaces this functinality with a single allocation command, effectively mimicing an
alloca instruction for the variables that must be shared between the threads. This will be much
slower than the current solution, but makes it much easier to optimize as we can analyze each
variable independently and determine if it is not captured. In the future, we can replace these
calls with an `alloca` and small allocations can be pushed to shared memory.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D97680
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D99202