Commit Graph

1643 Commits

Author SHA1 Message Date
Momchil Velikov f9d932e673 [clang][AArch64] Correctly align HFA arguments when passed on the stack
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example

    struct S {
      __attribute__ ((__aligned__(16))) double v[4];
    };

Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)

Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.

This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.

The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.

For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.

On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.

Patch by Momchil Velikov and Lucas Prates.

Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 22:58:14 +01:00
Amy Huang dad5caa59e Revert "Reapply "[DebugInfo] Use variadic debug values to salvage BinOps and GEP instrs with non-const operands""
This change causes an assert / segmentation fault in LTO builds.

This reverts commit f2e4f3eff3.
2021-04-12 20:10:17 -07:00
Stephen Tozer f2e4f3eff3 Reapply "[DebugInfo] Use variadic debug values to salvage BinOps and GEP instrs with non-const operands"
The causes of the previous build errors have been fixed in revisions
aa3e78a59f, and
140757bfaa

This reverts commit f40976bd01.
2021-04-12 16:57:29 +01:00
Stephen Tozer aa3e78a59f Reapply "[DebugInfo] Correctly track SDNode dependencies for list debug values"
Fixed memory leak error by using BumpAllocator for SDDbgValue arrays.

This reverts commit 1b589172bd.
2021-04-12 12:51:29 +01:00
Stephen Tozer 1b589172bd Revert "[DebugInfo] Correctly track SDNode dependencies for list debug values"
Reverted due to failure on the sanitizer-x86_64-linux-fast bot.

This reverts commit e10493eb50.
2021-04-08 17:55:45 +01:00
Stephen Tozer e10493eb50 [DebugInfo] Correctly track SDNode dependencies for list debug values
During SelectionDAG, we must track the SDNodes that each SDDbgValue depends on
to compute its value. These are ultimately derived from the location operands to
the SDDbgValue, but were stored in a separate vector prior to this patch. This
resulted in cases where one of the lists was updated incorrectly, resulting in
crashes during compilation. This patch fixes the issue by directly recomputing
the dependency list from the SDDbgOperands in getDependencies().

Differential Revision: https://reviews.llvm.org/D99423
2021-04-08 17:01:45 +01:00
David Sherwood 748ae5281d [IR][SVE] Add new llvm.experimental.stepvector intrinsic
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.

For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as

  mul step_vector(1), 2 -> step_vector(2)
  add step_vector(1), step_vector(1) -> step_vector(2)
  shl step_vector(1), 1 -> step_vector(2)
  etc.

that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.

I've added cost model tests for both fixed width and scalable
vectors:

  llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
  llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll

as well as codegen lowering tests for fixed width and scalable
vectors:

  llvm/test/CodeGen/AArch64/neon-stepvector.ll
  llvm/test/CodeGen/AArch64/sve-stepvector.ll

See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
2021-03-23 10:43:35 +00:00
Stephen Tozer 3bfddc2593 Reapply "[DebugInfo] Handle multiple variable location operands in IR"
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.

This reverts commit 01ac6d1587.
2021-03-17 16:45:25 +00:00
Hans Wennborg 01ac6d1587 Revert "[DebugInfo] Handle multiple variable location operands in IR"
This caused non-deterministic compiler output; see comment on the
code review.

> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232

This reverts commit df69c69427.
2021-03-17 13:36:48 +01:00
LemonBoy cfe69c8efd [SelectionDAG] Improve scalarization of irregular vector types
Use a more general strategy when splitting a vector into scalar parts (and vice-versa) to correctly handle vector types whose element size is not a power of 2 (and a multiple of 8).

Reviewed By: atanasyan

Differential Revision: https://reviews.llvm.org/D98273
2021-03-11 19:57:13 +01:00
Stephen Tozer f40976bd01 Revert "[DebugInfo] Use variadic debug values to salvage BinOps and GEP instrs with non-const operands"
This reverts commit c0f3dfb9f1.

Reverted due to an error on the clang-x64-windows-msvc buildbot.
2021-03-11 14:48:01 +00:00
gbtozers c0f3dfb9f1 [DebugInfo] Use variadic debug values to salvage BinOps and GEP instrs with non-const operands
This patch improves salvageDebugInfoImpl by allowing it to salvage arithmetic
operations with two or more non-const operands; this includes the GetElementPtr
instruction, and most Binary Operator instructions. These salvages produce
DIArgList locations and are only valid for dbg.values, as currently variadic
DIExpressions must use DW_OP_stack_value. This functionality is also only added
for salvageDebugInfoForDbgValues; other functions that directly call
salvageDebugInfoImpl (such as in ISel or Coroutine frame building) can be
updated in a later patch.

Differential Revision: https://reviews.llvm.org/D91722
2021-03-11 13:33:49 +00:00
gbtozers df69c69427 [DebugInfo] Handle multiple variable location operands in IR
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.

Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.

Differential Revision: https://reviews.llvm.org/D88232
2021-03-09 16:44:38 +00:00
Cullen Rhodes 2750f3ed31 [IR] Introduce llvm.experimental.vector.splice intrinsic
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.

For example:

  @llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E>  ; index
  @llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count

These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.

This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].

Patch by Paul Walker and Cullen Rhodes.

[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D94708
2021-03-09 10:44:22 +00:00
gbtozers 93b170ea24 [DebugInfo] Handle dbg.values with multiple variable location operands in ISel
This patch adds partial support in Instruction Selection for dbg.values that use
a DIArgList. This patch does not add support for producing DBG_VALUE_LIST, but
adds the logic for processing DIArgLists within the ISel pass. This change is
largely focused on handleDebugValue and some of the functions that it calls.
Outside of this, salvageDebugInfo and transferDbgValues have been modified to
replace individual operands instead of the entire value; dangling debug info for
variadic debug values is not currently supported (but may be added later).

Differential Revision: https://reviews.llvm.org/D88589
2021-03-09 09:48:03 +00:00
gbtozers 9525af7b91 [DebugInfo] Support representation of multiple location operands in SDDbgValue
This patch modifies the class that represents debug values during ISel,
SDDbgValue, to support multiple location operands (to represent a dbg.value that
uses a DIArgList). Part of this class's functionality has been split off into a
new class, SDDbgOperand.

The new class SDDbgOperand represents a single value, corresponding to an SSA
value or MachineOperand in the IR and MIR respectively. Members of SDDbgValue
that were previously related to that specific value (as opposed to the
variable or DIExpression), such as the Kind enum, have been moved to
SDDbgOperand. SDDbgValue now contains an array of SDDbgOperand instead, allowing
it to hold more than one of these values.

All changes outside SDDbgValue are simply updates to use the new interface.

Differential Revision: https://reviews.llvm.org/D88585
2021-03-08 18:45:17 +00:00
gbtozers e5d958c456 [DebugInfo] Support DIArgList in DbgVariableIntrinsic
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.

Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
2021-03-08 14:36:13 +00:00
Akira Hatanaka 1900503595 [ObjC][ARC] Use operand bundle 'clang.arc.attachedcall' instead of
explicitly emitting retainRV or claimRV calls in the IR

This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.

Original commit message:

Background:

This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.

https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue

What this patch does to fix the problem:

- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
  which indicates the call is implicitly followed by a marker
  instruction and an implicit retainRV/claimRV call that consumes the
  call result. In addition, it emits a call to
  @llvm.objc.clang.arc.noop.use, which consumes the call result, to
  prevent the middle-end passes from changing the return type of the
  called function. This is currently done only when the target is arm64
  and the optimization level is higher than -O0.

- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
  with the operand bundle in the IR and removes the inserted calls after
  processing the function.

- ARC contract pass emits retainRV/claimRV calls after the call with the
  operand bundle. It doesn't remove the operand bundle on the call since
  the backend needs it to emit the marker instruction. The retainRV and
  claimRV calls are emitted late in the pipeline to prevent optimization
  passes from transforming the IR in a way that makes it harder for the
  ARC middle-end passes to figure out the def-use relationship between
  the call and the retainRV/claimRV calls (which is the cause of
  PR31925).

- The function inliner removes an autoreleaseRV call in the callee if
  nothing in the callee prevents it from being paired up with the
  retainRV/claimRV call in the caller. It then inserts a release call if
  claimRV is attached to the call since autoreleaseRV+claimRV is
  equivalent to a release. If it cannot find an autoreleaseRV call, it
  tries to transfer the operand bundle to a function call in the callee.
  This is important since the ARC optimizer can remove the autoreleaseRV
  returning the callee result, which makes it impossible to pair it up
  with the retainRV/claimRV call in the caller. If that fails, it simply
  emits a retain call in the IR if retainRV is attached to the call and
  does nothing if claimRV is attached to it.

- SCCP refrains from replacing the return value of a call with a
  constant value if the call has the operand bundle. This ensures the
  call always has at least one user (the call to
  @llvm.objc.clang.arc.noop.use).

- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
  multiple operand bundles of the same kind were being added to a call.

Future work:

- Use the operand bundle on x86-64.

- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
  calls with the operand bundles.

rdar://71443534

Differential Revision: https://reviews.llvm.org/D92808
2021-03-04 11:22:30 -08:00
Hans Wennborg 0a5dd06718 Revert "[ObjC][ARC] Use operand bundle 'clang.arc.attachedcall' instead of explicitly emitting retainRV or claimRV calls in the IR"
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.

> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
>   which indicates the call is implicitly followed by a marker
>   instruction and an implicit retainRV/claimRV call that consumes the
>   call result. In addition, it emits a call to
>   @llvm.objc.clang.arc.noop.use, which consumes the call result, to
>   prevent the middle-end passes from changing the return type of the
>   called function. This is currently done only when the target is arm64
>   and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
>   with the operand bundle in the IR and removes the inserted calls after
>   processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
>   operand bundle. It doesn't remove the operand bundle on the call since
>   the backend needs it to emit the marker instruction. The retainRV and
>   claimRV calls are emitted late in the pipeline to prevent optimization
>   passes from transforming the IR in a way that makes it harder for the
>   ARC middle-end passes to figure out the def-use relationship between
>   the call and the retainRV/claimRV calls (which is the cause of
>   PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
>   nothing in the callee prevents it from being paired up with the
>   retainRV/claimRV call in the caller. It then inserts a release call if
>   claimRV is attached to the call since autoreleaseRV+claimRV is
>   equivalent to a release. If it cannot find an autoreleaseRV call, it
>   tries to transfer the operand bundle to a function call in the callee.
>   This is important since the ARC optimizer can remove the autoreleaseRV
>   returning the callee result, which makes it impossible to pair it up
>   with the retainRV/claimRV call in the caller. If that fails, it simply
>   emits a retain call in the IR if retainRV is attached to the call and
>   does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
>   constant value if the call has the operand bundle. This ensures the
>   call always has at least one user (the call to
>   @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
>   multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
>   calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808

This reverts commit ed4718eccb.
2021-03-03 15:51:40 +01:00
Fraser Cormack 6718fda6ad [CodeGen] Fix issues with subvector intrinsic index types
This patch addresses issues arising from the fact that the index type
used for subvector insertion/extraction is inconsistent between the
intrinsics and SDNodes. The intrinsic forms require i64 whereas the
SDNodes use the type returned by SelectionDAG::getVectorIdxTy.

Rather than update the intrinsic definitions to use an overloaded index
type, this patch fixes the issue by transforming the index to the
correct type as required. Any loss of index bits going from i64 to a
smaller type is unexpected, and will be caught by an assertion in
SelectionDAG::getVectorIdxConstant.

The patch also updates the documentation for INSERT_SUBVECTOR and adds
an assertion to its creation to bring it in line with EXTRACT_SUBVECTOR.
This necessitated changes to AArch64 which was using i64 for
EXTRACT_SUBVECTOR but i32 for INSERT_SUBVECTOR. Only one test changed
its codegen after updating the backend accordingly.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D97459
2021-03-01 10:28:21 +00:00
Kazu Hirata ffba9e596d [CodeGen] Use range-based for loops (NFC) 2021-02-21 19:58:07 -08:00
Caroline Concatto 2d728bbff5 [CodeGen][SelectionDAG]Add new intrinsic experimental.vector.reverse
This patch adds  a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
 reversed. For example:

```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```

The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.

This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].

Patch by Paul Walker (@paulwalker-arm).

[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html

Differential Revision: https://reviews.llvm.org/D94883
2021-02-15 13:39:43 +00:00
Arlo Siemsen 080866470d Add ehcont section support
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.

This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.

This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.

The change includes a test that when the module flag is enabled the section is correctly generated.

The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).

In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.

Change originally authored by Daniel Frampton <dframpto@microsoft.com>

For more details, see MSVC documentation for `/guard:ehcont`
  https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata

Reviewed By: pengfei

Differential Revision: https://reviews.llvm.org/D94835
2021-02-15 14:27:12 +08:00
Akira Hatanaka ed4718eccb [ObjC][ARC] Use operand bundle 'clang.arc.attachedcall' instead of
explicitly emitting retainRV or claimRV calls in the IR

Background:

This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.

https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue

What this patch does to fix the problem:

- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
  which indicates the call is implicitly followed by a marker
  instruction and an implicit retainRV/claimRV call that consumes the
  call result. In addition, it emits a call to
  @llvm.objc.clang.arc.noop.use, which consumes the call result, to
  prevent the middle-end passes from changing the return type of the
  called function. This is currently done only when the target is arm64
  and the optimization level is higher than -O0.

- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
  with the operand bundle in the IR and removes the inserted calls after
  processing the function.

- ARC contract pass emits retainRV/claimRV calls after the call with the
  operand bundle. It doesn't remove the operand bundle on the call since
  the backend needs it to emit the marker instruction. The retainRV and
  claimRV calls are emitted late in the pipeline to prevent optimization
  passes from transforming the IR in a way that makes it harder for the
  ARC middle-end passes to figure out the def-use relationship between
  the call and the retainRV/claimRV calls (which is the cause of
  PR31925).

- The function inliner removes an autoreleaseRV call in the callee if
  nothing in the callee prevents it from being paired up with the
  retainRV/claimRV call in the caller. It then inserts a release call if
  claimRV is attached to the call since autoreleaseRV+claimRV is
  equivalent to a release. If it cannot find an autoreleaseRV call, it
  tries to transfer the operand bundle to a function call in the callee.
  This is important since the ARC optimizer can remove the autoreleaseRV
  returning the callee result, which makes it impossible to pair it up
  with the retainRV/claimRV call in the caller. If that fails, it simply
  emits a retain call in the IR if retainRV is attached to the call and
  does nothing if claimRV is attached to it.

- SCCP refrains from replacing the return value of a call with a
  constant value if the call has the operand bundle. This ensures the
  call always has at least one user (the call to
  @llvm.objc.clang.arc.noop.use).

- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
  multiple operand bundles of the same kind were being added to a call.

Future work:

- Use the operand bundle on x86-64.

- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
  calls with the operand bundles.

rdar://71443534

Differential Revision: https://reviews.llvm.org/D92808
2021-02-12 09:51:57 -08:00
Thomas Preud'homme bad0290ce3 Improve STRICT_FSETCC codegen in absence of no NaN
As for SETCC, use a less expensive condition code when generating
STRICT_FSETCC if the node is known not to have Nan.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91972
2021-02-11 14:19:43 +00:00
Joe Ellis 67464dfe36 [DebugInfo] Only perform TypeSize -> unsigned cast when necessary
This commit moves a line in SelectionDAGBuilder::handleDebugValue to
avoid implicitly casting a TypeSize object to an unsigned earlier than
necessary. It was possible that we bail out of the loop before the value
is ever used, which means we could create a superfluous TypeSize
warning.

Reviewed By: DavidTruby

Differential Revision: https://reviews.llvm.org/D96423
2021-02-11 13:54:09 +00:00
Hongtao Yu 1cb47a063e [CSSPGO] Unblock optimizations with pseudo probe instrumentation.
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:

1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D95982
2021-02-10 12:43:17 -08:00
Kazu Hirata 7e75f6fc1d [SelectionDAG] Use range-based for loops (NFC) 2021-02-09 22:14:30 -08:00
Nico Weber de1966e542 Revert "[ObjC][ARC] Use operand bundle 'clang.arc.rv' instead of explicitly"
This reverts commit 4a64d8fe39.
Makes clang crash when buildling trivial iOS programs, see comment
after https://reviews.llvm.org/D92808#2551401
2021-02-09 11:06:32 -05:00
Thomas Preud'homme a50ab8672d Revert STRICT_FCMP nonan optimisation
Summary: This reverts commit b7b61a7b5b which fails on some of the builders: http://lab.llvm.org:8011/#/builders/14/builds/5806

Reviewers:

Subscribers:
2021-02-09 11:27:35 +00:00
Thomas Preud'homme b7b61a7b5b Improve STRICT_FSETCC codegen in absence of no NaN
As for SETCC, use a less expensive condition code when generating
STRICT_FSETCC if the node is known not to have Nan.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91972
2021-02-09 11:18:16 +00:00
Akira Hatanaka 4a64d8fe39 [ObjC][ARC] Use operand bundle 'clang.arc.rv' instead of explicitly
emitting retainRV or claimRV calls in the IR

This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.

Original commit message:

Background:

This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.

https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue

What this patch does to fix the problem:

- The front-end adds operand bundle "clang.arc.rv" to calls, which
  indicates the call is implicitly followed by a marker instruction and
  an implicit retainRV/claimRV call that consumes the call result. In
  addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
  consumes the call result, to prevent the middle-end passes from changing
  the return type of the called function. This is currently done only when
  the target is arm64 and the optimization level is higher than -O0.

- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
  with the operand bundle in the IR and removes the inserted calls after
  processing the function.

- ARC contract pass emits retainRV/claimRV calls after the call with the
  operand bundle. It doesn't remove the operand bundle on the call since
  the backend needs it to emit the marker instruction. The retainRV and
  claimRV calls are emitted late in the pipeline to prevent optimization
  passes from transforming the IR in a way that makes it harder for the
  ARC middle-end passes to figure out the def-use relationship between
  the call and the retainRV/claimRV calls (which is the cause of
  PR31925).

- The function inliner removes an autoreleaseRV call in the callee if
  nothing in the callee prevents it from being paired up with the
  retainRV/claimRV call in the caller. It then inserts a release call if
  the call is annotated with claimRV since autoreleaseRV+claimRV is
  equivalent to a release. If it cannot find an autoreleaseRV call, it
  tries to transfer the operand bundle to a function call in the callee.
  This is important since ARC optimizer can remove the autoreleaseRV
  returning the callee result, which makes it impossible to pair it up
  with the retainRV/claimRV call in the caller. If that fails, it simply
  emits a retain call in the IR if the implicit call is a call to
  retainRV and does nothing if it's a call to claimRV.

Future work:

- Use the operand bundle on x86-64.

- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
  calls annotated with the operand bundles.

rdar://71443534

Differential Revision: https://reviews.llvm.org/D92808
2021-02-05 06:09:42 -08:00
Akira Hatanaka 2fbbb18c1d Revert "[ObjC][ARC] Use operand bundle 'clang.arc.rv' instead of explicitly"
This reverts commit 3fe3946d9a.

The commit violates layering by including a header from Analysis in
lib/IR/AutoUpgrade.cpp.
2021-02-05 06:00:05 -08:00
Akira Hatanaka 3fe3946d9a [ObjC][ARC] Use operand bundle 'clang.arc.rv' instead of explicitly
emitting retainRV or claimRV calls in the IR

Background:

This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.

https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue

What this patch does to fix the problem:

- The front-end adds operand bundle "clang.arc.rv" to calls, which
  indicates the call is implicitly followed by a marker instruction and
  an implicit retainRV/claimRV call that consumes the call result. In
  addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
  consumes the call result, to prevent the middle-end passes from changing
  the return type of the called function. This is currently done only when
  the target is arm64 and the optimization level is higher than -O0.

- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
  with the operand bundle in the IR and removes the inserted calls after
  processing the function.

- ARC contract pass emits retainRV/claimRV calls after the call with the
  operand bundle. It doesn't remove the operand bundle on the call since
  the backend needs it to emit the marker instruction. The retainRV and
  claimRV calls are emitted late in the pipeline to prevent optimization
  passes from transforming the IR in a way that makes it harder for the
  ARC middle-end passes to figure out the def-use relationship between
  the call and the retainRV/claimRV calls (which is the cause of
  PR31925).

- The function inliner removes an autoreleaseRV call in the callee if
  nothing in the callee prevents it from being paired up with the
  retainRV/claimRV call in the caller. It then inserts a release call if
  the call is annotated with claimRV since autoreleaseRV+claimRV is
  equivalent to a release. If it cannot find an autoreleaseRV call, it
  tries to transfer the operand bundle to a function call in the callee.
  This is important since ARC optimizer can remove the autoreleaseRV
  returning the callee result, which makes it impossible to pair it up
  with the retainRV/claimRV call in the caller. If that fails, it simply
  emits a retain call in the IR if the implicit call is a call to
  retainRV and does nothing if it's a call to claimRV.

Future work:

- Use the operand bundle on x86-64.

- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
  calls annotated with the operand bundles.

rdar://71443534

Differential Revision: https://reviews.llvm.org/D92808
2021-02-05 05:55:18 -08:00
Kerry McLaughlin 9b4fcfaa9e [SVE][CodeGen] Remove performMaskedGatherScatterCombine
The AArch64 DAG combine added by D90945 & D91433 extends the index
of a scalable masked gather or scatter to i32 if necessary.

This patch removes the combine and instead adds shouldExtendGSIndex, which
is used by visitMaskedGather/Scatter in SelectionDAGBuilder to query whether
the index should be extended before calling getMaskedGather/Scatter.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D94525
2021-02-01 14:10:00 +00:00
Serge Pavlov bf416d166b [FPEnv] Intrinsic for setting rounding mode
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.

* It creates unnecessary dependency on libc. On the other hand, setting
  rounding mode requires few instructions and could be made by compiler.
  Sometimes standard C library even is not available, like in the case of
  GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
  call just sets rounding mode.

This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:

* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
  returns non-zero value in the case of failure. In glibc 'fesetround'
  reports failure if its argument is invalid or unsupported or if floating
  point operations are unavailable on the hardware. Compiler usually knows
  what core it generates code for and it can validate arguments in many
  cases.
* Rounding mode is specified in 'fesetround' using constants like
  'FE_TONEAREST', which are target dependent. It is inconvenient to work
  with such constants at IR level.

C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.

This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.

Differential Revision: https://reviews.llvm.org/D74729
2021-02-01 11:28:14 +07:00
Fangrui Song d5bbaaaf95 [XRay] Make __xray_customevent support non-Linux 2021-01-25 00:48:21 -08:00
Kazu Hirata 16baad8f4e [llvm] Use pop_back_val (NFC) 2021-01-24 12:18:57 -08:00
Craig Topper 79e798aca3 Recommit "[RISCV] Add a test of vector sadd.overflow to demonstrate intrinsics with multiple scalable vector results."
This recommits 2c51bef76c.

I've fixed the broken check line from when I renamed the test function.

Original commit message:
This builds on D94142 where scalable vectors are allowed in structs.

I did have to fix one scalable vector issue in the vector type
creation for these intrinsics where we used getVectorNumElements
instead of ElementCount.
2021-01-18 11:08:28 -08:00
Craig Topper 5d431c3d32 Revert "[RISCV] Add a test of vector sadd.overflow to demonstrate intrinsics with multiple scalable vector results."
This reverts commit 2c51bef76c.

I seem to have messed up the check lines in the test.
2021-01-18 11:00:20 -08:00
Craig Topper 2c51bef76c [RISCV] Add a test of vector sadd.overflow to demonstrate intrinsics with multiple scalable vector results.
This builds on D94142 where scalable vectors are allowed in structs.

I did have to fix one scalable vector issue in the vector type
creation for these intrinsics where we used getVectorNumElements
instead of ElementCount.

Differential Revision: https://reviews.llvm.org/D94149
2021-01-18 10:41:36 -08:00
Jeroen Dobbelaere 668827b648 Introduce llvm.noalias.decl intrinsic
The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a noalias
scope is declared. When the intrinsic is duplicated, a decision must
also be made about the scope: depending on the reason of the duplication,
the scope might need to be duplicated as well.

Reviewed By: nikic, jdoerfert

Differential Revision: https://reviews.llvm.org/D93039
2021-01-16 09:20:45 +01:00
Heejin Ahn 9e4eadeb13 [WebAssembly] Update basic EH instructions for the new spec
This implements basic instructions for the new spec.

- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
 - `catch` needs a custom routine for the same reason `throw` needs one,
   to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
  and Change code that compares an instruction's opcode with `catch` to
  use that function.
- LateEHPrepare
  - Previously in LateEHPrepare we added `catch` instruction to both
    `catchpad`s (for user catches) and `cleanuppad`s (for destructors).
    In the new version `catch` is generated from `llvm.catch` intrinsic
    in instruction selection phase, so we only need to add `catch_all`
    to the beginning of cleanup pads.
  - `catch` is generated from instruction selection, but we need to
    hoist the `catch` instruction to the beginning of every EH pad,
    because `catch` can be in the middle of the EH pad or even in a
    split BB from it after various code transformations.
  - Removes `addExceptionExtraction` function, which was used to
    generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
  function on the new instruction causes crashes, and the new version
  will be added in a later CL, whose contents will be completely
  different. So deleting the whole function will make the diff easier to
  read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
  single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
  `br_on_exn` instructions from the tests and FileCheck lines.

Reviewed By: dschuff, tlively

Differential Revision: https://reviews.llvm.org/D94040
2021-01-09 01:48:06 -08:00
Heejin Ahn 7be271537e [WebAssembly] Rename wasm_rethrow_in_catch intrinsic/builtin
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
  foo();
} catch (int n) {
  ...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.

Reviewed By: dschuff, tlively

Differential Revision: https://reviews.llvm.org/D94038
2021-01-08 06:55:04 -08:00
Juneyoung Lee 5cdf6ed744 [CodeGen] recognize select form of and/ors when splitting branch conditions
Recently a few patches are made to move towards using select i1 instead of and/or i1 to represent "a && b"/"a || b" in C/C++.
"a && b" in C/C++ does not evaluate b if a is false whereas 'and a, b' in IR evaluates b and uses its result regardless of the result of a.
This is problematic because it can cause miscompilation if b was an erroneous operation (https://llvm.org/pr48353).
In C/C++, the result is simply false because b is not evaluated, but in IR the result is poison.
The discussion at D93065 has more context about this.

This patch makes two branch-splitting optimizations (one in SelectionDAGBuilder, one in CodeGenPrepare) recognize
select form of and/or as well using m_LogicalAnd/Or.
Since it is CodeGen, I think this is semantically ok (at least as safe as what codegen already did).

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D93853
2021-01-01 04:46:10 +09:00
Kazu Hirata 1e3ed09165 [CodeGen] Use llvm::append_range (NFC) 2020-12-28 19:55:16 -08:00
Bjorn Pettersson a89d751fb4 Add intrinsics for saturating float to int casts
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ

The intrinsics have overloaded source and result type and support
vector operands:

    i32 @llvm.fptoui.sat.i32.f32(float %f)
    i100 @llvm.fptoui.sat.i100.f64(double %f)
    <4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
    // etc

On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:

    i19 @llvm.fptsi.sat.i19.f32(float %f)
    // builds
    i19 fp_to_sint_sat f, 19
    // type legalizes (through integer result promotion)
    i32 fp_to_sint_sat f, 19

I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.

There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:

    f = fmaxnum f, FP(MIN)
    f = fminnum f, FP(MAX)
    i = fptoxi f
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

If the bounds cannot be exactly represented, we expand to something
like this instead:

    i = fptoxi f
    i = select f ult FP(MIN), MIN, i
    i = select f ogt FP(MAX), MAX, i
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

It should be noted that this expansion assumes a non-trapping fptoxi.

Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.

Original patch by @nikic and @ebevhan (based on D54696).

Differential Revision: https://reviews.llvm.org/D54749
2020-12-18 11:09:41 +01:00
Matt Arsenault 2e0e03c6a0 OpaquePtr: Require byval on x86_intrcc parameter 0
Currently the backend special cases x86_intrcc and treats the first
parameter as byval. Make the IR require byval for this parameter to
remove this special case, and avoid the dependence on the pointee
element type.

Fixes bug 46672.

I'm not sure the IR is enforcing all the calling convention
constraints. clang seems to ignore the attribute for empty parameter
lists, but the IR tolerates it.
2020-12-14 16:34:37 -05:00
Kerry McLaughlin 4519ff4b6f [SVE][CodeGen] Add the ExtensionType flag to MGATHER
Adds the ExtensionType flag, which reflects the LoadExtType of a MaskedGatherSDNode.
Also updated SelectionDAGDumper::print_details so that details of the gather
load (is signed, is scaled & extension type) are printed.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D91084
2020-12-09 11:19:08 +00:00
Joe Ellis 80c33de2d3 [SelectionDAG] Add llvm.vector.{extract,insert} intrinsics
This commit adds two new intrinsics.

- llvm.experimental.vector.insert: used to insert a vector into another
  vector starting at a given index.

- llvm.experimental.vector.extract: used to extract a subvector from a
  larger vector starting from a given index.

The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.

Reviewed By: cameron.mcinally

Differential Revision: https://reviews.llvm.org/D91362
2020-12-09 11:08:41 +00:00