Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
The first one is the real parameters of the coroutine function, the
other one just for copying parameters to the coroutine frame.
Considering the following c++ code:
```
struct coro {
...
};
coro foo(struct test & t) {
...
co_await suspend_always();
...
co_await suspend_always();
...
co_await suspend_always();
}
int main(int argc, char *argv[]) {
auto c = foo(...);
c.handle.resume();
...
}
```
Function foo is the standard coroutine function, and it has only
one parameter named t (ignoring this at first),
when we use the llvm code to compile this function, we can get the
following ir:
```
!2921 = distinct !DISubprogram(name: "foo", linkageName:
"_ZN6Object3fooE4test", scope: !2211, file: !45, li\
ne: 48, type: !2329, scopeLine: 48, flags: DIFlagPrototyped |
DIFlagAllCallsDescribed, spFlags: DISPFlagDefi\
nition | DISPFlagOptimized, unit: !44, declaration: !2328,
retainedNodes: !2922)
!2924 = !DILocalVariable(name: "t", arg: 2, scope: !2921, file: !45,
line: 48, type: !838)
...
!2926 = !DILocalVariable(name: "t", scope: !2921, type: !838, flags:
DIFlagArtificial)
```
We can find there are two `the same` DIVariable named t in the same
dwarf scope for foo.resume.
And when we try to use llvm-dwarfdump to dump the dwarf info of this
elf, we get the following output:
```
0x00006684: DW_TAG_subprogram
DW_AT_low_pc (0x00000000004013a0)
DW_AT_high_pc (0x00000000004013a8)
DW_AT_frame_base (DW_OP_reg7 RSP)
DW_AT_object_pointer (0x0000669c)
DW_AT_GNU_all_call_sites (true)
DW_AT_specification (0x00005b5c "_ZN6Object3fooE4test")
0x000066a5: DW_TAG_formal_parameter
DW_AT_name ("t")
DW_AT_decl_file ("/disk1/yifeng.dongyifeng/my_code/llvm/build/bin/coro-debug-1.cpp")
DW_AT_decl_line (48)
DW_AT_type (0x00004146 "test")
0x000066ba: DW_TAG_variable
DW_AT_name ("t")
DW_AT_type (0x00004146 "test")
DW_AT_artificial (true)
```
The elf also has two 't' in the same scope.
But unluckily, it might let the debugger
confused. And failed to print parameters for O0 or above.
This patch will make coroutine parameters and move
parameters use the same DIVar and try to fix the problems
that I mentioned before.
Test Plan: check-clang
Reviewed By: aprantl, jmorse
Differential Revision: https://reviews.llvm.org/D97533
tl;dr Correct implementation of Corouintes requires having lifetime intrinsics available.
Coroutine functions are functions that can be suspended and resumed latter. To do so, data that need to stay alive after suspension must be put on the heap (i.e. the coroutine frame).
The optimizer is responsible for analyzing each AllocaInst and figure out whether it should be put on the stack or the frame.
In most cases, for data that we are unable to accurately analyze lifetime, we can just conservatively put them on the heap.
Unfortunately, there exists a few cases where certain data MUST be put on the stack, not on the heap. Without lifetime intrinsics, we are unable to correctly analyze those data's lifetime.
To dig into more details, there exists cases where at certain code points, the current coroutine frame may have already been destroyed. Hence no frame access would be allowed beyond that point.
The following is a common code pattern called "Symmetric Transfer" in coroutine:
```
auto tmp = await_suspend();
__builtin_coro_resume(tmp.address());
return;
```
In the above code example, `await_suspend()` returns a new coroutine handle, which we will obtain the address and then resume that coroutine. This essentially "transfered" from the current coroutine to a different coroutine.
During the call to `await_suspend()`, the current coroutine may be destroyed, which should be fine because we are not accessing any data afterwards.
However when LLVM is emitting IR for the above code, it needs to emit an AllocaInst for `tmp`. It will then call the `address` function on tmp. `address` function is a member function of coroutine, and there is no way for the LLVM optimizer to know that it does not capture the `tmp` pointer. So when the optimizer looks at it, it has to conservatively assume that `tmp` may escape and hence put it on the heap. Furthermore, in some cases `address` call would be inlined, which will generate a bunch of store/load instructions that move the `tmp` pointer around. Those stores will also make the compiler to think that `tmp` might escape.
To summarize, it's really difficult for the mid-end to figure out that the `tmp` data is short-lived.
I made some attempt in D98638, but it appears to be way too complex and is basically doing the same thing as inserting lifetime intrinsics in coroutines.
Also, for reference, we already force emitting lifetime intrinsics in O0 for AlwaysInliner: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Passes/PassBuilder.cpp#L1893
Differential Revision: https://reviews.llvm.org/D99227
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
08196e0b2e exposed LowerExpectIntrinsic's
internal implementation detail in the form of
LikelyBranchWeight/UnlikelyBranchWeight options to the outside.
While this isn't incorrect from the results viewpoint,
this is suboptimal from the layering viewpoint,
and causes confusion - should transforms also use those weights,
or should they use something else, D98898?
So go back to status quo by making LikelyBranchWeight/UnlikelyBranchWeight
internal again, and fixing all the code that used it directly,
which currently is only clang codegen, thankfully,
to emit proper @llvm.expect intrinsics instead.
Upon reviewing D98898 i've come to realization that these are
implementation detail of LowerExpectIntrinsicPass,
and they should not be exposed to outside of it.
This reverts commit ee8b53815d.
This makes the settings available for use in other passes by housing
them within the Support lib, but NFC otherwise.
See D98898 for the proposed usage in SimplifyCFG
(where this change was originally included).
Differential Revision: https://reviews.llvm.org/D98945
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
These are incompatible with opaque pointers. This is in preparation
of dropping this API on the IRBuilder side as well.
Instead explicitly pass the loaded type.
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
Use a WeakTrackingVH to cope with the stmt emission logic that cleans up
unreachable blocks. This invalidates the reference to the deferred
replacement placeholder. Cope with it.
Fixes PR25102 (from 2015!)
This change adds a new IR noundef attribute, which denotes when a function call argument or return val may never contain uninitialized bits.
In MemorySanitizer, this attribute enables optimizations which decrease instrumented code size by up to 17% (measured with an instrumented build of clang) . I'll introduce the change allowing msan to take advantage of this information in a separate patch.
Differential Revision: https://reviews.llvm.org/D81678
Patch takes advantage of the implicit default behavior to reduce the number of attributes, which in turns reduces compilation time.
Reviewed By: serge-sans-paille
Differential Revision: https://reviews.llvm.org/D97116
This patch responds to a comment from @vitalybuka in D96203: suggestion to
do the change incrementally, and start by modifying this file name. I modified
the file name and made the other changes that follow from that rename.
Reviewers: vitalybuka, echristo, MaskRay, jansvoboda11, aaron.ballman
Differential Revision: https://reviews.llvm.org/D96974
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
UBSan was using the complete-object align rather than nv alignment
when checking the "this" pointer of a method.
Furthermore, CGF.CXXABIThisAlignment was also being set incorrectly,
due to an incorrectly negated test. The latter doesn't appear to have
had any impact, due to it not really being used anywhere.
Differential Revision: https://reviews.llvm.org/D93072
The strictfp metadata was added to the casting AST nodes in D85960, but
we aren't using that metadata yet. This patch adds that support.
In order to avoid lots of ad-hoc passing around of the strictfp bits I
updated the IRBuilder when moving from a function that has the Expr* to a
function that lacks it. I believe we should switch to this pattern to keep
the strictfp support from being overly invasive.
For the purpose of testing that we're picking up the right metadata, I
also made my tests use a pragma to make the AST's strictfp metadata not
match the global strictfp metadata. This exposes issues that we need to
deal with in subsequent patches, and I believe this is the right method
for most all of our clang strictfp tests.
Differential Revision: https://reviews.llvm.org/D88913
Since C++11, the C++ standard has a forward progress guarantee
[intro.progress], so all such functions must have the `mustprogress`
requirement. In addition, from C11 and onwards, loops without a non-zero
constant conditional or no conditional are also required to make
progress (C11 6.8.5p6). This patch implements these attribute deductions
so they can be used by the optimization passes.
Differential Revision: https://reviews.llvm.org/D86841
The attribute has no effect on a do statement since the path of execution
will always include its substatement.
It adds a diagnostic when the attribute is used on an infinite while loop
since the codegen omits the branch here. Since the likelihood attributes
have no effect on a do statement no diagnostic will be issued for
do [[unlikely]] {...} while(0);
Differential Revision: https://reviews.llvm.org/D89899
This patch is mainly doing two things:
1. Adding support for parentheses, making the combination of target features
more diverse;
2. Making the priority of ’,‘ is higher than that of '|' by default. So I need
to make some change with PTX Builtin function.
Differential Revision: https://reviews.llvm.org/D89184
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
This implements the likelihood attribute for the switch statement. Based on the
discussion in D85091 and D86559 it only handles the attribute when placed on
the case labels or the default labels.
It also marks the likelihood attribute as feature complete. There are more QoI
patches in the pipeline.
Differential Revision: https://reviews.llvm.org/D89210
Bruno De Fraine discovered some issues with D85091. The branch weights
generated for `logical not` and `ternary conditional` were wrong. The
`logical and` and `logical or` differed from the code generated of
`__builtin_predict`.
Adjusted the generated code for the likelihood to match
`__builtin_predict`. The patch is based on Bruno's suggestions.
Differential Revision: https://reviews.llvm.org/D88363
Add the ability to selectively instrument a subset of functions by dividing the functions into N logical groups and then selecting a group to cover. By selecting different groups over time you could cover the entire application incrementally with lower overhead than instrumenting the entire application at once.
Differential Revision: https://reviews.llvm.org/D87953
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
types.
We previously did not treat a function type as dependent if it had a
parameter pack with a non-dependent type -- such a function type depends
on the arity of the pack so is dependent even though none of the
parameter types is dependent. In order to properly handle this, we now
treat pack expansion types as always being dependent types (depending on
at least the pack arity), and always canonically being pack expansion
types, even in the unusual case when the pattern is not a dependent
type. This does mean that we can have canonical types that are pack
expansions that contain no unexpanded packs, which is unfortunate but
not inaccurate.
We also previously did not treat a typedef type as
instantiation-dependent if its canonical type was not
instantiation-dependent. That's wrong because instantiation-dependence
is a property of the type sugar, not of the type; an
instantiation-dependent type can have a non-instantiation-dependent
canonical type.
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Summary:
D82193 exposed a problem with global type definitions in
`OMPConstants.h`. This causes a race when running in thinLTO mode.
Types now live inside of OpenMPIRBuilder to prevent this from happening.
Reviewers: jdoerfert
Subscribers: yaxunl, hiraditya, guansong, dexonsmith, aaron.ballman, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D83176
Assume bundle can have more than one entry with the same name,
but at least AlignmentFromAssumptionsPass::extractAlignmentInfo() uses
getOperandBundle("align"), which internally assumes that it isn't the
case, and happily crashes otherwise.
Minimal reduced reproducer: run `opt -alignment-from-assumptions` on
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
%0 = type { i64, %1*, i8*, i64, %2, i32, %3*, i8* }
%1 = type opaque
%2 = type { i8, i8, i16 }
%3 = type { i32, i32, i32, i32 }
; Function Attrs: nounwind
define i32 @f(%0* noalias nocapture readonly %arg, %0* noalias %arg1) local_unnamed_addr #0 {
bb:
call void @llvm.assume(i1 true) [ "align"(%0* %arg, i64 8), "align"(%0* %arg1, i64 8) ]
ret i32 0
}
; Function Attrs: nounwind willreturn
declare void @llvm.assume(i1) #1
attributes #0 = { nounwind "reciprocal-estimates"="none" }
attributes #1 = { nounwind willreturn }
This is what we'd have with -mllvm -enable-knowledge-retention
This reverts commit c95ffadb24.
This reverts commit defd43a5b3.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed6.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71739
Rather than pushing inactive cleanups for the block captures at the
entry of a full expression and activating them during the creation of
the block literal, just call pushLifetimeExtendedDestroy to ensure the
cleanups are popped at the end of the scope enclosing the block
expression.
rdar://problem/63996471
Differential Revision: https://reviews.llvm.org/D81624
Functions can have local pragmas that override the global settings.
We set the flags eagerly based on global settings, but if we emit
an expression under the influence of a pragma, we clear the
appropriate flags from the function.
In order to avoid doing a ton of redundant work whenever we emit
an FP expression, configure the IRBuilder to default to global
settings, and only reconfigure it when we see an FP expression
that's not using the global settings.
Patch by Michele Scandale!
https://reviews.llvm.org/D80462
When sampleFDO is enabled, people may expect they can use
-fno-profile-sample-use to opt-out using sample profile for a certain file.
That could be either for debugging purpose or for performance tuning purpose.
However, when thinlto is enabled, if a function in file A compiled with
-fno-profile-sample-use is imported to another file B compiled with
-fprofile-sample-use, the inlined copy of the function in file B may still
get its profile annotated.
The inconsistency may even introduce profile unused warning because if the
target is not compiled with explicit debug information flag, the function
in file A won't have its debug information enabled (debug information will
be enabled implicitly only when -fprofile-sample-use is used). After it is
imported into file B which is compiled with -fprofile-sample-use, profile
annotation for the outline copy of the function will fail because the
function has no debug information, and that will trigger profile unused
warning.
We add a new attribute use-sample-profile to control whether a function
will use its sample profile no matter for its outline or inline copies.
That will make the behavior of -fno-profile-sample-use consistent.
Differential Revision: https://reviews.llvm.org/D79959
Canonicalize on storing FP options in LangOptions instead of
redundantly in CodeGenOptions. Incorporate -ffast-math directly
into the values of those LangOptions rather than considering it
separately when building FPOptions. Build IR attributes from
those options rather than a mix of sources.
We should really simplify the driver/cc1 interaction here and have
the driver pass down options that cc1 directly honors. That can
happen in a follow-up, though.
Patch by Michele Scandale!
https://reviews.llvm.org/D80315
If we're going to assume references are dereferenceable, we should also
assume they're aligned: otherwise, we can't actually dereference them.
See also D80072.
Differential Revision: https://reviews.llvm.org/D80166