This patch implements DBG_VALUE_LIST handling to the LiveDebugValues pass. This
is a substantial change, and makes a few fundamental changes to the existing
logic.
We still use the basic model of a VarLocMap that is indexed by a LocIndex, with
a VarLocSet (a CoalescingBitVector underneath) giving us efficient lookups of
existing variable locations for a given location type. The main change is that
the VarLocMap may contain a given VarLoc multiple times (once for each unique
location operand), so that a VarLoc can be looked up from any of the registers
that it uses. This means that each VarLoc has multiple corresponding LocIndexes;
to allow us to iterate through the set of VarLocs (previously we would iterate
through the VarLocSet), we now also maintain a single entry in the VarLocMap
that contains every VarLoc exactly once.
The VarLoc class itself is also changed; this change is much simpler,
refactoring out location-specific members into a MachineLocation class and
adding a vector of these locations.
Differential Revision: https://reviews.llvm.org/D83890
All extractvalues of the same value at the same index will map to
the same register, so even if one specific extractvalue only has
one use, we should not mark it as a trivial kill, as there may be
more extractvalues later.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49467.
Differential Revision: https://reviews.llvm.org/D98145
This patch updates the various IR passes to correctly handle dbg.values with a
DIArgList location. This patch does not actually allow DIArgLists to be produced
by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
Other than that, it should cover every IR pass.
Most of the changes simply extend code that operated on a single debug value to
operate on the list of debug values in the style of any_of, all_of, for_each,
etc. Instances of setOperand(0, ...) have been replaced with with
replaceVariableLocationOp, which takes the value that is being replaced as an
additional argument. In places where this value isn't readily available, we have
to track the old value through to the point where it gets replaced.
Differential Revision: https://reviews.llvm.org/D88232
This patch completes ISel support for DIArgList dbg.values by allowing
SDDbgValues with multiple location operands to be emitted as DBG_VALUE_LIST
instructions.
The primary change of this patch is refactoring EmitDbgValue by pulling location
operand emission out to the new function AddDbgValueLocationOps, which is used
for both DIArgList and single value dbg.values. Outside of that, the only
behaviour change is that the scheduler has a lambda added, HasUnknownVReg, to
prevent us from attempting to emit a DBG_VALUE_LIST before all of its used VRegs
have become available.
Differential Revision: https://reviews.llvm.org/D88592
A symbol being redefined as a label is something that can happen as a result of
ordinary input, so it shouldn't cause a fatal error. Also adjust the error
message to match the one you get when a symbol is redefined as a variable.
Differential Revision: https://reviews.llvm.org/D98181
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.
For example:
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E> ; index
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count
These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.
This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker and Cullen Rhodes.
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94708
This patch adds partial support in Instruction Selection for dbg.values that use
a DIArgList. This patch does not add support for producing DBG_VALUE_LIST, but
adds the logic for processing DIArgLists within the ISel pass. This change is
largely focused on handleDebugValue and some of the functions that it calls.
Outside of this, salvageDebugInfo and transferDbgValues have been modified to
replace individual operands instead of the entire value; dangling debug info for
variadic debug values is not currently supported (but may be added later).
Differential Revision: https://reviews.llvm.org/D88589
In the NFC commit 8d835f42a5, the check for `!L` is
moved to a separate function `getIVIncrement` which, instead of using `BO->getParent()`,
uses `PN->getParent()`. However, these two basic blocks are not necessarily the same.
https://bugs.llvm.org/show_bug.cgi?id=49466 demonstrates a case where `PN` is contained in
a loop while `BO` is not, causing the null-pointer dereference in `L->getLoopLatch()`.
This patch checks whether both `BO` and `PN` belong to the same loop before entering `getIVIncrement`.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D98144
Similar to the workaround code in ScalarizeVecRes_UnaryOp, ScalarizeVecRes_SETCC
, ScalarizeVecRes_VSELECT, etc.
If we have a case like this:
```
define <1 x half> @func(<1 x float> %x) {
%tmp = fptrunc <1 x float> %x to <1 x half>
ret <1 x half> %tmp
}
```
On AArch64, the <1 x float> is legal. So, this will crash if we call
GetScalarizedVector on it.
Differential Revision: https://reviews.llvm.org/D98208
If we have
```
%vec = G_BUILD_VECTOR %reg, %reg, ..., %reg
```
Then lower it to
```
%vec = G_DUP %reg
```
Also update the selector to handle constant splats on G_DUP.
This will not combine when the splat is all zeros or ones. Tablegen-imported
patterns rely on these being G_BUILD_VECTOR.
Minor code size improvements on CTMark at -Os.
Also adds some utility functions to make it a bit easier to recognize splats,
and an AArch64-specific splat helper.
Differential Revision: https://reviews.llvm.org/D97731
- Add new callback in `TargetInstrInfo` --
`isPCRelRegisterOperandLegal` -- to query whether pc-rel
register MachineOperand is legal.
- Add new function to search DebugLoc in a reverse ordering
Authors: myhsu, m4yers, glaubitz
Differential Revision: https://reviews.llvm.org/D88386
This patch modifies the class that represents debug values during ISel,
SDDbgValue, to support multiple location operands (to represent a dbg.value that
uses a DIArgList). Part of this class's functionality has been split off into a
new class, SDDbgOperand.
The new class SDDbgOperand represents a single value, corresponding to an SSA
value or MachineOperand in the IR and MIR respectively. Members of SDDbgValue
that were previously related to that specific value (as opposed to the
variable or DIExpression), such as the Kind enum, have been moved to
SDDbgOperand. SDDbgValue now contains an array of SDDbgOperand instead, allowing
it to hold more than one of these values.
All changes outside SDDbgValue are simply updates to use the new interface.
Differential Revision: https://reviews.llvm.org/D88585
This patch updates DbgVariableIntrinsics to support use of a DIArgList for the
location operand, resulting in a significant change to its interface. This patch
does not update all IR passes to support multiple location operands in a
dbg.value; the only change is to update the DbgVariableIntrinsic interface and
its uses. All code outside of the intrinsic classes assumes that an intrinsic
will always have exactly one location operand; they will still support
DIArgLists, but only if they contain exactly one Value.
Among other changes, the setOperand and setArgOperand functions in
DbgVariableIntrinsic have been made private. This is to prevent code from
setting the operands of these intrinsics directly, which could easily result in
incorrect/invalid operands being set. This does not prevent these functions from
being called on a debug intrinsic at all, as they can still be called on any
CallInst pointer; it is assumed that any code directly setting the operands on a
generic call instruction is doing so safely. The intention for making these
functions private is to prevent DIArgLists from being overwritten by code that's
naively trying to replace one of the Values it points to, and also to fail fast
if a DbgVariableIntrinsic is updated to use a DIArgList without a valid
corresponding DIExpression.
The result of ISD::USUBSAT will never be larger than the LHS. We
can use this to put a bound on the number of leading zeros.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D98133
Implement the promotion rule for SELECT_CC nodes by upcasting all the parameters and downcasting the result.
The AArch64 target makes use of this rule and, since it was not implemented, in some cases the instruction selector would hit an assertion upon encountering the illegal node.
This patch requires D97840, the included test cases hit both problems.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D97859
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d0.
I'm not sure this would catch all such issues, but it would catch some.
The problem for PR49393 was that we were holding a reference to a node that
wasn't connect edto the DAG across a function that could delete unused nodes. In
this particular case we managed to try to use the deleted node while it was in
the deleted state before its memory got recycled.
It could also happen that we delete the node, something allocates a new node
which recycles the memory. Then we try to use the reference we were holding and
it is now a completely different node with different valid opcode. This patch
would not catch that.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D97969
For binary or ternary ops we call getNegatedExpression multiple
times and then compare costs. While we're doing this we need to
hold a node from the first call across the second call, but its
not yet attached to the DAG. Its possible the second call creates
an identical node and then decides it didn't need it so will try
to delete it if it has no uses. This can cause a reference to the
node we're holding further up the call stack to become invalidated.
To prevent this, we can use a HandleSDNode to artifically give
the node a use without connecting it to the DAG.
I've used a std::list of HandleSDNodes so we can create handles
only when we have a node to hold. HandleSDNode does not have
default constructor and cannot be copied or moved.
Fixes PR49393.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D97914
Background:
Wasm EH, while using Windows EH (catchpad/cleanuppad based) IR, uses
Itanium-based libraries and ABIs with some modifications.
`__clang_call_terminate` is a wrapper generated in Clang's Itanium C++
ABI implementation. It contains this code, in C-style pseudocode:
```
void __clang_call_terminate(void *exn) {
__cxa_begin_catch(exn);
std::terminate();
}
```
So this function is a wrapper to call `__cxa_begin_catch` on the
exception pointer before termination.
In Itanium ABI, this function is called when another exception is thrown
while processing an exception. The pointer for this second, violating
exception is passed as the argument of this `__clang_call_terminate`,
which calls `__cxa_begin_catch` with that pointer and calls
`std::terminate` to terminate the program.
The spec (https://libcxxabi.llvm.org/spec.html) for `__cxa_begin_catch`
says,
```
When the personality routine encounters a termination condition, it
will call __cxa_begin_catch() to mark the exception as handled and then
call terminate(), which shall not return to its caller.
```
In wasm EH's Clang implementation, this function is called from
cleanuppads that terminates the program, which we also call terminate
pads. Cleanuppads normally don't access the thrown exception and the
wasm backend converts them to `catch_all` blocks. But because we need
the exception pointer in this cleanuppad, we generate
`wasm.get.exception` intrinsic (which will eventually be lowered to
`catch` instruction) as we do in the catchpads. But because terminate
pads are cleanup pads and should run even when a foreign exception is
thrown, so what we have been doing is:
1. In `WebAssemblyLateEHPrepare::ensureSingleBBTermPads()`, we make sure
terminate pads are in this simple shape:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
```
2. In `WebAssemblyHandleEHTerminatePads` pass at the end of the
pipeline, we attach a `catch_all` to terminate pads, so they will be in
this form:
```
%exn = catch
call @__clang_call_terminate(%exn)
unreachable
catch_all
call @std::terminate()
unreachable
```
In `catch_all` part, we don't have the exception pointer, so we call
`std::terminate()` directly. The reason we ran HandleEHTerminatePads at
the end of the pipeline, separate from LateEHPrepare, was it was
convenient to assume there was only a single `catch` part per `try`
during CFGSort and CFGStackify.
---
Problem:
While it thinks terminate pads could have been possibly split or calls
to `__clang_call_terminate` could have been duplicated,
`WebAssemblyLateEHPrepare::ensureSingleBBTermPads()` assumes terminate
pads contain no more than calls to `__clang_call_terminate` and
`unreachable` instruction. I assumed that because in LLVM very limited
forms of transformations are done to catchpads and cleanuppads to
maintain the scoping structure. But it turned out to be incorrect;
passes can merge cleanuppads into one, including terminate pads, as long
as the new code has a correct scoping structure. One pass that does this
I observed was `SimplifyCFG`, but there can be more. After this
transformation, a single cleanuppad can contain any number of other
instructions with the call to `__clang_call_terminate` and can span many
BBs. It wouldn't be practical to duplicate all these BBs within the
cleanuppad to generate the equivalent `catch_all` blocks, only with
calls to `__clang_call_terminate` replaced by calls to `std::terminate`.
Unless we do more complicated transformation to split those calls to
`__clang_call_terminate` into a separate cleanuppad, it is tricky to
solve.
---
Solution (?):
This CL just disables the generation and use of `__clang_call_terminate`
and calls `std::terminate()` directly in its place.
The possible downside of this approach can be, because the Itanium ABI
intended to "mark" the violating exception handled, we don't do that
anymore. What `__cxa_begin_catch` actually does is increment the
exception's handler count and decrement the uncaught exception count,
which in my opinion do not matter much given that we are about to
terminate the program anyway. Also it does not affect info like stack
traces that can be possibly shown to developers.
And while we use a variant of Itanium EH ABI, we can make some
deviations if we choose to; we are already different in that in the
current version of the EH spec we don't support two-phase unwinding. We
can possibly consider a more complicated transformation later to
reenable this, but I don't think that has high priority.
Changes in this CL contains:
- In Clang, we don't generate a call to `wasm.get.exception()` intrinsic
and `__clang_call_terminate` function in terminate pads anymore; we
simply generate calls to `std::terminate()`, which is the default
implementation of `CGCXXABI::emitTerminateForUnexpectedException`.
- Remove `WebAssembly::ensureSingleBBTermPads() function and
`WebAssemblyHandleEHTerminatePads` pass, because terminate pads are
already `catch_all` now (because they don't need the exception
pointer) and we don't need these transformations anymore.
- Change tests to use `std::terminate` directly. Also removes tests that
tested `LateEHPrepare::ensureSingleBBTermPads` and
`HandleEHTerminatePads` pass.
- Drive-by fix: Add some function attributes to EH intrinsic
declarations
Fixes https://github.com/emscripten-core/emscripten/issues/13582.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97834
This is recommit of 4c8fb7ddd6.
MIR in one unit test had mismatched types.
For vectors we consider a bit as known if it is the same for all demanded
vector elements (all elements by default). KnownBits BitWidth for vector
type is size of vector element. Add support for G_BUILD_VECTOR.
This allows combines of urem_pow2_to_mask in pre-legalizer combiner.
Differential Revision: https://reviews.llvm.org/D96122
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5f.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
:: (store 1 + 4, addrspace 1)
->
:: (store 1 into undef + 4, addrspace 1)
An offset without a base isn't terribly useful but it's convenient to update
the offset without checking the value. For example, when breaking apart
stores into smaller units
Differential Revision: https://reviews.llvm.org/D97812
This is a compile time optimization for d9e93e8e5. Not sure this matters or not, but why not do it just in case.
This does involve querying TLI with a potentially invalid addressing mode for the using instruction, but since we don't actually pass the using instruction to the TLI callback, that should be fine.
This is a compile time optimization for d9e93e8e5. As pointed out in post dommit review on the original review (D96399), there was a moderately large compile time regression with this patch and the eager computation of domtree on matcher construction is the first obvious candidate for why.
For vectors we consider a bit as known if it is the same for all demanded
vector elements (all elements by default). KnownBits BitWidth for vector
type is size of vector element. Add support for G_BUILD_VECTOR.
This allows combines of urem_pow2_to_mask in pre-legalizer combiner.
Differential Revision: https://reviews.llvm.org/D96122
CodeGenPrepare currently first removes empty blocks, then in a loop
performs other optimizations. One of those optimizations is the removal
of call instructions that invoke @llvm.assume, which can create new
empty blocks.
This means that when a branch only contains a call to __builtin_assume(),
the empty branch will survive into MIR, and will then only be
half-removed by MIR-level optimizations (e.g. removing the branch but
leaving the condition intact).
Fix it by eliminating @llvm.expect builtin calls before removing empty
blocks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D97848
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
This patch enables the case where we do not completely eliminate offset.
Supposedly in this case we reduce live range overlap that never harms, but
since there are doubts this is true, this goes as a separate change.
Differential Revision: https://reviews.llvm.org/D96399
Reviewed By: reames
While optimizing the memory instruction, we sometimes need to add
offset to the value of `IV`. We could avoid doing so if the `IV.next` is
already defined at the point of interest. In this case, we may get two
possible advantages from this:
- If the `IV` step happens to match with the offset, we don't need to add
the offset at all;
- We reduce overlap of live ranges of `IV` and `IV.next`. They may stop overlapping
and it will lead to better register allocation. Even if the overlap will preserve,
we are not introducing a new overlap, so it should be a neutral transform (Disabled
this patch, will come with follow-up).
Currently I've only added support for IVs that get decremented using `usub`
intrinsic. We could also support `AddInstr`, however there is some weird
interaction with some other transform that may lead to infinite compilation
in this case (seems like same transform is done and undone over and over).
I need to investigate why it happens, but generally we could do that too.
The first part only handles case where this reuse fully elimiates the offset.
Differential Revision: https://reviews.llvm.org/D96399
Reviewed By: reames
Same dangling probes are redundant since they all have the same semantic that is to rely on the counts inference tool to get reasonable count for the same original block. Therefore, there's no need to keep multiple copies of them. I've seen jump threading created tons of redundant dangling probes that slowed down the compiler dramatically. Other optimization passes can also result in redundant probes though without an observed impact so far.
This change removes block-wise redundant dangling probes specifically introduced by jump threading. To support removing redundant dangling probes caused by all other passes, a final function-wise deduplication is also added.
An 18% size win of the .pseudo_probe section was seen for SPEC2017. No performance difference was observed.
Differential Revision: https://reviews.llvm.org/D97482
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
Dangling probes are the probes associated to an empty block. This usually happens when all real instructions are optimized away from the block. There is a problem with dangling probes during the offline counts processing. The way the sample profiler works is that samples collected on the first physical instruction following a probe will be counted towards the probe. This logically equals to treating the instruction next to a probe as if it is from the same block of the probe. In the dangling probe case, the real instruction following a dangling probe actually starts a new block, and samples collected on the new block may cause issues when counted towards the empty block.
To mitigate this issue, we first try to move around a dangling probe inside its owning block. If there are still native instructions preceding the probe in the same block, we can then use them as a place holder to collect samples for the probe. A pass is added to walk each block backwards looking for probes not followed by any real instruction and moving them before the first real instruction. This is done right before the object emission.
If we are unlucky to find such in-block preceding instructions for a probe, the solution we are taking is to tag such probe as dangling so that the samples reported for them will not be trusted by the compiler. We leave it up to the counts inference algorithm to get such probes a reasonable count. The number `UINT64_MAX` is used to mark sample count as collected for a dangling probe.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95962
The compiler needs to mark register $x0 as live in for the following case.
$x1 = ADDXri $sp, 16, 0
BL @spam, csr_darwin_aarch64_aapcs, implicit-def dead $lr, implicit $sp, implicit $x0, implicit killed $x1, implicit-def $sp, implicit-def dead $x0
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95267
VirtRegRewriter may sometimes fail to correctly apply the kill flag where necessary,
which causes unecessary code gen on PowerPC. This patch fixes the way masks for
defined lanes are computed and the way mask for used lanes is computed.
Contact albion.fung@ibm.com instead of author for problems related to this commit.
Differential Revision: https://reviews.llvm.org/D92405
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb.
Refactor insertion of the asserting ops. This enables using them for
AMDGPU.
This code should essentially be the same for every target. Mips, X86
and ARM all have different code there now, but this seems to be an
accident. The assignment functions are called with different types
than they would be in the DAG, so this is all likely an assortment of
hacks to get around that.
This function isn't exercised in lit tests today today according to
the code coverage report. But will be after the tests in D97543 and
D97559.
Posting this patch to help a crash that Fraser hit.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97582
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.
This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).
This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
To do this while supporting the existing functionality in SelectionDAG of using
PGO info, we add the ProfileSummaryInfo and LazyBlockFrequencyInfo analysis
dependencies to the instruction selector pass.
Then, use the predicate to generate constant pool loads for f32 materialization,
if we're targeting optsize/minsize.
Differential Revision: https://reviews.llvm.org/D97732
This prepares codegen for a change that will remove the identical
folds from IR because they are not poison-safe. See
D93065 / D97360
for details.
We already generically support scalar types, and there are various
target-specific transforms that overlap the vector folds. For example,
x86 recognizes the and patterns, but not or. We can end up with 1
extra instruction there, but I think that is still preferred over the
blendv alternative that loads a constant vector.
If this is not optimal, then it should be fixed with a later transform
(this change is not expected to result in any regressions because
InstCombine currently does the same thing).
Removing custom code and supporting undefs in constant-pattern-matching
can be follow-up changes.
Differential Revision: https://reviews.llvm.org/D97730
The situation with inline asm/MC error reporting is kind of messy at the
moment. The errors from MC layout are not reliably propagated and users
have to specify an inlineasm handler separately to get inlineasm
diagnose. The latter issue is not a correctness issue but could be improved.
* Kill LLVMContext inlineasm diagnose handler and migrate it to use
DiagnoseInfo/DiagnoseHandler.
* Introduce `DiagnoseInfoSrcMgr` to diagnose SourceMgr backed errors. This
covers use cases like inlineasm, MC, and any clients using SourceMgr.
* Move AsmPrinter::SrcMgrDiagInfo and its instance to MCContext. The next step
is to combine MCContext::SrcMgr and MCContext::InlineSrcMgr because in all
use cases, only one of them is used.
* If LLVMContext is available, let MCContext uses LLVMContext's diagnose
handler; if LLVMContext is not available, MCContext uses its own default
diagnose handler which just prints SMDiagnostic.
* Change a few clients(Clang, llc, lldb) to use the new way of reporting.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97449
The current narrowing code for G_PHI can only handle the case
where the size is a multiple of the narrow size. If this is not
the case, fall back to SDAG instead of asserting.
Original patch by shepmaster.
Differential Revision: https://reviews.llvm.org/D92446
Generic code should probably not introduce G_INSERT/G_EXTRACT. The
mirror unpackRegs should also be removed, but AMDGPU still has a use
remaining which needs to be fixed.
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
The code previously used two BUILD_PAIRs to concatenate the two UMULO
results with 0s in the lower bits to match original VT. Then it created
an ADD and a UADDO with the original bit width. Each of those operations
need to be expanded since they have illegal types.
Since we put 0s in the lower bits before the ADD, the lower half of the
ADD result will be 0. So the lower half of the UADDO result is
solely determined by the other operand. Since the UADDO need to
be split in half, we don't really needd an operation for the lower
bits. Unfortunately, we don't see that in type legalization and end up
creating something more complicated and DAG combine or
lowering aren't always able to recover it.
This patch directly generates the narrower ADD and UADDO to avoid
needing to legalize them. Now only the MUL is done on the original
type.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97440
I copied the nearly identical function from AArch64 into AMDGPU, so
fix this duplication.
Mips and X86 have their own more exotic versions which should be
removed. However replacing those is better left for a separate patch
since it requires other changes to avoid regressions.
This patch addresses issues arising from the fact that the index type
used for subvector insertion/extraction is inconsistent between the
intrinsics and SDNodes. The intrinsic forms require i64 whereas the
SDNodes use the type returned by SelectionDAG::getVectorIdxTy.
Rather than update the intrinsic definitions to use an overloaded index
type, this patch fixes the issue by transforming the index to the
correct type as required. Any loss of index bits going from i64 to a
smaller type is unexpected, and will be caught by an assertion in
SelectionDAG::getVectorIdxConstant.
The patch also updates the documentation for INSERT_SUBVECTOR and adds
an assertion to its creation to bring it in line with EXTRACT_SUBVECTOR.
This necessitated changes to AArch64 which was using i64 for
EXTRACT_SUBVECTOR but i32 for INSERT_SUBVECTOR. Only one test changed
its codegen after updating the backend accordingly.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D97459
Currently dead gc value mentioned in the deopt section are not listed in gc section
and so are processed separately.
With this CL all deopt gc values are considered as base pointers and processed in the
same way as other gc values.
The fact that deopt gc pointer is a base pointer was used all the time but
it is explicitly documented here by putting the value in SI.Base.
The idea of the patch comes from Philip Reames.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97554
If the type of the deopt operand has an illegal type and we want to use
register for it then it needs to be legalized.
This is not supported currently by legalizer and it is not actually clear how to
legalize this type of values.
Instead we just spill such values and use spill slot location in statepoint.
Originally tests were created by Philip Reames.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97541
Peeking through AND is only valid if the input to both shifts is
the same. If the inputs are different, then the original pattern
ORs the two values when the masked shift amount is 0. This is ok
if the values are the same since the OR would be a NOP which is
why its ok for rotate.
Fixes PR49365 and reverts PR34641
Differential Revision: https://reviews.llvm.org/D97637
Even if the first computeKnownBits call doesn't have any zero
bits it is possible the other operand has bitwidth-1 leading zero.
In that case overflow is still impossible. So always call computeKnownBits
for both operands.
D97247 added the reverse mapping from unwind destination to their
source, but it had a critical bug; sources can be multiple, because
multiple BBs can have a single BB as their unwind destination.
This changes `WasmEHFuncInfo::getUnwindSrc` to `getUnwindSrcs` and makes
it return a vector rather than a single BB. It does not return the const
reference to the existing vector but creates a new vector because
`WasmEHFuncInfo` stores not `BasicBlock*` or `MachineBasicBlock*` but
`PointerUnion` of them. Also I hoped to unify those methods for
`BasicBlock` and `MachineBasicBlock` into one using templates to reduce
duplication, but failed because various usages require `BasicBlock*` to
be `const` but it's hard to make it `const` for `MachineBasicBlock`
usages.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13514#issuecomment-784708744)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97583
If a global object is listed in `@llvm.used`, place it in a unique section with
the `SHF_GNU_RETAIN` flag. The section is a GC root under `ld --gc-sections`
with LLD>=13 or GNU ld>=2.36.
For front ends which do not expect to see multiple sections of the same name,
consider emitting `@llvm.compiler.used` instead of `@llvm.used`.
SHF_GNU_RETAIN is restricted to ELFOSABI_GNU and ELFOSABI_FREEBSD in
binutils. We don't do the restriction - see the rationale in D95749.
The integrated assembler has supported SHF_GNU_RETAIN since D95730.
GNU as>=2.36 supports section flag 'R'.
We don't need to worry about GNU ld support because older GNU ld just ignores
the unknown SHF_GNU_RETAIN.
With this change, `__attribute__((retain))` functions/variables emitted
by clang will get the SHF_GNU_RETAIN flag.
Differential Revision: https://reviews.llvm.org/D97448
Using ComputeNumSignBits or computeKnownBits we might be able
to determine that overflow is impossible.
This especially helps after type legalization if the type was
promoted from a type with half the bits or more. Type legalization
conservatively creates a promoted smulo/umulo and an overflow
check for the promoted bits. The overflow from the promoted
smulo/umulo is ORed with the result of the promoted bits
overflow check. Proving that the promoted smulo/umulo can never
overflow will leave us with just the promoted bits overflow check.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97160
remove `Hi` `Lo` argument from `emitDwarfUnitLength`, so we
can make caller of emitDwarfUnitLength easier.
Reviewed By: MaskRay, dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D96409
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
When calling SelectionDAG::getNode() to create an ADD or SUB
of two vectors with i1 element types we can canonicalise this
to use XOR instead, where 1+1 is treated as wrapping around
to 0 and 0-1 wraps to 1.
I've added the following tests for SVE targets:
CodeGen/AArch64/sve-pred-arith.ll
and modified some X86 tests to reflect the much simpler codegen
required.
Differential Revision: https://reviews.llvm.org/D97276
Rather than converting 3 signbits to bools and comparing them,
we can do bitwise logic on the whole vector and convert the
resulting sign bit to a bool at the end.
This is still a different algorithm than what we do in LegalizeDAG
through expandSADDOSSUBO. That algorithm needs to know that the
RHS of SSUBO is > 0, but that's costly when the type is split.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97325
This reverts commit 6b286d93f7 because
in some cases when the optimizer evaluates the global initializer,
__llvm_prf_cnts may not be entirely zero initialized.
We know the input is going to be expanded as well, so we should
just ask for the already expanded operands. Otherwise we create
nodes that are just going to need to be legalized.
We may need to do some customization for DWARF unit length in DWARF
section headers for some targets for some code generation path.
For example, for XCOFF in assembly path, AIX assembler does not require
the debug section containing its debug unit length in the header.
Move emitDwarfUnitLength to MCStreamer class so that we can do
customization in different Streamers
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D95932
This CL is not big but contains changes that span multiple analyses and
passes. This description is very long because it tries to explain basics
on what each pass/analysis does and why we need this change on top of
that. Please feel free to skip parts that are not necessary for your
understanding.
---
`WasmEHFuncInfo` contains the mapping of <EH pad, the EH pad's next
unwind destination>. The value (unwind dest) here is where an exception
should end up when it is not caught by the key (EH pad). We record this
info in WasmEHPrepare to fix catch mismatches, because the CFG itself
does not have this info. A CFG only contains BBs and
predecessor-successor relationship between them, but in `WasmEHFuncInfo`
the unwind destination BB is not necessarily a successor or the key EH
pad BB. Their relationship can be intuitively explained by this C++ code
snippet:
```
try {
try {
foo();
} catch (int) { // EH pad
...
}
} catch (...) { // unwind destination
}
```
So when `foo()` throws, it goes to `catch (int)` first. But if it is not
caught by it, it ends up in the next unwind destination `catch (...)`.
This unwind destination is what you see in `catchswitch`'s
`unwind label %bb` part.
---
`WebAssemblyExceptionInfo` groups exceptions so that they can be sorted
continuously together in CFGSort, as we do for loops. What this analysis
does is very simple: it creates a single `WebAssemblyException` per EH
pad, and all BBs that are dominated by that EH pad are included in this
exception. We also identify subexception relationship in this way: if
EHPad A domiantes EHPad B, EHPad B's exception is a subexception of
EHPad A's exception.
This simple rule turns out to be incorrect in some cases. In
`WasmEHFuncInfo`, if EHPad A's unwind destination is EHPad B, it means
semantically EHPad B should not be included in EHPad A's exception,
because it does not make sense to rethrow/delegate to an inner scope.
This is what happened in CFGStackify as a result of this:
```
try
try
catch
... <- %dest_bb is among here!
end
delegate %dest_bb
```
So this patch adds a phase in `WebAssemblyExceptionInfo::recalculate` to
make sure excptions' unwind destinations are not subexceptions of
their unwind sources in `WasmEHFuncInfo`.
But this alone does not prevent `dest_bb` in the example above from
being sorted within the inner `catch`'s exception, even if its exception
is not a subexception of that `catch`'s exception anymore, because of
how CFGSort works, which will be explained below.
---
CFGSort places BBs within the same `SortRegion` (loop or exception)
continuously together so they can be demarcated with `loop`-`end_loop`
or `catch`-`end_try` in CFGStackify.
`SortRegion` is a wrapper for one of `MachineLoop` or
`WebAssemblyException`. `SortRegionInfo` already does some complicated
things because there discrepancies between those two data structures.
`WebAssemblyException` is what we control, and it is defined as an EH
pad as its header and BBs dominated by the header as its BBs (with a
newly added exception of unwind destinations explained in the previous
paragraph). But `MachineLoop` is an LLVM data structure and uses the
standard loop detection algorithm. So by the algorithm, BBs that are 1.
dominated by the loop header and 2. have a path back to its header.
Because of the second condition, many BBs that are dominated by the loop
header are not included in the loop. So BBs that contain `return` or
branches to outside of the loop are not technically included in
`MachineLoop`, but they can be sorted together with the loop with no
problem.
Maybe to relax the condition, in CFGSort, when we are in a `SortRegion`
we allow sorting of not only BBs that belong to the current innermost
region but also BBs that are by the current region header.
(This was written this way from the first version written by Dan, when
only loops existed.) But now, we have cases in exceptions when EHPad B
is the unwind destination for EHPad A, even if EHPad B is dominated by
EHPad A it should not be included in EHPad A's exception, and should not
be sorted within EHPad A.
One way to make things work, at least correctly, is change `dominates`
condition to `contains` condition for `SortRegion` when sorting BBs, but
this will change compilation results for existing non-EH code and I
can't be sure it will not degrade performance or code size. I think it
will degrade performance because it will force many BBs dominated by a
loop, which don't have the path back to the header, to be placed after
the loop and it will likely to create more branches and blocks.
So this does a little hacky check when adding BBs to `Preferred` list:
(`Preferred` list is a ready list. CFGSort maintains ready list in two
priority queues: `Preferred` and `Ready`. I'm not very sure why, but it
was written that way from the beginning. BBs are first added to
`Preferred` list and then some of them are pushed to `Ready` list, so
here we only need to guard condition for `Preferred` list.)
When adding a BB to `Preferred` list, we check if that BB is an unwind
destination of another BB. To do this, this adds the reverse mapping,
`UnwindDestToSrc`, and getter methods to `WasmEHFuncInfo`. And if the BB
is an unwind destination, it checks if the current stack of regions
(`Entries`) contains its source BB by traversing the stack backwards. If
we find its unwind source in there, we add the BB to its `Deferred`
list, to make sure that unwind destination BB is added to `Preferred`
list only after that region with the unwind source BB is sorted and
popped from the stack.
---
This does not contain a new test that crashes because of this bug, but
this fix changes the result for one of existing test case. This test
case didn't crash because it fortunately didn't contain `delegate` to
the incorrectly placed unwind destination BB.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97247
In every catchpad except `catch (...)`, we add a call to
`_Unwind_CallPersonality`, which is a wapper to call the personality
function. (In most of other Itanium-based architectures the call is done
from libunwind, but in wasm we don't have the control over the VM.)
Because the personatlity function is called to figure out whether the
current exception is a type we should catch, such as `int` or
`SomeClass&`, `catch (...)` does not need the personality function call.
For the same reason, all cleanuppads don't need it.
When we call `_Unwind_CallPersonality`, we store some necessary info in
a data structure called `__wasm_lpad_context` of type
`_Unwind_LandingPadContext`, which is defined in the wasm's port of
libunwind in Emscripten. Also the personality wrapper function returns
some info (selector and the caught pointer) in that data structure, so
it is used as a medium for communication.
One of the info we need to store is the address for LSDA info for the
current function. `wasm.lsda()` intrinsic returns that address. (This
intrinsic will be lowered to a symbol that points to the LSDA address.)
The simpliest thing is call `wasm.lsda()` every time we need to call
`_Unwind_CallPersonality` and store that info in `__wasm_lpad_context`
data structure. But we tried to be better than that (D77423 and some
more previous CLs), so if catchpad A dominates catchpad B and catchpad A
is not `catch (...)`, we didn't insert `wasm.lsda()` call in catchpad B,
thinking that the LSDA address is the same for a single function and we
already visited catchpad A and `__wasm_lpad_context.lsda` field would
already have that value.
But this can be incorrect if there is a call to another function, which
also can have the personality function and LSDA, between catchpad A and
catchpad B, because `__wasm_lpad_context` is a globally defined
structure and the callee function will overwrite its `lsda` field.
So in this CL we don't try to do any optimizaions on adding
`wasm.lsda()` call; we store the result of `wasm.lsda()` every time we
call `_Unwind_CallPersonality`. We can do some complicated analysis,
like checking if there is a function call between the dominating
catchpad and the current catchpad, but at this time it seems overkill.
This deletes three tests because they all tested `wasm.ldsa()` call
optimization.
Fixes https://github.com/emscripten-core/emscripten/issues/13548.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D97309
This code creates 3 setccs that need to be expanded. It was
creating a sign bit test as setge X, 0 which is non-canonical.
Canonical would be setgt X, -1. This misses the special case in
IntegerExpandSetCCOperands for sign bit tests that assumes
canonical form. If we don't hit this special case we end up
with a multipart setcc instead of just checking the sign of
the high part.
To fix this I've reversed the polarity of all of the setccs to
setlt X, 0 which is canonical. The rest of the logic should
still work. This seems to produce better code on RISCV which
lacks a setgt instruction.
This probably still isn't the best code sequence we could use here.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97181
We don't yet have working codegen for the resulting unmerges, and if
we did it would probably be horrible.
Differential Revision: https://reviews.llvm.org/D97035
This renames variable and method names in `WasmEHFuncInfo` class to be
simpler and clearer. For example, unwind destinations are EH pads by
definition so it doesn't necessarily need to be included in every method
name. Also I am planning to add the reverse mapping in a later CL,
something like `UnwindDestToSrc`, so this renaming will make meanings
clearer.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D97173
This also removes a pattern from RISCV that is no longer needed
since the sexti32 on the LHS of the srem in the pattern implies
the result is sign extended so the sign_extend_inreg should be
removed in DAG combine now.
Reviewed By: luismarques, RKSimon
Differential Revision: https://reviews.llvm.org/D97133
This patch handles usubsat patterns hidden through zext/trunc and uses the getTruncatedUSUBSAT helper to determine if the USUBSAT can be correctly performed in the truncated form:
zext(x) >= y ? x - trunc(y) : 0 --> usubsat(x,trunc(umin(y,SatLimit)))
zext(x) > y ? x - trunc(y) : 0 --> usubsat(x,trunc(umin(y,SatLimit)))
Based on original examples:
void foo(unsigned short *p, int max, int n) {
int i;
unsigned m;
for (i = 0; i < n; i++) {
m = *--p;
*p = (unsigned short)(m >= max ? m-max : 0);
}
}
Differential Revision: https://reviews.llvm.org/D25987
This can reduce the binary size because counters will no longer occupy
space in the binary, instead they will be allocated by dynamic linker.
Differential Revision: https://reviews.llvm.org/D97110
There is a trailing dot in text section name if it has prefix, don't add
repeated dot when connect text section name and symbol name.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D96327
Previously we would use the extended implementation, but
the extended implementation requires the vector type to be extended
so that we can access the LLVMContext. In theory we could
detect this case and use the context from the element type instead,
but since I know of no cases hitting this in practice today
I've done the simplest thing.
Also add asserts to several extended EVT functions that assume
LLVMTy is non-null.
Follow from discussion in D97036
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D97070
VirtRegAuxInfo is an extensibility point, so the register allocator's
decision on which implementation to use should be communicated to the
other users - namely, LiveRangeEdit.
Differential Revision: https://reviews.llvm.org/D96898
This patch provides two major changes:
1. Add getRelocationInfo to check if a constant will have static, dynamic, or
no relocations. (Also rename the original needsRelocation to needsDynamicRelocation.)
2. Only allow a constant with no relocations (static or dynamic) to be placed
in a mergeable section.
This will allow unused symbols that contain static relocations and happen to
fit in mergeable constant sections (.rodata.cstN) to instead be placed in
unique-named sections if -fdata-sections is used and subsequently garbage collected
by --gc-sections.
See https://lists.llvm.org/pipermail/llvm-dev/2021-February/148281.html.
Differential Revision: https://reviews.llvm.org/D95960
AMDGPU currently has a lot of pre-processing code to pre-split
argument types into 32-bit pieces before passing it to the generic
code in handleAssignments. This is a bit sloppy and also requires some
overly fancy iterator work when building the calls. It's better if all
argument marshalling code is handled directly in
handleAssignments. This handles more situations like decomposing large
element vectors into sub-element sized pieces.
This should mostly be NFC, but does change the generated code by
shifting where the initial argument packing instructions are placed. I
think this is nicer looking, since it now emits the packing code
directly after the relevant copies, rather than after the copies for
the remaining arguments.
This doubles down on gfx6/gfx7 using the gfx8+ ABI for 16-bit
types. This is ultimately the better option, but incompatible with the
DAG. Fixing this requires more work, especially for f16.
If extload is legal, following transform
(zext (select c, load1, load2)) -> (select c, zextload1, zextload2)
can save one ext instruction.
Differential Revision: https://reviews.llvm.org/D95086
I've now hit several cases where a mistake in the regalloc main loop caused corrupt live intervals that didn't get caught until either the next verify or during post-optimization. The later case is rather confusing and tends to lead one down false trails, so let's catch corruption before that.
Adjust generateFMAsInMachineCombiner to return false if SVE is present
in order to combine fmul+fadd into fma. Also add new pseudo instructions
so as to select the most appropriate of FMLA/FMAD depending on register
allocation.
Depends on D96599
Differential Revision: https://reviews.llvm.org/D96424
CheckInteger uses an int64_t encoded using a variable width encoding
that is optimized for encoding a number with a lot of leading zeros.
Negative numbers have no leading zeros so use the largest encoding
requiring 9 bytes.
I believe its most like we want to check for positive and negative
numbers near 0. -1 is quite common due to its use in the 'not'
idiom.
To optimize for this, we can borrow an idea from the bitcode format
and move the sign bit to bit 0 with the magnitude stored in the
upper bits. This will drastically increase the number of leading
zeros for small magnitudes. Then we can run this value through
VBR encoding.
This gives a small reduction in the table size on all in tree
targets except VE where size increased by about 300 bytes due
to intrinsic ids now requiring 3 bytes instead of 2. Since the
intrinsic enum space is shared by all targets this an unfortunate
consquence of where VE is currently located in the range.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96317
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp: In member function ‘virtual llvm::MCSection* llvm::TargetLoweringObjectFileELF::getSectionForLSDA(const llvm::Function&, const llvm::MCSymbol&, const llvm::TargetMachine&) const’:
/llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp:871:8: warning: variable ‘IsComdat’ set but not used [-Wunused-but-set-variable]
871 | bool IsComdat = false;
| ^~~~~~~~
```
We are going to support debug sections for XCOFF. So the csect
properties are not necessary. This patch makes these properties
optional.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D95931
Same implementation as G_SEXT_INREG.
Add a testcase to combine-sext-inreg for a concrete example, and a testcase
to KnownBitsTest.
Differential Revision: https://reviews.llvm.org/D96897
This adds a G_ASSERT_SEXT opcode, similar to G_ASSERT_ZEXT. This instruction
signifies that an operation was already sign extended from a smaller type.
This is useful for functions with sign-extended parameters.
E.g.
```
define void @foo(i16 signext %x) {
...
}
```
This adds verifier, regbankselect, and instruction selection support for
G_ASSERT_SEXT equivalent to G_ASSERT_ZEXT.
Differential Revision: https://reviews.llvm.org/D96890
D94835 added support for WinEH to export public symbols pointing to
basic blocks which are catchret targets for use with Windows CET.
Wasm currently doesn't support public symbols to non-function code
addresses (they get treated like new functions in asm but then don't
lower to object files correctly).
It created them unconditionally for all catchret targets.
This change disables those symbols unless the exceptionHandlingType
is WinEH (since they aren't used with ExceptionHandling::Wasm)
Differential Revision: https://reviews.llvm.org/D96824
Interval value
The II value was incremented before exiting the loop, and therefor when
used in the optimization remarks and debug dumps it did not reflect the
initiation interval actually used in Schedule.
Differential Revision: https://reviews.llvm.org/D95692
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Fixes issue raised by @saugustine in rG5aa8f4c0843a where we were failing to replace null shuffle operands from MergeInnerShuffle to UNDEFs.
Differential Revision: https://reviews.llvm.org/D96345
This allows the option to affect the LTO output. Module::Max helps to
generate debug info for all modules in the same format.
Differential Revision: https://reviews.llvm.org/D96597
To make sure compile-times don't regress, add an option to restrict the number
of instructions considered for sinking as alias analysis can be expensive and
for the same reason also skip large blocks.
Differential Revision: https://reviews.llvm.org/D96485
Basic block sections enables function sections implicitly, this is not needed
and is inefficient with "=list" option.
We had basic block sections enable function sections implicitly in clang. This
is particularly inefficient with "=list" option as it places functions that do
not have any basic block sections in separate sections. This causes unnecessary
object file overhead for large applications.
This patch disables this implicit behavior. It only creates function sections
for those functions that require basic block sections.
Further, there was an inconistent behavior with llc as llc was not turning on
function sections by default. This patch makes llc and clang consistent and
tests are added to check the new behavior.
This is the first of two patches and this adds functionality in LLVM to
create a new section for the entry block if function sections is not
enabled.
Differential Revision: https://reviews.llvm.org/D93876
This change introduces support for zero flag ELF section groups to LLVM.
LLVM already supports COMDAT sections, which in ELF are a special type
of ELF section groups. These are generally useful to enable linker GC
where you want a group of sections to always travel together, that is to
be either retained or discarded as a whole, but without the COMDAT
semantics. Other ELF assemblers already support zero flag ELF section
groups and this change helps us reach feature parity.
Differential Revision: https://reviews.llvm.org/D95851
This reverts commit 5dfba562dd.
That commit causes an assertion failure with the following repro:
typedef long b __attribute__((__vector_size__(16)));
b *d;
b e;
b __attribute__((__always_inline__)) c(b h, b i) {
return (__attribute__((__vector_size__(8 * sizeof(short)))) short)h + i;
}
j() {
b k, l, m, n, o[6], p, q;
m = d[5];
b r = m;
b s = f(r, 8);
q = s;
l = d[1];
p = l;
t(q);
n = c(m, l);
o[1] = c(s, f(p, 8));
k = __builtin_shufflevector(n, o[1], 0, 2);
e = __builtin_ia32_psrlwi128(k, j);
}
./bin/clang -cc1 -triple x86_64-grtev4-linux-gnu -emit-obj -O1 -std=c99 test.c
Similar to D96622, we're better off just promoting uaddsat(x,y) -> umin(add(x,y),c) instead of trying to perform a shifted uaddsat.
I initially tried to just use shifted promotion in cases where we didn't have a legal/custom umin - but we don't appear to have any targets that have uaddsat but not umin, so imo we're better off always using the umin and avoid an untested shifted uaddsat code path.
Differential Revision: https://reviews.llvm.org/D96767
fde2466171 added support for
scalable vectors to matchUnaryPredicate by handling SPLAT_VECTOR in
addition to BUILD_VECTOR. This was used to enabled UDIV/SDIV/UREM/SREM
by constant expansion in BuildUDIV/BuildSDIV in TargetLowering.cpp
The caller there expects to call getBuildVector from the match factors.
This leads to a crash right now if there is a SPLAT_VECTOR of
fixed vectors since the number of vectors won't match the number
of elements.
To fix this, this patch updates the callers to check the opcode
instead of whether the type is fixed or scalable. This assumes
that only 3 opcodes are handled by matchUnaryPredicate so
I've added an assertion to the final else to check that opcode.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96174
Fold shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))) -> bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d))
Attempt to fold from a shuffle of a pair of binops to a binop of shuffles, as long as one/both of the binop sources are also shuffles that can be merged with the outer shuffle. This should guarantee that we remove one binop without introducing any additional shuffles.
Technically there's potential for a merged shuffle's lowering to be poorer than the original shuffle, but it could also be better, and I'm not seeing any regressions as long as we keep the 'don't merge splats' rule already present in MergeInnerShuffle.
This expands and generalizes an existing X86 combine and attempts to merge either of each binop's sources (with an on-the-fly commutation of the shuffle mask) - we couldn't do that in the x86 version as it had to stay in a form that DAGCombine's MergeInnerShuffle would still recognise.
Differential Revision: https://reviews.llvm.org/D96345
The API is a bit awkward since you need to index into an array in the
passed struct. I guess an alternative would be to pass all of the
individual fields.
Return the best covering index, and additional needed to complete the
mask. This logically belongs in TargetRegisterInfo, although I ended
up not needing it for why I originally split this out.
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
Simlilar was done for BSWAP previously.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96681
This patch enables AsmPrinter support for complex expression with
entry values. It shouldn't AsmPrinter's call whether these are safe or
not but the pass who introduces the DW_OP_LLVM_entry_value. This patch
on its own has no effect on clang.
Differential Revision: https://reviews.llvm.org/D96559
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
In the future Windows will enable Control-flow Enforcement Technology (CET aka shadow stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
This change allows llvm to generate the section that contains the appropriate symbol references in the form expected by the msvc linker.
This feature is enabled through a new module flag, ehcontguard, which was modelled on the cfguard flag.
The change includes a test that when the module flag is enabled the section is correctly generated.
The set of exception continuation information includes returns from exceptional control flow (catchret in llvm).
In order to collect catchret we:
1) Includes an additional flag on machine basic blocks to indicate that the given block is the target of a catchret operation,
2) Introduces a new machine function pass to insert and collect symbols at the start of each block, and
3) Combines these targets with the other EHCont targets that were already being collected.
Change originally authored by Daniel Frampton <dframpto@microsoft.com>
For more details, see MSVC documentation for `/guard:ehcont`
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-eh-continuation-metadata
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D94835
The implementation for vectors is broken and doesn't seem to be used by
anything. Explicitly remove support for them, they can be added again
later when they're properly implemented.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D95699
As discussed on D96413, as long as the promoted bits of the args are zero we can use the basic ISD::USUBSAT pattern directly, without the shifting like we do for other ops.
I think something similar should be possible for ISD::UADDSAT as well, which I'll look at later.
Also, create a ISD::USUBSAT node directly - this will be expanded back by the legalizer later on if necessary.
Differential Revision: https://reviews.llvm.org/D96622
We lost this in D56387/rG69bc0990a9181e6eb86228276d2f59435a7fae67 - where I got the src/dst bitwidths mixed up and assumed getValidShiftAmountConstant would catch it.
Patch by @craig.topper - confirmed by @Carrot that it fixes PR49162
This patch hides the logic for setting the location kind of an entry
value inside the begin/finalize/cancel functions. This way we get rid
the strange workaround that is currently in setLocation().
In the future, this will allow us to set the location kind of the
entry value independently from the location kind of the main
expression.
Differential Revision: https://reviews.llvm.org/D96554
There's no need to call verifyVectorElementMatch since we already know
that the source and destination types are identical.
Differential Revision: https://reviews.llvm.org/D96589
This combine tries to do inter-block hoisting of extends of G_PHIs, into the
originating blocks of the phi's incoming value. The idea is to expose further
optimization opportunities that are normally obscured by the PHI.
Some basic heuristics, and a target hook for AArch64 is added, to allow tuning.
E.g. if the extend is used by a G_PTR_ADD, it doesn't perform this combine
since it may be folded into the addressing mode during selection.
There are very minor code size improvements on AArch64 -Os, but the real benefit
is that it unlocks optimizations like AArch64 conditional compares on some
benchmarks.
Differential Revision: https://reviews.llvm.org/D95703
Begin transitioning the X86 vector code to recognise sub(umax(a,b) ,b) or sub(a,umin(a,b)) USUBSAT patterns to make it more generic and available to all targets.
This initial patch just moves the basic umin/umax patterns to DAG, removing some vector-only checks on the way - these are some of the patterns that the legalizer will try to expand back to so we can be reasonably relaxed about matching these pre-legalization.
We can handle the trunc(sub(..))) variants as well, which helps with patterns where we were promoting to a wider type to detect overflow/saturation.
The remaining x86 code requires some cleanup first - some of it isn't actually tested etc. I also need to resurrect D25987.
Differential Revision: https://reviews.llvm.org/D96413
This patch adds a pass to replace calls to vector intrinsics (i.e., LLVM
intrinsics operating on vector operands) with calls to a vector library.
Currently, calls to LLVM intrinsics are only replaced with calls to vector
libraries when scalar calls to intrinsics are vectorized by the Loop- or
SLP-Vectorizer.
With this pass, it is now possible to replace calls to LLVM intrinsics
already operating on vector operands, e.g., if such code was generated
by MLIR. For the replacement, information from the TargetLibraryInfo,
e.g., as specified via -vector-library is used.
This is a re-try of the original commit 2303e93e66 that was reverted
due to pass manager problems. Other minor changes have also been made.
Differential Revision: https://reviews.llvm.org/D95373
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Implements same logis as in SelectionDAG.
G_FMINNUM_IEEE and G_FMAXNUM_IEEE are never SNaN by definition and
never NaN when one operand is known non-NaN and other known non-SNaN.
G_FMINNUM and G_FMAXNUM are never NaN/SNaN when one of the operands
is known non-NaN/SNaN.
Differential Revision: https://reviews.llvm.org/D91716
The builder was using the extend user as the insertion point, which meant that
we were incorrectly "moving" the load from its original position, and therefore
could violate memory operation ordering.
Support for splitting exception handling pads was added in D73739. This
change updates the code to split out exception handling pads if profile
information indicates that they are cold. For a given function with
multiple landind pads, if one of them is hot they are all retained as
part of the hot code section.
Differential Revision: https://reviews.llvm.org/D96372
The use of basic block sections should take precedence over the machine
function splitting pass. Since they use the same underlying mechanism
they are kept exclusive. Updated the tests to check that split machine
functions is overridden by all flavours of basic block sections.
Differential Revision: https://reviews.llvm.org/D96392
If we wait until the type is legalized, we'll lose information
about the orginal type and need to use larger magic constants.
This gets especially bad on RISCV64 where i64 is the only legal
type.
I've limited this to simple scalar types so it only works for
i8/i16/i32 which are most likely to occur. For more odd types
we might want to do a small promotion to a type where MULH is legal
instead.
Unfortunately, this does prevent some urem/srem+seteq matching since
that still require legal types.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D96210
As for SETCC, use a less expensive condition code when generating
STRICT_FSETCC if the node is known not to have Nan.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D91972
This commit moves a line in SelectionDAGBuilder::handleDebugValue to
avoid implicitly casting a TypeSize object to an unsigned earlier than
necessary. It was possible that we bail out of the loop before the value
is ever used, which means we could create a superfluous TypeSize
warning.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D96423
The patch did not account for one corner case where cmp does not dominate
the loop latch. This patch adds this check, hopefully it's cheap because
the CFG does not change during the transform, so DT queries should be
executed quickly.
If you see compile time slowness from this, please revert.
Differential Revision: https://reviews.llvm.org/D96119
Function `replaceMathCmpWithIntrinsic` artificially limits the scope
of the optimization, setting a requirement of two instructions be in
the same block, due to two reasons:
- usage of DT for more general check is costly in terms of compile time;
- risk of creating a new value that lives through multiple blocks.
Because of this, two semantically equivalent tests may be or not be the
subject of this opt depending on where the binary operation is located.
See `test/CodeGen/X86/usub_inc_iv.ll` for motivation
There is one important particular case where this limitation is too strict:
it is when the binary operation is the increment of the induction variable.
As result, the application of this opt becomes fragile and highly reliant on
where other passes decide to place IV increment. In most cases, they place
it in the end of the latch block, killing the opt opportunity (when in fact it
does not matter where to insert the actual instruction).
This patch handles this particular case separately.
- The detector does not use dom tree and has constant cost;
- The value of IV or IV.next lives through all loop in any case, so this should not
create a new unexpected long-living value.
As result, the transform becomes more robust. It also seems to lead to
better code generation in some cases (see `test/CodeGen/X86/lsr-loop-exit-cond.ll`).
Differential Revision: https://reviews.llvm.org/D96119
Reviewed By: spatel, reames
The IR/MIR pseudo probe intrinsics don't get materialized into real machine instructions and therefore they don't incur runtime cost directly. However, they come with indirect cost by blocking certain optimizations. Some of the blocking are intentional (such as blocking code merge) for better counts quality while the others are accidental. This change unblocks perf-critical optimizations that do not affect counts quality. They include:
1. IR InstCombine, sinking load operation to shorten lifetimes.
2. MIR LiveRangeShrink, similar to #1
3. MIR TwoAddressInstructionPass, i.e, opeq transform
4. MIR function argument copy elision
5. IR stack protection. (though not perf-critical but nice to have).
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D95982
Originally landed in ddc2f1e3fb and reverted in d32deaab4d because of
a Generic test objecting. That was fixed up in 013613964f. Original
landing commit message follows:
[DWARF] Location-less inlined variables should not have DW_TAG_variable
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
Avoid doing the following combine for vector types:
```
copysign(x, fp_extend(y)) -> copysign(x, y)
copysign(x, fp_round(y)) -> copysign(x, y)
```
That combine seemed to impede the selection of vector instruction and cause
a mess in some circumstances.
Differential Revision: https://reviews.llvm.org/D96037
This was taking the calling convention from the parent function,
instead of the callee. Avoids regressions in a future patch when the
caller and callee have different type breakdowns.
For some reason AArch64's lowerFormalArguments seems to intentionally
ignore the parent isVarArg.