As discussed in D107121, task wait doesn't work when a regular task T depends on
a detached task or a hidden helper task T' in a serialized team. The root cause is,
since the team is serialized, the last task will not be tracked by
`td_incomplete_child_tasks`. When T' is finished, it first releases its
dependences, and then decrements its parent counter. So far so good. For the thread
that is running task wait, if at the moment it is still spinning and trying to
execute tasks, it is fine because it can detect the new task and execute it.
However, if it happends to finish the function `flag.execute_tasks(...)`, it will
be broken because `td_incomplete_child_tasks` is 0 now.
In this patch, we update the rule to track children tasks a little bit. If the
task team encounters a proxy task or a hidden helper task, all following tasks
will be tracked.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D107496
The omp_get_wtime.c test fails intermittently if the recorded times are
off by too much which can happen when many tests are run in parallel.
Instead of failing if one timing is a little off, take average of 100
timings minus the 10 worst.
Differential Revision: https://reviews.llvm.org/D108488
Fix for https://bugs.llvm.org/show_bug.cgi?id=49723.
Eliminated references from task dependency hash to node allocated on stack,
thus eliminated accesses to stale memory. So the node now never freed.
Uncommented assertion which triggered when stale memory accessed.
Removed unneeded ref count increment for stack allocated node.
Differential Revision: https://reviews.llvm.org/D106705
Two-level distributed barrier is a new experimental barrier designed
for Intel hardware that has better performance in some cases than the
default hyper barrier.
This barrier is designed to handle fine granularity parallelism where
barriers are used frequently with little compute and memory access
between barriers. There is no need to use it for codes with few
barriers and large granularity compute, or memory intensive
applications, as little difference will be seen between this barrier
and the default hyper barrier. This barrier is designed to work
optimally with a fixed number of threads, and has a significant setup
time, so should NOT be used in situations where the number of threads
in a team is varied frequently.
The two-level distributed barrier is off by default -- hyper barrier
is used by default. To use this barrier, you must set all barrier
patterns to use this type, because it will not work with other barrier
patterns. Thus, to turn it on, the following settings are required:
KMP_FORKJOIN_BARRIER_PATTERN=dist,dist
KMP_PLAIN_BARRIER_PATTERN=dist,dist
KMP_REDUCTION_BARRIER_PATTERN=dist,dist
Branching factors (set with KMP_FORKJOIN_BARRIER, KMP_PLAIN_BARRIER,
and KMP_REDUCTION_BARRIER) are ignored by the two-level distributed
barrier.
Patch fixed for ITTNotify disabled builds and non-x86 builds
Co-authored-by: Jonathan Peyton <jonathan.l.peyton@intel.com>
Co-authored-by: Vladislav Vinogradov <vlad.vinogradov@intel.com>
Differential Revision: https://reviews.llvm.org/D103121
This patch fixes https://bugs.llvm.org/show_bug.cgi?id=49066.
For detachable tasks, the assumption breaks that the proxy task cannot have
remaining child tasks when the proxy completes.
In stead of increment/decrement the incomplete task count, a high-order bit
is flipped to mark and wait for the incomplete proxy task.
Differential Revision: https://reviews.llvm.org/D101082
gcc 11 introduced support for depend clause, but the gomp interface of libomp
does not yet handle the information.
Also remove -fopenmp-version=50, which is no longer needed for clang, but not
supported by gcc.
Restructured dynamic loop dispatcher code.
Fixed use of dispatch buffers for nonmonotonic dynamic (static_steal) schedule:
- eliminated possibility of stealing iterations of the wrong loop when victim
thread changed its buffer to work on another loop;
- fixed race when victim thread changed its buffer to work in nested parallel;
- eliminated "static" property of the schedule, that is now a single thread can
execute whole loop.
Differential Revision: https://reviews.llvm.org/D103648
Two-level distributed barrier is a new experimental barrier designed
for Intel hardware that has better performance in some cases than the
default hyper barrier.
This barrier is designed to handle fine granularity parallelism where
barriers are used frequently with little compute and memory access
between barriers. There is no need to use it for codes with few
barriers and large granularity compute, or memory intensive
applications, as little difference will be seen between this barrier
and the default hyper barrier. This barrier is designed to work
optimally with a fixed number of threads, and has a significant setup
time, so should NOT be used in situations where the number of threads
in a team is varied frequently.
The two-level distributed barrier is off by default -- hyper barrier
is used by default. To use this barrier, you must set all barrier
patterns to use this type, because it will not work with other barrier
patterns. Thus, to turn it on, the following settings are required:
KMP_FORKJOIN_BARRIER_PATTERN=dist,dist
KMP_PLAIN_BARRIER_PATTERN=dist,dist
KMP_REDUCTION_BARRIER_PATTERN=dist,dist
Branching factors (set with KMP_FORKJOIN_BARRIER, KMP_PLAIN_BARRIER,
and KMP_REDUCTION_BARRIER) are ignored by the two-level distributed
barrier.
Differential Revision: https://reviews.llvm.org/D103121
Refactored code of dependence processing and added new inoutset dependence type.
Compiler can set dependence flag to 0x8 when call __kmpc_omp_task_with_deps.
All dependence flags library gets so far and corresponding dependence types:
1 - IN, 2 - OUT, 3 - INOUT, 4 - MUTEXINOUTSET, 8 - INOUTSET.
Differential Revision: https://reviews.llvm.org/D97085
Lazily set affinity for root threads. Previously, the root thread
executing middle initialization would attempt to assign affinity
to other existing root threads. This was not working properly as the
set_system_affinity() function wasn't setting the affinity for the
target thread. Instead, the middle init thread was resetting the
its own affinity using the target thread's affinity mask.
Differential Revision: https://reviews.llvm.org/D103625
Refactored code of dependence processing and added new inoutset dependence type.
Compiler can set dependence flag to 0x8 when call __kmpc_omp_task_with_deps.
Size of type of the dependence flag changed from 1 to 4 bytes in clang.
All dependence flags library gets so far and corresponding dependence types:
1 - IN, 2 - OUT, 3 - INOUT, 4 - MUTEXINOUTSET, 8 - INOUTSET.
Differential Revision: https://reviews.llvm.org/D97085
Warnings on deprecated api cannot be suppressed if the library is not initialized.
With this change it is possible to set KMP_WARNINGS=false to suppress the warnings.
Differential Revision: https://reviews.llvm.org/D102676
Bug 49356 (https://bugs.llvm.org/show_bug.cgi?id=49356) reports crash in
the test case `tasking/bug_taskwait_detach.cpp`, which is caused by the wrong
function declaration. `gtid` in `__kmpc_omp_task` should be `kmp_int32`.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D102584
This patch does the following:
1) Introduce kmp_topology_t as the runtime-friendly structure (the
corresponding global variable is __kmp_topology) to determine the
exact machine topology which can vary widely among current and future
architectures. The current design is not easy to expand beyond the assumed
three layer topology: sockets, cores, and threads so a rework capable of
using the existing KMP_AFFINITY mechanisms is required.
This new topology structure has:
* The depth and types of the topology
* Ratio count for each consecutive level (e.g., number of cores per
socket, number of threads per core)
* Absolute count for each level (e.g., 2 sockets, 16 cores, 32 threads)
* Equivalent topology layer map (e.g., Numa domain is equivalent to
socket, L1/L2 cache equivalent to core)
* Whether it is uniform or not
The hardware threads are represented with the kmp_hw_thread_t
structure. This structure contains the ids (e.g., socket 0, core 1,
thread 0) and other information grabbed from the previous Address
structure. The kmp_topology_t structure contains an array of these.
2) Generalize the KMP_HW_SUBSET envirable for the new
kmp_topology_t structure. The algorithm doesn't assume any order with
tiles,numa domains,sockets,cores,threads. Instead it just parses the
envirable, makes sure it is consistent with the detected topology
(including taking into account equivalent layers) and then trims away
the unneeded subset of hardware threads. To enable this, a new
kmp_hw_subset_t structure is introduced which contains a vector of
items (hardware type, number user wants, offset). Any keyword within
__kmp_hw_get_keyword() can be used as a name and can be shortened as
well. e.g.,
KMP_HW_SUBSET=1s,2numa,4tile,2c,3t can be used on the KNL SNC-4 machine.
3) Simplify topology detection functions so they only do the singular
task of detecting the machine's topology. Printing, and all
canonicalizing functionality is now done afterwards. So many lines of
duplicated code are eliminated.
4) Add new ll_caches and numa_domains to OMP_PLACES, and
consequently, KMP_AFFINITY's granularity setting. All the names within
__kmp_hw_get_keyword() are available for use in OMP_PLACES or
KMP_AFFINITY's granularity setting.
5) Simplify and future-proof code where explicit lists of allowed
affinity settings keywords inside if() conditions.
6) Add x86 CPUID leaf 4 cache detection to existing x2apic id method
so equivalent caches could be detected (in particular for the ll_caches
place).
Differential Revision: https://reviews.llvm.org/D100997
Implement the remaining GOMP_* functions to support task reductions
in taskgroup, parallel, loop, and taskloop constructs. The unused mem
argument to many of the work-sharing constructs has to do with the
scan() directive/ inscan() modifier. If mem is set, each function
will call KMP_FATAL() and tell the user scan/inscan is unsupported. The
GOMP reduction implementation is kept separate from our implementation
because of how GOMP presents reduction data and computes the reductions.
GOMP expects the privatized copies to be present even after a #pragma
omp parallel reduction(task:...) region has ended so the data is stored
inside GOMP's uintptr_t* data pseudo-structure. This style is tightly
coupled with GCC compiler codegen. There also isn't any init(),
combiner(), fini() functions in GOMP's codegen so the two
implementations were to disparate to try to wrap GOMP's around our own.
Differential Revision: https://reviews.llvm.org/D98806
Current atfork() handler for child processes does not reset
the affinity masks array which prevents users from setting their own
affinity in child processes.
Differential Revision: https://reviews.llvm.org/D99218
It is reported that after enabling hidden helper thread, the program
can hit the assertion `new_gtid < __kmp_threads_capacity` sometimes. The root
cause is explained as follows. Let's say the default `__kmp_threads_capacity` is
`N`. If hidden helper thread is enabled, `__kmp_threads_capacity` will be offset
to `N+8` by default. If the number of threads we need exceeds `N+8`, e.g. via
`num_threads` clause, we need to expand `__kmp_threads`. In
`__kmp_expand_threads`, the expansion starts from `__kmp_threads_capacity`, and
repeatedly doubling it until the new capacity meets the requirement. Let's
assume the new requirement is `Y`. If `Y` happens to meet the constraint
`(N+8)*2^X=Y` where `X` is the number of iterations, the new capacity is not
enough because we have 8 slots for hidden helper threads.
Here is an example.
```
#include <vector>
int main(int argc, char *argv[]) {
constexpr const size_t N = 1344;
std::vector<int> data(N);
#pragma omp parallel for
for (unsigned i = 0; i < N; ++i) {
data[i] = i;
}
#pragma omp parallel for num_threads(N)
for (unsigned i = 0; i < N; ++i) {
data[i] += i;
}
return 0;
}
```
My CPU is 20C40T, then `__kmp_threads_capacity` is 160. After offset,
`__kmp_threads_capacity` becomes 168. `1344 = (160+8)*2^3`, then the assertions
hit.
Reviewed By: protze.joachim
Differential Revision: https://reviews.llvm.org/D98838
Restrict the chunk_size * chunk_num to only occur for valid
chunk_nums and reimplement calculating the limit to avoid overflow.
Differential Revision: https://reviews.llvm.org/D96747
When including <ostream>, the register_callback macro of the OMPT callback.h
clashes with a function defined in ostream. This patch renames the macro
and includes ompt into the macro name.
This code alleviates some pathological loop parameters (lower,
upper, stride) within calculations involved in the static loop code. It
bounds the chunk size to the trip count if it is greater than the trip
count and also minimizes problematic code for when trip count < nth.
Differential Revision: https://reviews.llvm.org/D96426
This patch limits the number of dispatch buffers (used for
loop worksharing construct) to between 1 and 4096.
Differential Revision: https://reviews.llvm.org/D96749
This patch adds lower-bound and upper-bound to num_teams clause
according to OpenMP 5.1 specification. The initial number of teams
created is implementation defined, but it will be greater than or
equal to lower-bound and less than or equal to upper-bound. If
num_teams clause is not specified, the number of teams created is
implementation defined, but it will be greater or equal to 1.
Differential Revision: https://reviews.llvm.org/D95820
When OMP_PLACES contains an invalid value, the warning informs the user
that the fallback is OMP_PLACES=threads, but the actual internal setting
is OMP_PLACES=cores and is detected as such with KMP_SETTINGS=1.
This patch informs the user that OMP_PLACES=cores is being used instead
of OMP_PLACES=threads.
Differential Revision: https://reviews.llvm.org/D95170
This patch sets the def-allocator-var ICV based on the environment variables
provided in OMP_ALLOCATOR. Previously, only allowed value for OMP_ALLOCATOR
was a predefined memory allocator. OpenMP 5.1 specification allows predefined
memory allocator, predefined mem space, or predefined mem space with traits in
OMP_ALLOCATOR. If an allocator can not be created using the provided environment
variables, the def-allocator-var is set to omp_default_mem_alloc.
Differential Revision: https://reviews.llvm.org/D94985
The basic design is to create an outer-most parallel team. It is not a regular team because it is only created when the first hidden helper task is encountered, and is only responsible for the execution of hidden helper tasks. We first use `pthread_create` to create a new thread, let's call it the initial and also the main thread of the hidden helper team. This initial thread then initializes a new root, just like what RTL does in initialization. After that, it directly calls `__kmpc_fork_call`. It is like the initial thread encounters a parallel region. The wrapped function for this team is, for main thread, which is the initial thread that we create via `pthread_create` on Linux, waits on a condition variable. The condition variable can only be signaled when RTL is being destroyed. For other work threads, they just do nothing. The reason that main thread needs to wait there is, in current implementation, once the main thread finishes the wrapped function of this team, it starts to free the team which is not what we want.
Two environment variables, `LIBOMP_NUM_HIDDEN_HELPER_THREADS` and `LIBOMP_USE_HIDDEN_HELPER_TASK`, are also set to configure the number of threads and enable/disable this feature. By default, the number of hidden helper threads is 8.
Here are some open issues to be discussed:
1. The main thread goes to sleeping when the initialization is finished. As Andrey mentioned, we might need it to be awaken from time to time to do some stuffs. What kind of update/check should be put here?
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D77609
The basic design is to create an outer-most parallel team. It is not a regular team because it is only created when the first hidden helper task is encountered, and is only responsible for the execution of hidden helper tasks. We first use `pthread_create` to create a new thread, let's call it the initial and also the main thread of the hidden helper team. This initial thread then initializes a new root, just like what RTL does in initialization. After that, it directly calls `__kmpc_fork_call`. It is like the initial thread encounters a parallel region. The wrapped function for this team is, for main thread, which is the initial thread that we create via `pthread_create` on Linux, waits on a condition variable. The condition variable can only be signaled when RTL is being destroyed. For other work threads, they just do nothing. The reason that main thread needs to wait there is, in current implementation, once the main thread finishes the wrapped function of this team, it starts to free the team which is not what we want.
Two environment variables, `LIBOMP_NUM_HIDDEN_HELPER_THREADS` and `LIBOMP_USE_HIDDEN_HELPER_TASK`, are also set to configure the number of threads and enable/disable this feature. By default, the number of hidden helper threads is 8.
Here are some open issues to be discussed:
1. The main thread goes to sleeping when the initialization is finished. As Andrey mentioned, we might need it to be awaken from time to time to do some stuffs. What kind of update/check should be put here?
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D77609
Hierarchical barrier is an experimental barrier algorithm that uses aspects
of machine hierarchy to define the barrier tree structure. This patch fixes
offset calculation in hierarchical barrier. The offset is used to store info
on a flag about sleeping threads waiting on a location stored in the flag.
This commit also fixes a potential deadlock in hierarchical barrier when
using infinite blocktime by adjusting the offset value of leaf kids so that
it matches the value of leaf state. It also adds testing of default barriers
with infinite blocktime, and also tests hierarchical barrier algorithm with
both default and infinite blocktime.
Patch by Terry Wilmarth and Nawrin Sultana.
Differential Revision: https://reviews.llvm.org/D94241
This patch adds new API __kmpc_taskloop_5 to accomadate strict
modifier (introduced in OpenMP 5.1) in num_tasks and grainsize
clause.
Differential Revision: https://reviews.llvm.org/D92352