I think every target will want to remove these in the same way. Rather than
making them all implement the same code, let's just put this in
InstructionSelect.
Differential Revision: https://reviews.llvm.org/D95652
Remove the call to setFlags in favour of creating the instruction with
the correct flags in the first place, so we don't have to explicitly
notify the observer.
Differential Revision: https://reviews.llvm.org/D95681
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
iterating the same PHI/LABEL/Debug instructions repeatedly.
We run into a compiling timeout problem when building a target after its
SampleFDO profile is updated. It is because some very large blocks with
a bunch of PHIs at the beginning. LiveDebugVariables::emitDebugValues
called during VirtRegRewriter phase searchs the insertion point for those
large BBs repeatedly in SkipPHIsLabelsAndDebug, and each time
SkipPHIsLabelsAndDebug needs to go through the same set of PHIs before it
can find the first non PHI/Label/Debug instruction. This patch adds a cache
to save the last position for the sequence which has been checked in the
previous call of SkipPHIsLabelsAndDebug.
Differential Revision: https://reviews.llvm.org/D94981
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
This adds generic regbankselect support for G_ASSERT_ZEXT.
It inherits whatever register bank the source was given, always, on all targets.
I think that at the point where we run into these, the source register bank
should be decided.
This also adds some AArch64-specific code which makes sure we can handle
G_ASSERT_ZEXT when deciding on register banks for G_STORE, G_PHI, ... etc.
Differential Revision: https://reviews.llvm.org/D95649
It's the same as the ZEXT/TRUNC case, except SrcBitWidth is given by the
immediate operand.
Update KnownBitsTest.cpp and a MIR test for a concrete example.
Differential Revision: https://reviews.llvm.org/D95566
Treat hint instructions like G_ASSERT_ZEXT like COPY instructions in helpers
which walk through copies.
This ensures that instructions like G_ASSERT_ZEXT won't impact any optimizations
that rely on these helpers.
Differential Revision: https://reviews.llvm.org/D95577
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
This adds a generic opcode which communicates that a type has already been
zero-extended from a narrower type.
This is intended to be similar to AssertZext in SelectionDAG.
For example,
```
%x_was_extended:_(s64) = G_ASSERT_ZEXT %x, 16
```
Signifies that the top 48 bits of %x are known to be 0.
This is useful in cases like this:
```
define i1 @zeroext_param(i8 zeroext %x) {
%cmp = icmp ult i8 %x, -20
ret i1 %cmp
}
```
In AArch64, `%x` must use a 32-bit register, which is then truncated to a 8-bit
value.
If we know that `%x` is already zero-ed out in the relevant high bits, we can
avoid the truncate.
Currently, in GISel, this looks like this:
```
_zeroext_param:
and w8, w0, #0xff ; We don't actually need this!
cmp w8, #236
cset w0, lo
ret
```
While SDAG does not produce the truncation, since it knows that it's
unnecessary:
```
_zeroext_param:
cmp w0, #236
cset w0, lo
ret
```
This patch
- Adds G_ASSERT_ZEXT
- Adds MIRBuilder support for it
- Adds MachineVerifier support for it
- Documents it
It also puts G_ASSERT_ZEXT into its own class of "hint instruction." (There
should be a G_ASSERT_SEXT in the future, maybe a G_ASSERT_ALIGN as well.)
This allows us to skip over hints in the legalizer etc. These can then later
be selected like COPY instructions or removed.
Differential Revision: https://reviews.llvm.org/D95564
This reverts commit ef0dcb5063.
This change is causing a lot of compiler crashes inside, sorry I don't have a
small repro/stacktrace with symbols to share right now.
Differential Revision: https://reviews.llvm.org/D95622
https://bugs.llvm.org/show_bug.cgi?id=48232
When PrologEpilogInserter writes callee-saved registers to the stack, LR is not reloaded but is instead loaded directly into PC.
This was not taken into account when determining if each callee-saved register was liveout for the block.
When frame elimination inserts virtual registers, and the register scavenger tries to scavenge LR, it considers it liveout and tries to spill again.
However there is no emergency spill slot to use, and it fails with an error:
fatal error: error in backend: Error while trying to spill LR from class GPR: Cannot scavenge register without an emergency spill slot!
This patch pervents any callee-saved registers which are not reloaded (including LR) from being marked liveout.
They are therefore available to scavenge without requiring an extra spill.
This fully de-pessimizes the common case of no indirectbr's,
(where we don't actually need to do anything to preserve domtree)
and avoids domtree recomputation in the case there were indirectbr's.
Note that two indirectbr's could have a common successor, and not all
successors of an indirectbr's are meant to survive the expansion.
Though, the code assumes that an indirectbr's doesn't have
duplicate successors, those *should* have been deduplicated
by simplifycfg or something already.
Experimental, using non-existent DWARF support to use an expr for the
location involving an addr_index (to compute address + offset so
addresses can be reused in more places).
The global variable debug info had to be deferred until the end of the
module (so bss variables would all be emitted first - so their labels
would have the relevant section). Non-bss variables seemed to not have
their label assigned to a section even at the end of the module, so I
didn't know what to do there.
Also, the hashing code is broken - doesn't know how to hash these
expressions (& isn't hashing anything inside subprograms, which seems
problematic), so for test purposes this change just skips the hash
computation. (GCC's actually overly sensitive in its hash function, it
seems - I'm forgetting the specific case right now - anyway, we might
want to just use the frontend-known file hash and give up on optimistic
.dwo/.dwp reuse)
FaultsMapParser lived in CodeGen and was forcing llvm-objdump to
link CodeGen and everything CodeGen depends on.
This was previously attempted in r240364 to fix a link failure.
The CodeGen dependency was independently added to fix the same
link failure, and that ended up being kept.
Removing the dependency seems like the correct layering for
llvm-objdump.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D95414
While this is mostly NFC right now, because only ARM happens
to run this pass with DomTree available before it,
and required after it, more backends will be affected once
the SimplifyCFG's switch for domtree preservation is flipped,
and DwarfEHPrepare also preserves the domtree.
This is a fix for PR48790. Over in D70350, subprogram DIEs were permitted
to be shared between CUs. However, the creation of a subprogram DIE can be
triggered early, from other CUs. The subprogram definition is then created
in one CU, and when the function is actually emitted children are attached
to the subprogram that expect to be in another CU. This breaks internal CU
references in the children.
Fix this by redirecting the creation of subprogram DIEs in
getOrCreateContextDIE to the CU specified by it's DISubprogram definition.
This ensures that the subprogram DIE is always created in the correct CU.
Differential Revision: https://reviews.llvm.org/D94976
This moves SinkIntoLoop from MachineLICM to MachineSink. The motivation for
this work is that hoisting is a canonicalisation transformation, but we do not
really have a good story to sink instructions back if that is better, e.g. to
reduce live-ranges, register pressure and spilling. This has been discussed a
few times on the list, the latest thread is:
https://lists.llvm.org/pipermail/llvm-dev/2020-December/147184.html
There it was pointed out that we have the LoopSink IR pass, but that works on
IR, lacks register pressure informatiom, and is focused on profile guided
optimisations, and then we have MachineLICM and MachineSink that both perform
sinking. MachineLICM is more about hoisting and CSE'ing of hoisted
instructions. It also contained a very incomplete and disabled-by-default
SinkIntoLoop feature, which we now move to MachineSink.
Getting loop-sinking to do something useful is going to be at least a 3-step
approach:
1) This is just moving the code and is almost a NFC, but contains a bug fix.
This uses helper function `isLoopInvariant` that was factored out in D94082 and
added to MachineLoop.
2) A first functional change to make loop-sink a little bit less restrictive,
which it really is at the moment, is the change in D94308. This lets it do
more (alias) analysis using functions in MachineSink, making it a bit more
powerful. Nothing changes much: still off by default. But it shows that
MachineSink is a better home for this, and it starts using its functionality
like `hasStoreBetween`, and in the next step we can use `isProfitableToSinkTo`.
3) This is the going to be he interesting step: decision making when and how
many instructions to sink. This will be driven by the register pressure, and
deciding if reducing live-ranges and loop sinking will help in better
performance.
4) Once we are happy with 3), this should be enabled by default, that should be
the end goal of this exercise.
Differential Revision: https://reviews.llvm.org/D93694
Just use the existing `Known.sextInReg` implementation.
- Update KnownBitsTest.cpp.
- Update combine-redundant-and.mir for a more concrete example.
Differential Revision: https://reviews.llvm.org/D95484
There are two use cases.
Assembler
We have accrued some code gated on MCAsmInfo::useIntegratedAssembler(). Some
features are supported by latest GNU as, but we have to use
MCAsmInfo::useIntegratedAs() because the newer versions have not been widely
adopted (e.g. SHF_LINK_ORDER 'o' and 'unique' linkage in 2.35, --compress-debug-sections= in 2.26).
Linker
We want to use features supported only by LLD or very new GNU ld, or don't want
to work around older GNU ld. We currently can't represent that "we don't care
about old GNU ld". You can find such workarounds in a few other places, e.g.
Mips/MipsAsmprinter.cpp PowerPC/PPCTOCRegDeps.cpp X86/X86MCInstrLower.cpp
AArch64 TLS workaround for R_AARCH64_TLSLD_MOVW_DTPREL_* (PR ld/18276),
R_AARCH64_TLSLE_LDST8_TPREL_LO12 (https://bugs.llvm.org/show_bug.cgi?id=36727https://sourceware.org/bugzilla/show_bug.cgi?id=22969)
Mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER components (supported by LLD in D84001;
GNU ld feature request https://sourceware.org/bugzilla/show_bug.cgi?id=16833 may take a while before available).
This feature allows to garbage collect some unused sections (e.g. fragmented .gcc_except_table).
This patch adds `-fbinutils-version=` to clang and `-binutils-version` to llc.
It changes one codegen place in SHF_MERGE to demonstrate its usage.
`-fbinutils-version=2.35` means the produced object file does not care about GNU
ld<2.35 compatibility. When `-fno-integrated-as` is specified, the produced
assembly can be consumed by GNU as>=2.35, but older versions may not work.
`-fbinutils-version=none` means that we can use all ELF features, regardless of
GNU as/ld support.
Both clang and llc need `parseBinutilsVersion`. Such command line parsing is
usually implemented in `llvm/lib/CodeGen/CommandFlags.cpp` (LLVMCodeGen),
however, ClangCodeGen does not depend on LLVMCodeGen. So I add
`parseBinutilsVersion` to `llvm/lib/Target/TargetMachine.cpp` (LLVMTarget).
Differential Revision: https://reviews.llvm.org/D85474
The current algorithm just tries to localize defs as far as they can go, and in
the case of G_PHI operands, it clones the def into the predecessor block for
each incoming edge. When multiple edges have the same register value, this can
cause unnecessary code bloat, and inhibit later optimizations.
This change checks if a given phi operand is unique in the phi, if not the
def of that register is not localized to the predecessor.
Differential Revision: https://reviews.llvm.org/D95406
RISCV has to use 2 shifts for (i64 (zext_inreg X, i32)), but we
can use addiw rd, rs1, x0 for sext_inreg. We already understood this
when type legalizing i32 seteq/ne on rv64. But this transform in
SimplifySetCC would sometimes undo it.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D95289
Implement widening for G_SADDO and G_SSUBO.
Add legalize-add/sub tests for narrow overflowing add/sub on AArch64.
Differential Revision: https://reviews.llvm.org/D95034
This patch adds support for scalable-vector splats in DAGCombiner's
`isConstantOrConstantVector` and `ISD::matchUnaryPredicate` functions,
which enable the SelectionDAG div/rem-by-constant optimizations for
scalable vector types.
It also fixes up one case where the UDIV optimization was generating a
SETCC without first consulting the target for its preferred SETCC result
type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94501
For now, we correct the result for sqrt if iteration > 0. This doesn't make
sense as they are not strict relative.
Reviewed By: dmgreen, spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D94480
Reassociating some patterns to generate more fma instructions to
reduce register pressure.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92071
InstrEmitter.h needs TargetMachine but relies on a forward declaration
of TargetMachine in MachineOperand.h. This patch adds a forward
declaration right in InstrEmitter.h.
While we are at it, this patch removes the one in MachineOperand.h,
where it is unnecessary.
In RISC-V there is a single addressing mode of the form imm(reg) where
imm is a signed integer of 12-bit with a range of [-2048..2047] bytes
from reg.
The test MultiSource/UnitTests/C++11/frame_layout of the LLVM test-suite
exercises several scenarios with the stack, including function calls
where the stack will need to be realigned to to a local variable having
a large alignment of 4096 bytes.
In situations of large stacks, the RISC-V backend (in
RISCVFrameLowering) reserves an extra emergency spill slot which can be
used (if no free register is found) by the register scavenger after the
frame indexes have been eliminated. PrologEpilogInserter already takes
care of keeping the emergency spill slots as close as possible to the
stack pointer or frame pointer (depending on what the function will
use). However there is a final alignment step to honour the maximum
alignment of the stack that, when using the stack pointer to access the
emergency spill slots, has the side effect of setting them farther from
the stack pointer.
In the case of the frame_layout testcase, the net result is that we do
have an emergency spill slot but it is so far from the stack pointer
(more than 2048 bytes due to the extra alignment of a variable to 4096
bytes) that it becomes unreachable via any immediate offset.
During elimination of the frame index, many (regular) offsets of the
stack may be immediately unreachable already. Their address needs to be
computed using a register. A virtual register is created and later
RegisterScavenger should be able to find an unused (physical) register.
However if no register is available, RegisterScavenger will pick a
physical register and spill it onto an emergency stack slot, while we
compute the offset (restoring the chosen register after all this). This
assumes that the emergency stack slot is easily reachable (this is,
without requiring another register!).
This is the assumption we seem to break when we perform the extra
alignment in PrologEpilogInserter.
We can "float" the emergency spill slots by increasing (in absolute
value) their offsets from the incoming stack pointer. This way the
emergency spill slots will remain close to the stack pointer (once the
function has allocated storage for the stack, including the needed
realignment). The new size computed in PrologEpilogInserter is padding
so it should be OK to move the emergency spill slots there. Also because
we're increasing the alignment, the new location should stay aligned for
the purpose of the emergency spill slots.
Note that this change also impacts other backends as shown by the tests.
Changes are minor adjustments to the emergency stack slot offset.
Differential Revision: https://reviews.llvm.org/D89239
The only caller of this function is in the LocalStackSlotAllocation
and it creates base register of class returned by the target's
getPointerRegClass(). AMDGPU wants to use a different reg class
here so let materializeFrameBaseRegister to just create and return
whatever it wants.
Differential Revision: https://reviews.llvm.org/D95268
The widenScalar implementation for signed and unsigned overflowing
operations were very similar: both are checked by truncating the result
and then re-sign/zero-extending it and checking that it matches the
computed operation.
Using a truncate + zero-extend for the unsigned case instead of manually
producing the AND instruction like before leads to an extra copy
instruction during legalization, but this should be harmless.
Differential Revision: https://reviews.llvm.org/D95035
Noticed while I was touching other nearby code. I don't have a
test where this matters because the targets I work on
use zero or one boolean contents. And the tests cases I've seen
this fire on happen before type legalization where the result type
is MVT::i1 so the distinction doesn't matter.
There was code to handle the first operand being different than
the result type. And code to handle first operand having the
same type as the type to extend from. This should never happen
for a correctly formed SIGN_EXTEND_INREG. I've replace the
code with asserts.
I also noticed we created the same APInt twice so I've reused it.
Implement widening for G_SADDO and G_SSUBO. Previously it was only
implemented for G_UADDO and G_USUBO. Also add legalize-add/sub tests for
narrow overflowing add/sub on AArch64.
Differential Revision: https://reviews.llvm.org/D95034
Make this look more like the DAG handling and move to common code.
I also noticed AArch64 seems to not be properly adding the
physreg:virtreg mapping to the function live ins.
Add DemandedElts support inside the TRUNCATE analysis.
REAPPLIED - this was reverted by @hans at rGa51226057fc3 due to an issue with vector shift amount types, which was fixed in rG935bacd3a724 and an additional test case added at rG0ca81b90d19d
Differential Revision: https://reviews.llvm.org/D56387
As noticed on D56387, for vectors we must always correctly adjust the shift amount type during truncation (not just after legalization). We were getting away with it as we currently only accepted scalars via the dyn_cast<ConstantSDNode>.
Previous code build the model that tile config register is the user of
each AMX instruction. There is a problem for the tile config register
spill. When across function, the ldtilecfg instruction may be inserted
on each AMX instruction which use tile config register. This cause all
tile data register clobber.
To fix this issue, we remove the model of tile config register. We
analyze the regmask of call instruction and insert ldtilecfg if there is
any tile data register live across the call. Inserting the sttilecfg
before the call is unneccessary, because the tile config doesn't change
and we can just reload the config.
Besides we also need check tile config register interference. Since we
don't model the config register we should check interference from the
ldtilecfg to each tile data register def.
ldtilecfg
/ \
BB1 BB2
/ \
call BB3
/ \
%1=tileload %2=tilezero
We can start from the instruction of each tile def, and backward to
ldtilecfg. If there is any call instruction, and tile data register is
not preserved, we should insert ldtilecfg after the call instruction.
Differential Revision: https://reviews.llvm.org/D94155
It caused "Vector shift amounts must be in the same as their first arg"
asserts in Chromium builds. See the code review for repro instructions.
> Add DemandedElts support inside the TRUNCATE analysis.
>
> Differential Revision: https://reviews.llvm.org/D56387
This reverts commit cad4275d69.
Add the aarch64[_be]-*-gnu_ilp32 targets to support the GNU ILP32 ABI for AArch64.
The needed codegen changes were mostly already implemented in D61259, which added support for the watchOS ILP32 ABI. The main changes are:
- Wiring up the new target to enable ILP32 codegen and MC.
- ILP32 va_list support.
- ILP32 TLSDESC relocation support.
There was existing MC support for ELF ILP32 relocations from D25159 which could be enabled by passing "-target-abi ilp32" to llvm-mc. This was changed to check for "gnu_ilp32" in the target triple instead. This shouldn't cause any issues since the existing support was slightly broken: it was generating ELF64 objects instead of the ELF32 object files expected by the GNU ILP32 toolchain.
This target has been tested by running the full rustc testsuite on a big-endian ILP32 system based on the GCC ILP32 toolchain.
Reviewed By: kristof.beyls
Differential Revision: https://reviews.llvm.org/D94143
If constants are hidden behind G_ANYEXT we can treat them same way as G_SEXT.
For that purpose we extend getConstantVRegValWithLookThrough with option
to handle G_ANYEXT same way as G_SEXT.
Differential Revision: https://reviews.llvm.org/D92219
When constraining an operand register using constrainOperandRegClass(),
the function may emit a COPY in case the provided register class does
not match the current operand register class. However, the operand
itself is not updated to make use of the COPY, thereby resulting in
incorrect code. This patch fixes that bug by updating the machine
operand accordingly.
Reviewed By: dsanders
Differential Revision: https://reviews.llvm.org/D91244
function-instrument=xray-never wasn't actually honored before. We were
getting lucky that it worked because CodeGenFunction would omit the
other xray attributes when a function was annotated with
xray_never_instrument. This patch adds proper support.
Differential Revision: https://reviews.llvm.org/D89441
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
This is a restricted version of the combine in `DAGCombiner::MatchLoadCombine`.
(See D27861)
This tries to recognize patterns like below (assuming a little-endian target):
```
s8* x = ...
s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
->
s32 val = *((i32)a)
s8* x = ...
s32 val = a[3] | (a[2] << 8) | (a[1] << 16) | (a[0] << 24)
->
s32 val = BSWAP(*((s32)a))
```
(This patch also handles the big-endian target case as well, in which the first
example above has a BSWAP, and the second example above does not.)
To recognize the pattern, this searches from the last G_OR in the expression
tree.
E.g.
```
Reg Reg
\ /
OR_1 Reg
\ /
OR_2
\ Reg
.. /
Root
```
Each non-OR register in the tree is put in a list. Each register in the list is
then checked to see if it's an appropriate load + shift logic.
If every register is a load + potentially a shift, the combine checks if those
loads + shifts, when OR'd together, are equivalent to a wide load (possibly with
a BSWAP.)
To simplify things, this patch
(1) Only handles G_ZEXTLOADs (which appear to be the common case)
(2) Only works in a single MachineBasicBlock
(3) Only handles G_SHL as the bit twiddling to stick the small load into a
specific location
An IR example of this is here: https://godbolt.org/z/4sP9Pj (lifted from
test/CodeGen/AArch64/load-combine.ll)
At -Os on AArch64, this is a 0.5% code size improvement for CTMark/sqlite3,
and a 0.4% improvement for CTMark/7zip-benchmark.
Also fix a bug in `isPredecessor` which caused it to fail whenever `DefMI` was
the first instruction in the block.
Differential Revision: https://reviews.llvm.org/D94350
This is a additional bug fix for c5be0e0cc0. The distance for
the spill instructions is wrong in previous patch.
Differential Revision: https://reviews.llvm.org/D94772
This recommits 2c51bef76c.
I've fixed the broken check line from when I renamed the test function.
Original commit message:
This builds on D94142 where scalable vectors are allowed in structs.
I did have to fix one scalable vector issue in the vector type
creation for these intrinsics where we used getVectorNumElements
instead of ElementCount.
This builds on D94142 where scalable vectors are allowed in structs.
I did have to fix one scalable vector issue in the vector type
creation for these intrinsics where we used getVectorNumElements
instead of ElementCount.
Differential Revision: https://reviews.llvm.org/D94149
Currently when spilling statepoint register operands in FixupStatepoints
we do not pay attention that it might be `undef`. We just generate a
spill, which may lead to verifier error because we have a use without def.
To handle it, let FixupStateponts ignore `undef` register operands
completely and change them to some constant value when generating
stack map. Use same value as used by ISel for this purpose (0xFEFEFEFE).
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D94703
Use the KnownBits icmp comparisons to determine when a ISD::UMIN/UMAX op is unnecessary should either op be known to be ULT/ULE or UGT/UGE than the other.
Differential Revision: https://reviews.llvm.org/D94532
RISC-V would like to use a struct of scalable vectors to return multiple
values from intrinsics. This woud also be needed for target independent
intrinsics like llvm.sadd.overflow.
This patch removes the existing restriction for this. I've modified
StructType::isSized to consider a struct containing scalable vectors
as unsized so the verifier won't allow loads/stores/allocas of these
structs.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94142
Reassociating some patterns to generate more fma instructions to
reduce register pressure.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92071
This patch promotes result integer type of FP_TO_XINT in expanding.
So crash in conversion from ppc_fp128 to i1 will be fixed.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D92473
add one use check to lookThruCopyLike.
The root node is safe to be deleted if we are sure that every
definition in the copy chain only has one use.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92069
This is a follow-up fix to commit 03c8d6a0c4.
Seems like we now end up with NeedInvert being set in the result
from LegalizeSetCCCondCode more often than in the past, so we
need to handle NeedInvert when expanding BR_CC.
Not sure how to deal with the "Tmp4.getNode()" case properly,
but current assumption is that that code path isn't impacted
by the changes in 03c8d6a0c4 so we can simply move
the old assert into the if-branch and only handle NeedInvert in the
else-branch.
I think that the test case added here, for PowerPC, might have
failed also before commit 03c8d6a0c4. But we started
to hit the assert more often downstream when having merged that
commit.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94762
The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a noalias
scope is declared. When the intrinsic is duplicated, a decision must
also be made about the scope: depending on the reason of the duplication,
the scope might need to be duplicated as well.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D93039
This 'FIXME' popped up in the development of an out-of-tree backend.
Quick fix, but first llvm upstream patch, therefore I do not have commit rights, so if approved please commit?
- Test is not included as this came up in an out-of-tree backend (if required, please hint on how to test this).
Patch by simveg (Simon)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93219
These methods are recursive so a little costly.
We only look at the result in one place in this function and it's
conditional. We also only need the second call if the first had
enough returned enough sign bits.
MergeInnerShuffle currently attempts to merge shuffle(shuffle(x,y),z) patterns into a single shuffle, using 1 or 2 of the x,y,z ops.
However if we already match 2 ops we might be able to handle the third op if its also a shuffle that references one of the previous ops, allowing us to handle some cases like:
shuffle(shuffle(x,y),shuffle(x,y))
shuffle(shuffle(shuffle(x,z),y),z)
shuffle(shuffle(x,shuffle(x,y)),z)
etc.
This isn't an exhaustive match and is dependent on the order the candidate ops are encountered - if one of the matched ops was a shuffle that was peek-able we don't go back and try to split that, I haven't found much need for that amount of analysis yet.
This is a preliminary patch that will allow us to later improve x86 HADD/HSUB matching - but needs to be reviewed separately as its in generic code and affects existing Thumb2 tests.
Differential Revision: https://reviews.llvm.org/D94671
Even if we know nothing about LHS, it can still be useful to know that
smax(LHS, RHS) >= RHS and smin(LHS, RHS) <= RHS.
Differential Revision: https://reviews.llvm.org/D87145
I'm hoping to reuse MergeInnerShuffle in some other folds - so ensure the candidate ops/mask are reset at the start of each run.
Also, move the second op matching before bailing to make it simpler to try to match other things afterward.
static_cast for uint64_t to unsigned gives a MS VC build warning
for Windows:
warning C4309: 'static_cast': truncation of constant value
Use an explicit cast instead.
Change-Id: I692d335b4913070686a102780c1fb05b893a2f69
Differential Revision: https://reviews.llvm.org/D94592
This fixes double printing of insertion debug messages in the
legalizer.
Try to cleanup usage of observers. Currently the use of observers is
pretty hard to follow and it's not clear what is responsible for
them. Observers are referenced in 3 places:
1. In the MachineFunction
2. In the MachineIRBuilder
3. In the LegalizerHelper
The observers in the MachineFunction and MachineIRBuilder are both
called only on insertions, and are redundant with each other. The
source of the double printing was the same observer was added to both
the MachineFunction, and the MachineIRBuilder. One of these references
needs to be removed. Arguably observers in general should be fully
removed from one or the other, but it may be useful to have a local
observer in the MachineIRBuilder that is not added to the function's
observers. Alternatively, the wrapper observer could manage a local
observer in one place.
The LegalizerHelper only ever calls the observer on changing/changed
instructions, and never insertions. Logically these are two different
types of observers, for changes and for insertions.
Additionally, some places used the GISelObserverWrapper when they only
needed a single observer they could use directly.
Setting the observer in the LegalizerHelper constructor is not
flexible enough if the LegalizerHelper is constructed anywhere outside
the one used by the legalizer. AMDGPU calls the LegalizerHelper in
RegBankSelect, and needs to use a local observer to apply the regbank
to newly created instructions. Currently it accomplishes this by
constructing a local MachineIRBuilder. I'm trying to move the
MachineIRBuilder to be owned/maintained by the RegBankSelect pass
itself, but the locally constructed LegalizerHelper would reset the
observer.
Mips also has a special case use of the LegalizationArtifactCombiner
in applyMappingImpl; I think we do need to run the artifact combiner
during RegBankSelect, but in a more consistent way outside of
applyMappingImpl.
Also old mir tests are updated to meet last changes in STATEPOINT format.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D94482
Default value is not changed, so it is NFC actually.
The option allows to use gc values on registers in landing pads.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D94469
InlineSpiller::foldMemoryOperand unties registers before an attempt to fold and
does not restore tied-ness in case of failure.
I do not have a particular test for demo of invalid behavior.
This is something of clean-up.
It is better to keep the behavior correct in case some time in future it happens.
Reviewers: reames, dantrushin
Reviewed By: dantrushin, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D94389
This patch resolves the suboptimal codegen described in http://llvm.org/pr47873 .
When CodeGenPrepare lowers select into a conditional branch, a freeze instruction is inserted.
It is then translated to `BRCOND(FREEZE(SETCC))` in SelDag.
The `FREEZE` in the middle of `SETCC` and `BRCOND` was causing a suboptimal code generation however.
This patch adds `BRCOND(FREEZE(cond))` -> `BRCOND(cond)` fold to DAGCombiner to remove the `FREEZE`.
To make this optimization sound, `BRCOND(UNDEF)` simply should nondeterministically jump to the branch or not, rather than raising UB.
It wasn't clear what happens when the condition was undef according to the comments in ISDOpcodes.h, however.
I updated the comments of `BRCOND` to make it explicit (as well as `BR_CC`, which is also a conditional branch instruction).
Note that it diverges from the semantics of `br` instruction in IR, which is explicitly UB.
Since the UB semantics was necessary to explain optimizations that use branching conditions, and SelDag doesn't seem to have such optimization, I think this divergence is okay.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D92015
If SETO/SETUO aren't legal, they'll be expanded and we'll end up
with 3 comparisons.
SETONE is equivalent to (SETOGT || SETOLT)
so if one of those operations is supported use that expansion. We
don't need both since we can commute the operands to make the other.
SETUEQ can be implemented with !(SETOGT || SETOLT) or (SETULE && SETUGE).
I've only implemented the first because it didn't look like most of the
affected targets had legal SETULE/SETUGE.
Reviewed By: frasercrmck, tlively, nemanjai
Differential Revision: https://reviews.llvm.org/D94450
Remove the InsertionPoint argument from SlotIndexes::insertMBBInMaps
because it was confusing: what does it mean to insert a new block
between two instructions, in the middle of an existing block?
Instead, support the case that MachineBasicBlock::splitAt really needs,
where the new block contains some instructions that are already in the
maps because they have been moved there from the tail of the previous
block.
In all other use cases the new block is empty.
Based on work by Carl Ritson!
Differential Revision: https://reviews.llvm.org/D94311
The issue was introduced in commit rG84a1120943a651184bae507fed5d648fee381ae4
and would cause a VarLoc's StackOffset to be compared with its own, instead of
the StackOffset from the other VarLoc. This patch fixes that.
Memory operands store a base alignment that does not factor in
the effect of the offset on the alignment.
Previously the printing code only printed the base alignment if
it was different than the size. If there is an offset, the reader
would need to figure out the effective alignment themselves. This
has confused me before and someone else was recently confused on
IRC.
This patch prints the possibly offset adjusted alignment if it is
different than the size. And prints the base alignment if it is
different than the alignment. The MIR parser has been updated to
read basealign in addition to align.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D94344
Change [x86] Fix tile register spill issue was causing problems for our build
using gcc-5.4.1
The problem was caused by this line:
for (const MachineInstr &MI : make_range(MIS.begin(), MI))
where MI was previously defined as a MachineBasicBlock iterator.
Differential Revision: https://reviews.llvm.org/D94415
Now that we flush the local value map for every instruction, we don't
need any extra flushes for specific cases. Also, LastFlushPoint is
not used for anything. Follow-ups to #c161665 (D91734).
This reapplies #3fd39d3.
Differential Revision: https://reviews.llvm.org/D92338
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
The tile register spill need 2 instructions.
%46:gr64_nosp = MOV64ri 64
TILESTORED %stack.2, 1, killed %46:gr64_nosp, 0, $noreg, %43:tile
The first instruction load the stride to a GPR, and the second
instruction store tile register to stack slot. The optimization of merge
spill instruction is done after register allocation. And spill tile
register need create a new virtual register to for stride, so we can't
hoist tile spill instruction in postOptimization() of register
allocation. We can't hoist TILESTORED alone and we can't hoist the 2
instuctions together because MOV64ri will clobber some GPR. This patch
is to disble the spill merge for any spill which need 2 instructions.
Differential Revision: https://reviews.llvm.org/D93898
The size of spill/reload may be unknown for scalable vector types.
When the size is unknown, print it as "Unknown-size" instead of a very
large number.
Differential Revision: https://reviews.llvm.org/D94299
We are checking the unsafe-fp-math for sqrt but not for fpow, which behaves inconsistent.
As the direction is to remove this global option, we need to remove the unsafe-fp-math
check for sqrt and update the test with afn fast-math flags.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D93891
This patch introduces a helper class SubsequentDelim to simplify loops
that generate a comma-separated lists.
For example, consider the following loop, taken from
llvm/lib/CodeGen/MachineBasicBlock.cpp:
for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
if (I != pred_begin())
OS << ", ";
OS << printMBBReference(**I);
}
The new class allows us to rewrite the loop as:
SubsequentDelim SD;
for (auto I = pred_begin(), E = pred_end(); I != E; ++I)
OS << SD << printMBBReference(**I);
where SD evaluates to the empty string for the first time and ", " for
subsequent iterations.
Unlike interleaveComma, defined in llvm/include/llvm/ADT/STLExtras.h,
SubsequentDelim can accommodate a wider variety of loops, including:
- those that conditionally skip certain items,
- those that need iterators to call getSuccProbability(I), and
- those that iterate over integer ranges.
As an example, this patch cleans up MachineBasicBlock::print.
Differential Revision: https://reviews.llvm.org/D94377
This patch is a part of D93817 and makes transformations in CodeGen use poison for shufflevector/insertelem's initial vector element.
The change in CodeGenPrepare.cpp is fine because the mask of shufflevector should be always zero.
It doesn't touch the second element (which is poison).
The change in InterleavedAccessPass.cpp is also fine becauses the mask is of the form <a, a+m, a+2m, .., a+km> where a+km is smaller than
the size of the first vector operand.
This is guaranteed by the caller of replaceBinOpShuffles, which is lowerInterleavedLoad.
It calls isDeInterleaveMask and isDeInterleaveMaskOfFactor to check the mask is the desirable form.
isDeInterleaveMask has the check that a+km is smaller than the vector size.
To check my understanding, I added an assertion & added a test to show that this optimization doesn't fire in such case.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D94056
This improves llvm::isConstOrConstSplat by allowing it to analyze
ISD::SPLAT_VECTOR nodes, in order to allow more constant-folding of
operations using scalable vector types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94168
The TableGen immAllOnesV and immAllZerosV helpers implicitly wrapped the
ISD::isBuildVectorAll(Ones|Zeros) helper functions. This was inhibiting
their use for targets such as RISC-V which use ISD::SPLAT_VECTOR. In
particular, RISC-V had to define its own 'vnot' fragment.
In order to extend the scope of these nodes to include support for
ISD::SPLAT_VECTOR, two new ISD predicate functions have been introduced:
ISD::isConstantSplatVectorAll(Ones|Zeros). These effectively supersede
the older "isBuildVector" predicates, which are now simple wrappers for
the new functions. They pass a defaulted boolean toggle which preserves
the old behaviour. It is hoped that in time all call-sites can be ported
to the "isConstantSplatVector" functions.
While the use of ISD::isBuildVectorAll(Ones|Zeros) has not changed, the
behaviour of the TableGen immAll(Ones|Zeros)V **has**. To test the new
functionality, the custom RISC-V TableGen fragment has been removed and
replaced with the built-in 'vnot'. To test their use as pattern-roots, two
splat patterns have been updated accordingly.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94223
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
This implements basic instructions for the new spec.
- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
- `catch` needs a custom routine for the same reason `throw` needs one,
to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
and Change code that compares an instruction's opcode with `catch` to
use that function.
- LateEHPrepare
- Previously in LateEHPrepare we added `catch` instruction to both
`catchpad`s (for user catches) and `cleanuppad`s (for destructors).
In the new version `catch` is generated from `llvm.catch` intrinsic
in instruction selection phase, so we only need to add `catch_all`
to the beginning of cleanup pads.
- `catch` is generated from instruction selection, but we need to
hoist the `catch` instruction to the beginning of every EH pad,
because `catch` can be in the middle of the EH pad or even in a
split BB from it after various code transformations.
- Removes `addExceptionExtraction` function, which was used to
generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
function on the new instruction causes crashes, and the new version
will be added in a later CL, whose contents will be completely
different. So deleting the whole function will make the diff easier to
read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
`br_on_exn` instructions from the tests and FileCheck lines.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94040
Clang generates `wasm.get.exception` and `wasm.get.ehselector`
intrinsics, which respectively return a caught exception value (a
pointer to some C++ exception struct) and a selector (an integer value
that tells which C++ `catch` clause the current exception matches, or
does not match any).
WasmEHPrepare is a pass that does some IR-level preparation before
instruction selection. Previously one of things we did in this pass was
to convert `wasm.get.exception` intrinsic calls to
`wasm.extract.exception` intrinsics. Their semantics were the same
except `wasm.extract.exception` did not have a token argument. We
maintained these two separate intrinsics with the same semantics because
instruction selection couldn't handle token arguments. This
`wasm.extract.exception` intrinsic was later converted to
`extract_exception` instruction in instruction selection, which was a
pseudo instruction to implement `br_on_exn`. Because `br_on_exn` pushed
an extracted value onto the value stack after the `end` instruction of a
`block`, but LLVM does not have a way of modeling that kind of behavior,
so this pseudo instruction was used to pull an extracted value out of
thin air, like this:
```
block $l0
...
br_on_exn $cpp_exception $l0
...
end
extract_exception ;; pushes values onto the stack
```
In the new spec, we don't need this pseudo instruction anymore because
`catch` itself returns a value and we don't have `br_on_exn` anymore. In
the spec `catch` returns multiple values (like `br_on_exn`), but here we
assume it only returns a single i32, which is sufficient to support C++.
So this renames `wasm.get.exception` intrinsic to `wasm.catch`. Because
this CL does not yet contain instruction selection for `wasm.catch`
intrinsic, all `RUN` lines in exception.ll, eh-lsda.ll, and
cfg-stackify-eh.ll, and a single `RUN` line in wasm-eh.cpp (which is an
end-to-end test from C++ source to assembly) fail. So this CL
temporarily disables those `RUN` lines, and for those test files without
any valid remaining `RUN` lines, adds a dummy `RUN` line to make them
pass. These tests will be reenabled in later CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94039
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
foo();
} catch (int n) {
...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94038
This implements vp_add, vp_and for the VE target by lowering them to the
VVP_* layer. We also add helper functions for VP SDNodes (isVPSDNode,
getVPMaskIdx, getVPExplicitVectorLengthIdx).
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D93766
This factors out code from MachineLICM that determines whether an instruction
is loop-invariant, which is a generally useful function. Thus this allows to
use that helper elsewhere too.
Differential Revision: https://reviews.llvm.org/D94082
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
Make the sequence of passes to select and rewrite instructions to
physical registers be a target callback. This is to prepare to allow
targets to split register allocation into multiple phases.
Attempt to simplify all/any-of style patterns that concatenate 2 smaller integers together into an and(x,y)/or(x,y) + icmp 0/-1 instead.
This is mainly to help some bool predicate reduction patterns where we end up concatenating bool vectors that have been bitcasted to integers.
Differential Revision: https://reviews.llvm.org/D93599
When using dbg.declare, the debug-info is generated from a list of
locals rather than through DBG_VALUE instructions in the MIR.
This patch is different from D90020 because it emits the DWARF
location expressions from that list of locals directly.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D90044
This patch fixes the two LiveDebugValues implementations
(InstrRef/VarLoc)Based to handle cases where the StackOffset contains
both a fixed and scalable component.
This depends on the `TargetRegisterInfo::prependOffsetExpression` being
added in D90020. Feel free to leave comments on that patch if you have them.
Reviewed By: djtodoro, jmorse
Differential Revision: https://reviews.llvm.org/D90046
Extend PEI to emit a DWARF expression for StackOffsets that have
a fixed and scalable component. This means the expression that needs
to be added is either:
<base> + offset
or:
<base> + offset + scalable_offset * scalereg
where for SVE, the scale reg is the Vector Granule Dwarf register, which
encodes the number of 64bit 'granules' in an SVE vector and which
the debugger can evaluate at runtime.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D90020
If the return values can't be lowered to registers
SelectionDAG performs the sret demotion. This patch
contains the basic implementation for the same in
the GlobalISel pipeline.
Furthermore, targets should bring relevant changes
during lowerFormalArguments, lowerReturn and
lowerCall to make use of this feature.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92953
Given the ability provided by DWARFv5 rnglists to reuse addresses in the
address pool, it can be advantageous to object file size to use range
encodings even when the range could be described by a direct low/high
pc.
Add a flag to allow enabling this in DWARFv5 for the purpose of
experimentation/data gathering.
It might be that it makes sense to enable this functionality by default
for DWARFv5 + Split DWARF at least, where the tradeoff/desire to
optimize for .o file size is more explicit and .o bytes are higher
priority than .dwo bytes.
This looks to have been done to save some duplicated code under
two different if statements, but it ends up being harmful to D94073.
This speculative constant can be called on a scalable vector type
with i64 element size when i64 scalars aren't legal. The code tries
and fails to find a vector type with i32 elements that it can use.
So only create the node when we know it will be used.
In some case, the RC may have 0 allocatable reg.
eg: VRSAVERC in PowerPC, which has only 1 reg, but it is also reserved.
The curreent implementation will keep calling the computePSetLimit because
getRegPressureSetLimit assume computePSetLimit will return a non-zero value.
The fix simply early return the value from TableGen for such special case.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92907
Current implementation assumes that, each MachineConstantPoolValue takes
up sizeof(MachineConstantPoolValue::Ty) bytes. For PowerPC, we want to
lump all the constants with the same type as one MachineConstantPoolValue
to save the cost that calculate the TOC entry for each const. So, we need
to extend the MachineConstantPoolValue that break this assumption.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D89108
This patch disables the FSUB(-0,X)->FNEG(X) DAG combine when we're flushing subnormals. It requires updating the existing AMDGPU tests to use the fneg IR instruction, in place of the old fsub(-0,X) canonical form, since AMDGPU is the only backend currently checking the DenormalMode flags.
Note that this will require follow-up optimizations to make sure the FSUB(-0,X) form is handled appropriately
Differential Revision: https://reviews.llvm.org/D93243
Both tryReplaceExtracts and replaceBinOpShuffles may modify the IR, even
if no interleaved loads are generated, but currently the pass pretends
no changes were made.
This patch updates the pass to return true if either of the functions
made any changes. In case of tryReplaceExtracts, changes are made if
there are any Extracts and true is returned.
`replaceBinOpShuffles` always makes changes if BinOpShuffles is not empty.
It also always returned true, so I went ahead and change it to just
`replaceBinOpShuffles`.
Fixes PR48208.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D93997
Add a triple for powerpcle-*-*.
This is a little-endian encoding of the 32-bit PowerPC ABI, useful in certain niche situations:
1) A loader such as the FreeBSD loader which will be loading a little endian kernel. This is required for PowerPC64LE to load properly in pseries VMs.
Such a loader is implemented as a freestanding ELF32 LSB binary.
2) Userspace emulation of a 32-bit LE architecture such as x86 on 64-bit hosts such as PowerPC64LE with tools like box86 requires having a 32-bit LE toolchain and library set, as they operate by translating only the main binary and switching to native code when making library calls.
3) The Void Linux for PowerPC project is experimenting with running an entire powerpcle userland.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93918
also, don't verify DomTree unless we intend to maintain it.
This is a very dumb think-o, i guess i was even warned about it
by subconsciousness in 4b80647367950ba3da6a08260487fd0dbc50a9c5's
commit message..
Fixes a compile-time regression reported by Martin Storsjö
in post-commit review of 2461cdb417.
Once the default for SimplifyCFG flips, we can no longer pass nullptr
instead of DomTree to SimplifyCFG, so we need to propagate it here.
We don't strictly need to actually preserve DomTree in DwarfEHPrepare,
but we might as well do it, since it's trivial.
This is consistent with the layout of other passes,
and simplifies further refinements regarding DomTree handling.
This is indended to be a NFC commit.
This is almost all mechanical search-and-replace and
no-functional-change-intended (NFC). Having a single
enum makes it easier to match/reason about the
reduction cases.
The goal is to remove `Opcode` from reduction matching
code in the vectorizers because that makes it harder to
adapt the code to handle intrinsics.
The code in RecurrenceDescriptor::AddReductionVar() is
the only place that required closer inspection. It uses
a RecurrenceDescriptor and a second InstDesc to sometimes
overwrite part of the struct. It seem like we should be
able to simplify that logic, but it's not clear exactly
which cmp+sel patterns that we are trying to handle/avoid.
The idea is that the CC1 default for ELF should set dso_local on default
visibility external linkage definitions in the default -mrelocation-model pic
mode (-fpic/-fPIC) to match COFF/Mach-O and make output IR similar.
The refactoring is made available by 2820a2ca3a.
Currently only x86 supports local aliases. We move the decision to the driver.
There are three CC1 states:
* -fsemantic-interposition: make some linkages interposable and make default visibility external linkage definitions dso_preemptable.
* (default): selected if the target supports .Lfoo$local: make default visibility external linkage definitions dso_local
* -fhalf-no-semantic-interposition: if neither option is set or the target does not support .Lfoo$local: like -fno-semantic-interposition but local aliases are not used. So references can be interposed if not optimized out.
Add -fhalf-no-semantic-interposition to a few tests using the half-based semantic interposition behavior.
Recently a few patches are made to move towards using select i1 instead of and/or i1 to represent "a && b"/"a || b" in C/C++.
"a && b" in C/C++ does not evaluate b if a is false whereas 'and a, b' in IR evaluates b and uses its result regardless of the result of a.
This is problematic because it can cause miscompilation if b was an erroneous operation (https://llvm.org/pr48353).
In C/C++, the result is simply false because b is not evaluated, but in IR the result is poison.
The discussion at D93065 has more context about this.
This patch makes two branch-splitting optimizations (one in SelectionDAGBuilder, one in CodeGenPrepare) recognize
select form of and/or as well using m_LogicalAnd/Or.
Since it is CodeGen, I think this is semantically ok (at least as safe as what codegen already did).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93853
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
The x86_amx is used for AMX intrisics. <256 x i32> is bitcast to x86_amx when
it is used by AMX intrinsics, and x86_amx is bitcast to <256 x i32> when it
is used by load/store instruction. So amx intrinsics only operate on type x86_amx.
It can help to separate amx intrinsics from llvm IR instructions (+-*/).
Thank Craig for the idea. This patch depend on https://reviews.llvm.org/D87981.
Differential Revision: https://reviews.llvm.org/D91927
This reverts commit 94427af60c (relands
4646de5d75 with fix).
Use "return std::move(AsmStreamer);" instead of "return AsmStreamer;" in
LVMTargetMachine::createMCStreamer. Unlike Clang, GCC seems having trouble
inserting a implicit lvalue->rvalue conversion.
Following up on D67687.
Please refer to the RFC here http://lists.llvm.org/pipermail/llvm-dev/2020-July/143309.html
`CodeGenPassBuilder` is the NPM counterpart of `TargetPassConfig` with below differences.
- Debugging features (MIR print/verify, disable pass, start/stop-before/after, etc.) living in `TargetPassConfig` are moved to use PassInstrument as much as possible. (Implementation also lives in `TargetPassConfig.cpp`)
- `TargetPassConfig` is a polymorphic base (virtual inheritance) to build the target-dependent pipeline whereas `CodeGenPassBuilder` is the CRTP base/helper to implement the target-dependent pipeline. The motivation is flexibility for targets to customize the pipeline, inlining opportunity, and fits the overall NPM value semantics design.
- `TargetPassConfig` is a legacy immutable pass to declare hooks for targets to customize some target-independent codegen layer behavior. This is partially ported to TargetMachine::options. The rest, such as `createMachineScheduler/createPostMachineScheduler`, are left out for now. They should be implemented in LLVMTargetMachine in the future.
Reviewed By: arsenm, aeubanks
Differential Revision: https://reviews.llvm.org/D83608
The MIRParser expects unnamed stack entries to have empty names ('').
In case of unnamed alloca instructions, the MIRPrinter would output
'<unnamed alloca>', which caused the MIRParser to reject the generated
code.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D93685
Currently 'resume' is lowered to _Unwind_Resume with out "noreturn" attribute. Semantically _Unwind_Resume library call is expected to never return and should be marked as such. Though I didn't find any changes in behavior of existing tests there will be a difference once https://reviews.llvm.org/D79485 lands.
I was not able to come up with the test case anything better than just checking for presence of "noreturn" attribute. Please let me know if there is a better way to test the change.
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D93682
Fixes a bug introduced by D91589.
When folding `(sext (not i1 x)) -> (add (zext i1 x), -1)`, we try to replace the not first when possible. If we replace the not in-visit, then the now invalidated node will be returned, and subsequently we will return an invalid sext. In cases where the not is replaced in-visit we can simply return SDValue, as the not in the current sext should have already been replaced.
Thanks @jgorbe, for finding the below reproducer.
The following reduced test case crashes clang when built with `clang -O1 -frounding-math`:
```
template <class> class a {
int b() { return c == 0.0 ? 0 : -1; }
int c;
};
template class a<long>;
```
A debug build of clang produces this "assertion failed" error:
```
clang: /home/jgorbe/code/llvm/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:264: void {anonymous}::DAGCombiner::AddToWorklist(llvm::
SDNode*): Assertion `N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"' failed.
```
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93274
Every basic block section symbol created by -fbasic-block-sections will contain
".__part." to know that this symbol corresponds to a basic block fragment of
the function.
This patch solves two problems:
a) Like D89617, we want function symbols with suffixes to be properly qualified
so that external tools like profile aggregators know exactly what this
symbol corresponds to.
b) The current basic block naming just adds a ".N" to the symbol name where N is
some integer. This collides with how clang creates __cxx_global_var_init.N.
clang creates these symbol names to call constructor functions and basic
block symbol naming should not use the same style.
Fixed all the test cases and added an extra test for __cxx_global_var_init
breakage.
Differential Revision: https://reviews.llvm.org/D93082
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.
I am investigating sinking instructions back into the loop under high
register pressure. This is just a first NFC step to add some debug
messages that allows tracing of the decision making.
Currently using DW_OP_implicit_value in fragments produces invalid DWARF
expressions. (Such a case can occur in complex floats, for example.)
This problem manifests itself as a missing DW_OP_piece operation after
the last fragment. This happens because the function for printing
constant float value skips printing the accompanying DWARF expression,
as that would also print DW_OP_stack_value (which is not desirable in
this case). However, this also results in DW_OP_piece being skipped.
The reason that DW_OP_piece is missing only for the last piece is that
the act of printing the next fragment corrects this. However, it does
that for the wrong reason -- the code emitting this DW_OP_piece thinks
that the previous fragment was missing, and so it thinks that it needs
to skip over it in order to be able to print itself.
In a simple scenario this works out, but it's likely that in a more
complex setup (where some pieces are in fact missing), this logic would
go badly wrong. In a simple setup gdb also seems to not mind the fact
that the DW_OP_piece is missing, but it would also likely not handle
more complex use cases.
For this reason, this patch disables the usage of DW_OP_implicit_value
in the frament scenario (we will use DW_OP_const*** instead), until we
figure out the right way to deal with this. This guarantees that we
produce valid expressions, and gdb can handle both kinds of inputs
anyway.
Differential Revision: https://reviews.llvm.org/D92013
When LegalizeType procedure widens a masked_gather, set MemoryType's EltNum equal to Result's EltNum.
As I mentioned in https://reviews.llvm.org/D91092, in previous code, If we have a v17i32's masked_gather in avx512, we widen it to a v32i32's masked_gather with a v17i32's MemoryType. When the SplitVecRes_MGATHER process this v32i32's masked_gather, GetSplitDestVTs will assert fail since what you are going to split is v17i32.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93610
CanBeUnnamed is rarely false. Splitting to a createNamedTempSymbol makes the
intention clearer and matches the direction of reverted r240130 (to drop the
unneeded parameters).
No behavior change.
Currently we lower invokes the same way as usual calls, e.g.:
V1 = STATEPOINT ... V (tied-def 0)
But this is incorrect is V1 is used on exceptional path.
By LLVM rules V1 neither dominates its uses in landing pad, nor
its live range is live on entry to landing pad. So compiler is
allowed to do various weird transformations like splitting live
range after statepoint and use split LR in catch block.
Until (and if) we find better solution to this problem, let's
use old lowering (spilling) for those values which are used on
exceptional path and allow VReg lowering for values used only
on normal path.
Differential Revision: https://reviews.llvm.org/D93449
Fast register allocator skips bundled MIs, as the main assignment
loop uses MachineBasicBlock::iterator (= MachineInstrBundleIterator)
This was causing SIInsertWaitcnts to crash which expects all
instructions to have registers assigned.
This patch makes sure to set everything inside bundle to the same
assignments done on BUNDLE header.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D90369
The main change is to add a 'IsDecl' field to DIModule so
that when IsDecl is set to true, the debug info entry generated
for the module would be marked as a declaration. That way, the debugger
would look up the definition of the module in the gloabl scope.
Please see the comments in llvm/test/DebugInfo/X86/dimodule.ll
for what the debug info entries would look like.
Differential Revision: https://reviews.llvm.org/D93462
According to the documentation, if a spill is required to make a
register available and AllowSpill is false, then NoRegister should be
returned, however, this scenario was actually triggering an assertion
failure.
This patch moves the assertion after the handling of AllowSpill.
Authored by: Lewis Revill
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92104
This only needs to be called once for the function, and it visits all
the necessary blocks in the function. It looks like
631f6b888c accidentally moved this into
the loop over all save blocks.
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ
The intrinsics have overloaded source and result type and support
vector operands:
i32 @llvm.fptoui.sat.i32.f32(float %f)
i100 @llvm.fptoui.sat.i100.f64(double %f)
<4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
// etc
On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:
i19 @llvm.fptsi.sat.i19.f32(float %f)
// builds
i19 fp_to_sint_sat f, 19
// type legalizes (through integer result promotion)
i32 fp_to_sint_sat f, 19
I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.
There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:
f = fmaxnum f, FP(MIN)
f = fminnum f, FP(MAX)
i = fptoxi f
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
If the bounds cannot be exactly represented, we expand to something
like this instead:
i = fptoxi f
i = select f ult FP(MIN), MIN, i
i = select f ogt FP(MAX), MAX, i
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
It should be noted that this expansion assumes a non-trapping fptoxi.
Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.
Original patch by @nikic and @ebevhan (based on D54696).
Differential Revision: https://reviews.llvm.org/D54749
Clang FE currently has hot/cold function attribute. But we only have
cold function attribute in LLVM IR.
This patch adds support of hot function attribute to LLVM IR. This
attribute will be used in setting function section prefix/suffix.
Currently .hot and .unlikely suffix only are added in PGO (Sample PGO)
compilation (through isFunctionHotInCallGraph and
isFunctionColdInCallGraph).
This patch changes the behavior. The new behavior is:
(1) If the user annotates a function as hot or isFunctionHotInCallGraph
is true, this function will be marked as hot. Otherwise,
(2) If the user annotates a function as cold or
isFunctionColdInCallGraph is true, this function will be marked as
cold.
The changes are:
(1) user annotated function attribute will used in setting function
section prefix/suffix.
(2) hot attribute overwrites profile count based hotness.
(3) profile count based hotness overwrite user annotated cold attribute.
The intention for these changes is to provide the user a way to mark
certain function as hot in cases where training input is hard to cover
all the hot functions.
Differential Revision: https://reviews.llvm.org/D92493
Clean up a TODO, to support folding a shift of a constant by a
select of constants, on targets with different shift operand sizes.
Reviewed By: RKSimon, lebedev.ri
Differential Revision: https://reviews.llvm.org/D90349
Part of the <=> changes in C++20 make certain patterns of writing equality
operators ambiguous with themselves (sorry!).
This patch goes through and adjusts all the comparison operators such that
they should work in both C++17 and C++20 modes. It also makes two other small
C++20-specific changes (adding a constructor to a type that cases to be an
aggregate, and adding casts from u8 literals which no longer have type
const char*).
There were four categories of errors that this review fixes.
Here are canonical examples of them, ordered from most to least common:
// 1) Missing const
namespace missing_const {
struct A {
#ifndef FIXED
bool operator==(A const&);
#else
bool operator==(A const&) const;
#endif
};
bool a = A{} == A{}; // error
}
// 2) Type mismatch on CRTP
namespace crtp_mismatch {
template <typename Derived>
struct Base {
#ifndef FIXED
bool operator==(Derived const&) const;
#else
// in one case changed to taking Base const&
friend bool operator==(Derived const&, Derived const&);
#endif
};
struct D : Base<D> { };
bool b = D{} == D{}; // error
}
// 3) iterator/const_iterator with only mixed comparison
namespace iter_const_iter {
template <bool Const>
struct iterator {
using const_iterator = iterator<true>;
iterator();
template <bool B, std::enable_if_t<(Const && !B), int> = 0>
iterator(iterator<B> const&);
#ifndef FIXED
bool operator==(const_iterator const&) const;
#else
friend bool operator==(iterator const&, iterator const&);
#endif
};
bool c = iterator<false>{} == iterator<false>{} // error
|| iterator<false>{} == iterator<true>{}
|| iterator<true>{} == iterator<false>{}
|| iterator<true>{} == iterator<true>{};
}
// 4) Same-type comparison but only have mixed-type operator
namespace ambiguous_choice {
enum Color { Red };
struct C {
C();
C(Color);
operator Color() const;
bool operator==(Color) const;
friend bool operator==(C, C);
};
bool c = C{} == C{}; // error
bool d = C{} == Red;
}
Differential revision: https://reviews.llvm.org/D78938
Subvector broadcasts are only load instructions, yet X86ISD::SUBV_BROADCAST treats them more generally, requiring a lot of fallback tablegen patterns.
This initial patch replaces constant vector lowering inside lowerBuildVectorAsBroadcast with direct X86ISD::SUBV_BROADCAST_LOAD loads which helps us merge a number of equivalent loads/broadcasts.
As well as general plumbing/analysis additions for SUBV_BROADCAST_LOAD, I needed to wrap SelectionDAG::makeEquivalentMemoryOrdering so it can handle result chains from non generic LoadSDNode nodes.
Later patches will continue to replace X86ISD::SUBV_BROADCAST usage.
Differential Revision: https://reviews.llvm.org/D92645
X86 and AArch64 expand it as libcall inside the target. And PowerPC also
want to expand them as libcall for P8. So, propose an implement in the
legalizer to common the logic and remove the code for X86/AArch64 to
avoid the duplicate code.
Reviewed By: Craig Topper
Differential Revision: https://reviews.llvm.org/D91331
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Currently we add individual BB to BlockFilterSet if its frequency satisfies
LoopFreq / Freq <= LoopToColdBlockRatio
LoopFreq is edge frequency from outside to loop header.
LoopToColdBlockRatio is a command line parameter.
It doesn't make sense since we always layout whole chain, not individual BBs.
It may also cause a tricky problem. Sometimes it is possible that the LoopFreq
of an inner loop is smaller than LoopFreq of outer loop. So a BB can be in
BlockFilterSet of inner loop, but not in BlockFilterSet of outer loop,
like .cold in the test case. So it is added to the chain of inner loop. When
work on the outer loop, .cold is not added to BlockFilterSet, so the edge to
successor .problem is not counted in UnscheduledPredecessors of .problem chain.
But other blocks in the inner loop are added BlockFilterSet, so the whole inner
loop chain can be layout, and markChainSuccessors is called to decrease
UnscheduledPredecessors of following chains. markChainSuccessors calls
markBlockSuccessors for every BB, even it is not in BlockFilterSet, like .cold,
so .problem chain's UnscheduledPredecessors is decreased, but this edge was not
counted on in fillWorkLists, so .problem chain's UnscheduledPredecessors
becomes 0 when it still has an unscheduled predecessor .pred! And it causes
problems in following various successor BB selection algorithms.
Differential Revision: https://reviews.llvm.org/D89088
This is being recommitted to try and address the MSVC complaint.
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D90159
SUMMARY:
In order for the runtime on AIX to find the compact unwind section(EHInfo table),
we would need to set the following on the traceback table:
The 6th byte's longtbtable field to true to signal there is an Extended TB Table Flag.
The Extended TB Table Flag to be 0x08 to signal there is an exception handling info presents.
Emit the offset between ehinfo TC entry and TOC base after all other optional portions of traceback table.
The patch is authored by Jason Liu.
Reviewers: David Tenty, Digger Lin
Differential Revision: https://reviews.llvm.org/D92766
Undef subranges are not present in the live range values, except when
they cross block boundaries. In this situation, a identity copy is
inside a loop, and one of the lanes is undefined. It only appears
alive inside the loop due to the copy. Once the copy was erased, it
would leave behind a segment inside the loop body with no
corresponding def anywhere in the program.
When RenameIndependentSubregs processed this dummy interval, it would
introduce a "Multiple connected components in live interval" verifier
error when IMPLICIT_DEFs were added to the other two blocks. I believe
there is a missing verifier check for this type of dummy interval.
I have found additional cases from the same fundamental problem in
other areas I haven't managed to fix yet (e.g. the commented out
prune_subrange_phi_value_* cases).
optimizeGatherScatterInst does nothing specific to fixed length vectors
but uses FixedVectorType to extract the number of elements. This patch
simply updates the code to use VectorType and getElementCount instead.
For testing I just copied Transforms/CodeGenPrepare/X86/gather-scatter-opt.ll
replacing `<4 x ` with `<vscale x 4`.
Differential Revision: https://reviews.llvm.org/D92572
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D95195
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Differential Revision: https://reviews.llvm.org/D90159
Currently the backend special cases x86_intrcc and treats the first
parameter as byval. Make the IR require byval for this parameter to
remove this special case, and avoid the dependence on the pointee
element type.
Fixes bug 46672.
I'm not sure the IR is enforcing all the calling convention
constraints. clang seems to ignore the attribute for empty parameter
lists, but the IR tolerates it.
The entry block should always be the first BB in a function.
So we should not rotate a chain contains the entry block.
Differential Revision: https://reviews.llvm.org/D92882
Changes in this patch:
- Minor changes to the LowerVECREDUCE_SEQ_FADD function added by @cameron.mcinally
to also work for scalable types
- Added TableGen patterns for FP reductions with unpacked types (nxv2f16, nxv4f16 & nxv2f32)
- Asserts added to expandFMINNUM_FMAXNUM & expandVecReduceSeq for scalable types
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D93050
The runtime library has two family library implementation for ppc_fp128 and fp128.
For IBM Long double(ppc_fp128), it is suffixed with 'l', i.e(sqrtl). For
IEEE Long double(fp128), it is suffixed with "ieee128" or "f128".
We miss to map several libcall for IEEE Long double.
Reviewed By: qiucf
Differential Revision: https://reviews.llvm.org/D91675
add a new goal MustReduceRegisterPressure for machine combiner pass.
PowerPC will use this new goal to do some register pressure related optimization.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D92068
SUMMARY:
1. added a new option -xcoff-traceback-table to control whether generate traceback table for function.
2. implement the functionality of emit traceback table of a function.
Reviewers: hubert.reinterpretcast, Jason Liu
Differential Revision: https://reviews.llvm.org/D92398
This migrates all LLVM (except Kaleidoscope and
CodeGen/StackProtector.cpp) DebugLoc::get to DILocation::get.
The CodeGen/StackProtector.cpp usage may have a nullptr Scope
and can trigger an assertion failure, so I don't migrate it.
Reviewed By: #debug-info, dblaikie
Differential Revision: https://reviews.llvm.org/D93087
This function is needed for when it is necessary to split the subvector
operand of an llvm.experimental.vector.insert call. Splitting the
subvector operand means performing two insertions: one inserting the
lower part of the split subvector into the destination vector, and
another for inserting the upper part.
Through experimenting, it seems quite rare to need split the subvector
operand, but this is necessary to avoid assertion errors.
Differential Revision: https://reviews.llvm.org/D92760
This is the first in a series of patches that attempts to migrate
existing cost instructions to return a new InstructionCost class
in place of a simple integer. This new class is intended to be
as light-weight and simple as possible, with a full range of
arithmetic and comparison operators that largely mirror the same
sets of operations on basic types, such as integers. The main
advantage to using an InstructionCost is that it can encode a
particular cost state in addition to a value. The initial
implementation only has two states - Normal and Invalid - but these
could be expanded over time if necessary. An invalid state can
be used to represent an unknown cost or an instruction that is
prohibitively expensive.
This patch adds the new class and changes the getInstructionCost
interface to return the new class. Other cost functions, such as
getUserCost, etc., will be migrated in future patches as I believe
this to be less disruptive. One benefit of this new class is that
it provides a way to unify many of the magic costs in the codebase
where the cost is set to a deliberately high number to prevent
optimisations taking place, e.g. vectorization. It also provides
a route to represent the extremely high, and unknown, cost of
scalarization of scalable vectors, which is not currently supported.
Differential Revision: https://reviews.llvm.org/D91174
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
If SETUNE isn't legal, UO can use the NOT of the SETO expansion.
Removes some complex isel patterns. Most of the test changes are
from using XORI instead of SEQZ.
Differential Revision: https://reviews.llvm.org/D92008
We currently have problems with the way that low overhead loops are
specified, with LR being spilled between the t2LoopDec and the t2LoopEnd
forcing the entire loop to be reverted late in the backend. As they will
eventually become a single instruction, this patch introduces a
t2LoopEndDec which is the combination of the two, combined before
registry allocation to make sure this does not fail.
Unfortunately this instruction is a terminator that produces a value
(and also branches - it only produces the value around the branching
edge). So this needs some adjustment to phi elimination and the register
allocator to make sure that we do not spill this LR def around the loop
(needing to put a spill after the terminator). We treat the loop very
carefully, making sure that there is nothing else like calls that would
break it's ability to use LR. For that, this adds a
isUnspillableTerminator to opt in the new behaviour.
There is a chance that this could cause problems, and so I have added an
escape option incase. But I have not seen any problems in the testing
that I've tried, and not reverting Low overhead loops is important for
our performance. If this does work then we can hopefully do the same for
t2WhileLoopStart and t2DoLoopStart instructions.
This patch also contains the code needed to convert or revert the
t2LoopEndDec in the backend (which just needs a subs; bne) and the code
pre-ra to create them.
Differential Revision: https://reviews.llvm.org/D91358
This patch implements amx programming model that discussed in llvm-dev
(http://lists.llvm.org/pipermail/llvm-dev/2020-August/144302.html).
Thank Hal for the good suggestion in the RA. The fast RA is not in the patch yet.
This patch implemeted 7 components.
1. The c interface to end user.
2. The AMX intrinsics in LLVM IR.
3. Transform load/store <256 x i32> to AMX intrinsics or split the
type into two <128 x i32>.
4. The Lowering from AMX intrinsics to AMX pseudo instruction.
5. Insert psuedo ldtilecfg and build the def-use between ldtilecfg to amx
intruction.
6. The register allocation for tile register.
7. Morph AMX pseudo instruction to AMX real instruction.
Change-Id: I935e1080916ffcb72af54c2c83faa8b2e97d5cb0
Differential Revision: https://reviews.llvm.org/D87981
This method previously always recursively checked both the left-hand
side and right-hand side of binary operations for splatted (broadcast)
vector values to determine if the parent DAG node is a splat.
Like several other SelectionDAG methods, limit the recursion depth to
MaxRecursionDepth (6). This prevents stack overflow.
See also https://issuetracker.google.com/173785481
Patch by Nicolas Capens. Thanks!
Differential Revision: https://reviews.llvm.org/D92421
If a function parameter is marked as "undef", prevent creation
of CallSiteInfo for that parameter.
Without this patch, the parameter's call_site_value would be incorrect.
The incorrect call_value case reported in PR39716,
addressed in D85111.
Patch by Nikola Tesic
Differential revision: https://reviews.llvm.org/D92471
This patch adds the following DAGCombines, which apply if isVectorLoadExtDesirable() returns true:
- fold (and (masked_gather x)) -> (zext_masked_gather x)
- fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
LowerMGATHER has also been updated to fetch the LoadExtType associated with the
gather and also use this value to determine the correct masked gather opcode to use.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92230
Adds the ExtensionType flag, which reflects the LoadExtType of a MaskedGatherSDNode.
Also updated SelectionDAGDumper::print_details so that details of the gather
load (is signed, is scaled & extension type) are printed.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91084
This commit adds two new intrinsics.
- llvm.experimental.vector.insert: used to insert a vector into another
vector starting at a given index.
- llvm.experimental.vector.extract: used to extract a subvector from a
larger vector starting from a given index.
The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D91362
FEntryInserter prepends FENTRY_CALL to the first basic block. In case
there are other instructions, PostRA Machine Instruction Scheduler can
move FENTRY_CALL call around. This actually occurs on SystemZ (see the
testcase). This is bad for the following reasons:
* FENTRY_CALL clobbers registers.
* Linux Kernel depends on whatever FENTRY_CALL expands to to be the very
first instruction in the function.
Fix by adding isCall attribute to FENTRY_CALL, which prevents reordering
by making it a scheduling boundary for PostRA Machine Instruction
Scheduler.
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D91218
This patch adds new PM support for the pass and the pass can be now used
during middle-end transforms. The old pass is remamed to
ScalarizeMaskedMemIntrinLegacyPass.
Reviewed-By: skatkov, aeubanks
Differential Revision: https://reviews.llvm.org/D92743
This patch makes DWARF writer emit DW_AT_string_length using
the stringLengthExp operand of DIStringType.
This is part of the effort to add debug info support for
Fortran deferred length strings.
Also updated the tests to exercise the change.
Differential Revision: https://reviews.llvm.org/D92412
LLVM intrinsic llvm.maxnum|minnum is overloaded intrinsic, can be used on any
floating-point or vector of floating-point type.
This patch extends current infrastructure to support scalable vector type.
This patch also fix a warning message of incorrect use of EVT::getVectorNumElements()
for scalable type, when DAGCombiner trying to split scalable vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92607
ScalarizeMaskedMemIntrinsic is currently a codeGen level pass. The pass
is actually operating on IR level and does not use any code gen specific
passes. It is useful to move it into transforms directory so that it
can be more widely used as a mid-level transform as well (apart from
usage in codegen pipeline).
In particular, we have a usecase downstream where we would like to use
this pass in our mid-level pipeline which operates on IR level.
The next change will be to add support for new PM.
Reviewers: craig.topper, apilipenko, skatkov
Reviewed-By: skatkov
Differential Revision: https://reviews.llvm.org/D92407
Text section prefix is created in CodeGenPrepare, it's file format independent implementation, text section name is written into object file in TargetLoweringObjectFile, it's file format dependent implementation, port code of adding text section prefix to text section name from ELF to COFF.
Different with ELF that use '.' as concatenation character, COFF use '$' as concatenation character. That is, concatenation character is variable, so split concatenation character from text section prefix.
Text section prefix is existing feature of ELF, it can help to reduce icache and itlb misses, it's also make possible aggregate other compilers e.g. v8 created same prefix sections. Furthermore, the recent feature Machine Function Splitter (basic block level text prefix section) is based on text section prefix.
Reviewed By: pengfei, rnk
Differential Revision: https://reviews.llvm.org/D92073
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
The refineIndexType & refineUniformBase functions added by D90942 can also be used to
improve CodeGen of masked gathers.
These changes were split out from D91092
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92319
Lowers the llvm.masked.gather intrinsics (scalar plus vector addressing mode only)
Changes in this patch:
- Add custom lowering for MGATHER, using getGatherVecOpcode() to choose the appropriate
gather load opcode to use.
- Improve codegen with refineIndexType/refineUniformBase, added in D90942
- Tests added for gather loads with 32 & 64-bit scaled & unscaled offsets.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91092
Add tests for this particular detail for x86 and arm (similar tests
already existed for x86_64 and aarch64).
The libssp implementation may be located in a separate DLL, and in
those cases, the references need to be in a .refptr stub, to avoid
needing to touch up code in the text section at runtime (which is
supported but inefficient for x86, and unsupported for arm).
Differential Revision: https://reviews.llvm.org/D92738
In previous code, when refineIndexType(...) is called and Index is undef, Index.getOperand(0) will raise a assertion fail.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D92548
Notes about a few declarations:
* LiveVariables::RegisterDefIsDead: deleted by r47927
* createForwardControlFlowIntegrityPass, createJumpInstrTablesPass: deleted by r230780
* RegScavenger::setLiveInsUsed: deleted by r292543
* ScheduleDAGInstrs::{toggleKillFlag,startBlockForKills}: deleted by r304055
* Localizer::shouldLocalize: remnant of D75207
* DwarfDebug::addSectionLabel: deleted by r373273
Move fold of (sext (not i1 x)) -> (add (zext i1 x), -1) from X86 to DAGCombiner to improve codegen on other targets.
Differential Revision: https://reviews.llvm.org/D91589
This changes --print-before/after to be a list of strings rather than
legacy passes. (this also has the effect of not showing the entire list
of passes in --help-hidden after --print-before/after, which IMO is
great for making it less verbose).
Currently PrintIRInstrumentation passes the class name rather than pass
name to llvm::shouldPrintBeforePass(), meaning
llvm::shouldPrintBeforePass() never functions as intended in the NPM.
There is no easy way of converting class names to pass names outside of
within an instance of PassBuilder.
This adds a map of pass class names to their short names in
PassRegistry.def within PassInstrumentationCallbacks. It is populated
inside the constructor of PassBuilder, which takes a
PassInstrumentationCallbacks.
Add a pointer to PassInstrumentationCallbacks inside
PrintIRInstrumentation and use the newly created map.
This is a bit hacky, but I can't think of a better way since the short
id to class name only exists within PassRegistry.def. This also doesn't
handle passes not in PassRegistry.def but rather added via
PassBuilder::registerPipelineParsingCallback().
llvm/test/CodeGen/Generic/print-after.ll doesn't seem very useful now
with this change.
Reviewed By: ychen, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D87216
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
Summary:
Not all system assembler supports `.uleb128 label2 - label1` form.
When the target do not support this form, we have to take
alternative manual calculation to get the offsets from them.
Reviewed By: hubert.reinterpretcast
Diffierential Revision: https://reviews.llvm.org/D92058
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an attribute((no_stack_protector)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
SSP attributes can be ordered by strength. Weakest to strongest, they
are: ssp, sspstrong, sspreq. Callees with differing SSP attributes may be
inlined into each other, and the strongest attribute will be applied to the
caller. (No change)
After this change:
* A callee with no SSP attributes will no longer be inlined into a
caller with SSP attributes.
* The reverse is also true: a callee with an SSP attribute will not be
inlined into a caller with no SSP attributes.
* The alwaysinline attribute overrides these rules.
Functions that get synthesized by the compiler may not get inlined as a
result if they are not created with the same stack protector function
attribute as their callers.
Alternative approach to https://reviews.llvm.org/D87956.
Fixes pr/47479.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: rnk, MaskRay
Differential Revision: https://reviews.llvm.org/D91816
Summary:
AIX uses the existing EH infrastructure in clang and llvm.
The major differences would be
1. AIX do not have CFI instructions.
2. AIX uses a new personality routine, named __xlcxx_personality_v1.
It doesn't use the GCC personality rountine, because the
interoperability is not there yet on AIX.
3. AIX do not use eh_frame sections. Instead, it would use a eh_info
section (compat unwind section) to store the information about
personality routine and LSDA data address.
Reviewed By: daltenty, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D91455
This reverts commit cf1c774d6a.
This change caused several regressions in the gdb test suite - at least
a sample of which was due to line zero instructions making breakpoints
un-lined. I think they're worth investigating/understanding more (&
possibly addressing) before moving forward with this change.
Revert "[FastISel] NFC: Clean up unnecessary bookkeeping"
This reverts commit 3fd39d3694.
Revert "[FastISel] NFC: Remove obsolete -fast-isel-sink-local-values option"
This reverts commit a474657e30.
Revert "Remove static function unused after cf1c774."
This reverts commit dc35368ccf.
Revert "[lldb] Fix TestThreadStepOut.py after "Flush local value map on every instruction""
This reverts commit 53a14a47ee.
Move the X86 VSELECT->UADDSAT fold to DAGCombiner - there's nothing target specific about these folds.
The SSE42 test diffs are relatively benign - its avoiding an extra constant load in exchange for an extra xor operation - there are extra register moves, which is annoying as all those operations should commute them away.
Differential Revision: https://reviews.llvm.org/D91876
Adds a constructor to MachineModuleInfo and MachineModuleInfoWapperPass that
takes an external MCContext. If provided, the external context will be used
throughout codegen instead of MMI's default one.
This enables external drivers to take ownership of data put on the MMI's context
during codegen. The internal context is used otherwise and destroyed upon
finish.
Differential Revision: https://reviews.llvm.org/D91313
The lowering of vector selects needs to first splat the scalar mask into a vector
first.
This was causing a crash when building oggenc in the test suite.
Differential Revision: https://reviews.llvm.org/D91655
Now that we flush the local value map for every instruction, we don't
need any extra flushes for specific cases. Also, LastFlushPoint is
not used for anything. Follow-ups to #dc35368 (D91734).
Differential Revision: https://reviews.llvm.org/D92338
The mapping between registers and relative size has been updated to
use TypeSize to account for the size of scalable EVTs.
The patch is a NFCI, if not for the fact that with this change the
function `getUnderlyingArgRegs` does not raise a warning for implicit
conversion of `TypeSize` to `unsigned` when generating machine code
from the test added to the patch.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92096
If Sext is cheaper than Zext for a target, we can use that to promote the operands of UMIN/UMAX. Using sext just makes numbers with the sign bit set even larger when treated as an unsigned number and it has no effect on number without the sign bit set. So the relative order doesn't change. This is similar to what we already do for promoting SETCC.
This is helpful on RISCV where i32 arguments are sign extended on RV64 and many instructions are able to produce results with 33 sign bits.
Differential Revision: https://reviews.llvm.org/D92128
If usubsat() is legal, this is likely to result in smaller codegen expansion than the default cmp+select codegen expansion.
Allows us to move the x86-specific lowering to the generic expansion code.
Differential Revision: https://reviews.llvm.org/D92183
For now, we will hardcode the result as 0.0 if the input is denormal or 0. That will
have the impact the precision. As the fsqrt added belong to the cold path of the
cmp+branch, it won't impact the performance for normal inputs for PowerPC, but improve
the precision if the input is denormal.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D80974
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
If usubsat() is legal, this is likely to result in smaller codegen expansion than the default cmp+select codegen expansion.
Allows us to move the x86-specific lowering to the generic expansion code.
A crash/assertion failure in the greedy register allocator was tracked
down to a debug instr being passed to LiveIntervals::getInstructionIndex.
Normally this should not occur as debug instructions are collected and
removed by LiveDebugVariables before RA, and reinserted afterwards.
However, when a function has no debug info, LiveDebugVariables simply
strips any debug values that are present as they're not needed (this
situation will occur when a function with debug info is inlined into a
nodebug function). The problem is, it only removes DBG_VALUE instructions,
leaving DBG_LABELs (the cause of the crash).
This patch updates the LiveDebugVariables nodebug path to remove all debug
instructions. The test case verifies that DBG_VALUE/DBG_LABEL instructions
are present, and that they are stripped.
When -experimental-debug-variable-locations is enabled, certain variable
locations are represented by DBG_INSTR_REF instead of DBG_VALUE. The test
case verifies that a DBG_INSTR_REF is emitted by the option, and that it
is also stripped.
Differential Revision: https://reviews.llvm.org/D92127
Updated the affected scalable_of_scalable tests in sve-gep.ll, as isConstantSplatValue now returns true in DAGCombiner::visitMUL and folds `(mul x, 1) -> x`
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91363
In https://reviews.llvm.org/D89072 I added static const data members
to the debug subsection for globals. It skipped emitting an S_CONSTANT if it
didn't have a value, which meant the subsection could be empty.
This patch fixes the empty subsection issue.
Differential Revision: https://reviews.llvm.org/D92049
We currently don't match this which limits the effectiveness of D91120 until
InstCombine starts canonicalizing to llvm.abs. This should be easy to remove
if/when we remove the SPF_ABS handling.
Differential Revision: https://reviews.llvm.org/D92118
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
Differential Revision: https://reviews.llvm.org/D91734
If smax() is legal, this is likely to result in smaller codegen expansion for abs(x) than the xor(add,ashr) method.
This is also what PowerPC has been doing for its abs implementation, so it lets us get rid of a load of custom lowering code there (and which was never updated when they added smax lowering).
Alive2: https://alive2.llvm.org/ce/z/xRk3cD
Differential Revision: https://reviews.llvm.org/D92095
PowerPC has instruction ftsqrt/xstsqrtdp etc to do the input test for software square root.
LLVM now tests it with smallest normalized value using abs + setcc. We should add hook to
target that has test instructions.
Reviewed By: Spatel, Chen Zheng, Qiu Chao Fang
Differential Revision: https://reviews.llvm.org/D80706
`SimplifySetCC` invokes `getNodeIfExists` without passing `Flags` argument and `getNodeIfExists` uses a default `SDNodeFlags` to intersect the original flags, as a consequence, flags like `nsw` is dropped. Added a new helper function `doesNodeExist` to check if a node exists without modifying its flags.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D89938
Added support for the options mabi=vec-extabi and mabi=vec-default which are analogous to qvecnvol and qnovecnvol when using XL on AIX.
The extended Altivec ABI on AIX is enabled using mabi=vec-extabi in clang and vec-extabi in llc.
Reviewed By: Xiangling_L, DiggerLin
Differential Revision: https://reviews.llvm.org/D89684
If the size of memory access is unknown, do not use it to analysis. One
example of unknown size memory access is to load/store scalable vector
objects on the stack.
Differential Revision: https://reviews.llvm.org/D91833
Putting the +1 before the zero-extend will allow scalar evolution to fold the expression in some cases such as the one shown in PowerPC's `shrink-wrap.ll` test.
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D91724
AFAICT all other set/map are correctly cleared in `runOnFunction`.
With assertion enabled this causes a crash when the module is freed and potentially if a later pass delete the instruction (not observed in real world though). Without assertion this can potentially cause confusing result when running on a new Function/Module.
Reviewed By: loladiro
Differential Revision: https://reviews.llvm.org/D84031
This reapplies 36c64af9d7 in updated
form.
Emit the xdata for each function at .seh_endproc. This keeps the
exact same output header order for most code generated by the LLVM
CodeGen layer. (Sections still change order for code built from
assembly where functions lack an explicit .seh_handlerdata
directive, and functions with chained unwind info.)
The practical effect should be that assembly output lacks
superfluous ".seh_handlerdata; .text" pairs at the end of functions
that don't handle exceptions, which allows such functions to use
the AArch64 packed unwind format again.
Differential Revision: https://reviews.llvm.org/D87448
This patch moves the selection of the style used to emit the numbers
(DW_OP_implicit_value vs. DW_OP_const+DW_OP_stack_value) into
DwarfExpression::addUnsignedConstant. This logic is not FP-specific, and
it will be needed for large integers too.
The refactor also makes DW_OP_implicit_value (DW_OP_stack_value worked
already) be used for floating point constants other than float and
double, so I've added a _Float16 test for it.
Split off from D90916.
Differential Revision: https://reviews.llvm.org/D91058
This is part of the discussion on D91876 about trying to reduce custom lowering of MIN/MAX ops on older SSE targets - if we can improve generic vector expansion we should be able to relax the limitations in SelectionDAGBuilder when it will let MIN/MAX ops be generated, and avoid having to flag so many ops as 'custom'.
ExpandStrictFPOp started taking two parameters instead of one on Jan
10, 2020 in commit f678fc7660, but the
declaration for the single-perameter version has remained since.
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
This change introduces a MIR target-independent pseudo instruction corresponding to the IR intrinsic llvm.pseudoprobe for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
An `llvm.pseudoprobe` intrinsic call will be lowered into a target-independent operation named `PSEUDO_PROBE`. Given the following instrumented IR,
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
the corresponding MIR is shown below. Note that block `bb3` is duplicated into `bb1` and `bb2` where its probe is duplicated too. This allows for an accurate execution count to be collected for `bb3`, which is basically the sum of the counts of `bb1` and `bb2`.
```
bb.0.bb0:
frame-setup PUSH64r undef $rax, implicit-def $rsp, implicit $rsp
TEST32rr killed renamable $edi, renamable $edi, implicit-def $eflags
PSEUDO_PROBE 837061429793323041, 1, 0
$edi = MOV32ri 1, debug-location !13; test.c:0
JCC_1 %bb.1, 4, implicit $eflags
bb.2.bb2:
PSEUDO_PROBE 837061429793323041, 3, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
bb.1.bb1:
PSEUDO_PROBE 837061429793323041, 2, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
```
The target op PSEUDO_PROBE will be converted into a piece of binary data by the object emitter with no machine instructions generated. This is done in a different patch.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86495
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:
1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.
We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.
Let's now look at an example. Given the following LLVM IR:
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
br label %bb3
bb3:
ret void
}
```
The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86490
The default version only works if the returned node has a single
result. The X86 and PowerPC versions support multiple results
and allow a single result to be returned from a node with
multiple outputs. And allow a single result that is not result 0
of the node.
Also replace the Mips version since the new version should work
for it. The original version handled multiple results, but only
if the new node and original node had the same number of results.
Differential Revision: https://reviews.llvm.org/D91846
This patch implements out of line atomics for LSE deployment
mechanism. Details how it works can be found in llvm/docs/Atomics.rst
Options -moutline-atomics and -mno-outline-atomics to enable and disable it
were added to clang driver. This is clang and llvm part of out-of-line atomics
interface, library part is already supported by libgcc. Compiler-rt
support is provided in separate patch.
Differential Revision: https://reviews.llvm.org/D91157
When constructing a MemoryLocation by hand, require that a
LocationSize is explicitly specified. D91649 will split up
LocationSize::unknown() into two different states, and callers
should make an explicit choice regarding the kind of MemoryLocation
they want to have.
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
In some cases, the values passed to `asm sideeffect` calls cannot be
mapped directly to simple MVTs. Currently, we crash in the backend if
that happens. An example can be found in the @test_vector_too_large_r_m
test case, where we pass <9 x float> vectors. In practice, this can
happen in cases like the simple C example below.
using vec = float __attribute__((ext_vector_type(9)));
void f1 (vec m) {
asm volatile("" : "+r,m"(m) : : "memory");
}
One case that use "+r,m" constraints for arbitrary data types in
practice is google-benchmark's DoNotOptimize.
This patch updates visitInlineAsm so that it use MVT::Other for
constraints with complex VTs. It looks like the rest of the backend
correctly deals with that and properly legalizes the type.
And we still report an error if there are no registers to satisfy the
constraint.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D91710
This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D87544
This patch uses the new `getMnemonic` helper from D90039
to display mnemonics instead of the internal opcodes.
The main motivation behind using the mnemonics is that they
are more user-friendly and more directly related to the assembly
the users will be presented.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D90040
This patch is added to remove the unreachable MBBs reference in the jump table.
Differential Revisien: https://reviews.llvm.org/D90498
Reviewed by: amyk, bsaleil
For example, during RAUW in IRMover, the `Function` ValueAsMetadata in "CG Profile" could become bitcast.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D88433
It's fairly common to need matchers for a specific constant value, or for
common idioms like finding a negated register.
Add
- `m_SpecificICst`, which returns true when matching a specific value..
- `m_ZeroInt`, which returns true when an integer 0 is matched.
- `m_Neg`, which returns when a register is negated.
Also update a few places which use idioms related to the new matchers.
Differential Revision: https://reviews.llvm.org/D91397
The test fails on Mac, see comment on the code review.
> This option was in a rather convoluted place, causing global parameters
> to be set in awkward and undesirable ways to try to account for it
> indirectly. Add tests for the -disable-debug-info option and ensure we
> don't print unintended markers from unintended places.
>
> Reviewed By: dstenb
>
> Differential Revision: https://reviews.llvm.org/D91083
This reverts commit 9606ef03f0.
If the scatter store is able to perform the sign/zero extend of
its index, this is folded into the instruction with refineIndexType().
Additionally, refineUniformBase() will return the base pointer and index
from an add + splat_vector.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90942
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
This option was in a rather convoluted place, causing global parameters
to be set in awkward and undesirable ways to try to account for it
indirectly. Add tests for the -disable-debug-info option and ensure we
don't print unintended markers from unintended places.
Reviewed By: dstenb
Differential Revision: https://reviews.llvm.org/D91083
When passing SVE types as arguments to function calls we can run
out of hardware SVE registers. This is normally fine, since we
switch to an indirect mode where we pass a pointer to a SVE stack
object in a GPR. However, if we switch over part-way through
processing a SVE tuple then part of it will be in registers and
the other part will be on the stack.
I've fixed this by ensuring that:
1. When we don't have enough registers to allocate the whole block
we mark any remaining SVE registers temporarily as allocated.
2. We temporarily remove the InConsecutiveRegs flags from the last
tuple part argument and reinvoke the autogenerated calling
convention handler. Doing this prevents the code from entering
an infinite recursion and, in combination with 1), ensures we
switch over to the Indirect mode.
3. After allocating a GPR register for the pointer to the tuple we
then deallocate any SVE registers we marked as allocated in 1).
We also set the InConsecutiveRegs flags back how they were before.
4. I've changed the AArch64ISelLowering LowerCALL and
LowerFormalArguments functions to detect the start of a tuple,
which involves allocating a single stack object and doing the
correct numbers of legal loads and stores.
Differential Revision: https://reviews.llvm.org/D90219
This broke both Firefox and Chromium (PR47905) due to what seems like dllimport
function not being handled correctly.
> This patch adds support for creating Guard Address-Taken IAT Entry Tables (.giats$y sections) in object files, matching the behavior of MSVC. These contain lists of address-taken imported functions, which are used by the linker to create the final GIATS table.
> Additionally, if any DLLs are delay-loaded, the linker must look through the .giats tables and add the respective load thunks of address-taken imports to the GFIDS table, as these are also valid call targets.
>
> Reviewed By: rnk
>
> Differential Revision: https://reviews.llvm.org/D87544
This reverts commit cfd8481da1.
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........
Lowers the llvm.masked.scatter intrinsics (scalar plus vector addressing mode only)
Changes included in this patch:
- Custom lowering for MSCATTER, which chooses the appropriate scatter store opcode to use.
Floating-point scatters are cast to integer, with patterns added to match FP reinterpret_casts.
- Added the getCanonicalIndexType function to convert redundant addressing
modes (e.g. scaling is redundant when accessing bytes)
- Tests with 32 & 64-bit scaled & unscaled offsets
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90941
This patch adds the IsTruncatingStore flag to MaskedScatterSDNode, set by getMaskedScatter().
Updated SelectionDAGDumper::print_details for MaskedScatterSDNode to print
the details of masked scatters (is truncating, signed or scaled).
This is the first in a series of patches which adds support for scalable masked scatters
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90939
SafeStack instrumentation should not insert anything inbetween musttail call and return instruction.
For every ReturnInst that needs to be instrumented, we adjust the insertion point to the musttail call if exists.
Differential Revision: https://reviews.llvm.org/D90702
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR
This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.
This is a fairly simple change in itself, but leads to a number of other
required alterations.
- The hardware loop pass, if UsePhi is set, now generates loops of the
form:
%start = llvm.start.loop.iterations(%N)
loop:
%p = phi [%start], [%dec]
%dec = llvm.loop.decrement.reg(%p, 1)
%c = icmp ne %dec, 0
br %c, loop, exit
- For this a new llvm.start.loop.iterations intrinsic was added, identical
to llvm.set.loop.iterations but produces a value as seen above, gluing
the loop together more through def-use chains.
- This new instrinsic conceptually produces the same output as input,
which is taught to SCEV so that the checks in MVETailPredication are not
affected.
- Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
been left mostly as before. We should now more reliably be able to tell
that the t2DoLoopStart is correct without having to prove it, but
t2WhileLoopStart and tail-predicated loops will remain the same.
- And all the tests have been updated. There are a lot of them!
This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.
Differential Revision: https://reviews.llvm.org/D89881
We can use KnownBitsAnalysis to cover cases when mask is not trivial. It can
also help with cases when mask is not constant but can still be folded into
one. Since 'and' is comutative we should treat both operands as possible
replacements.
Differential Revision: https://reviews.llvm.org/D90674
This sequence of instructions can be simplified if they are single use and
some operands are constants. Additional combines may be applied afterwards.
Differential Revision: https://reviews.llvm.org/D90223
Sequence of same shift instructions with constant operands can be combined into
a single shift instruction.
Differential Revision: https://reviews.llvm.org/D90217
Add a TLI hook to allow SelectionDAG to fine tune the conversion of CTPOP to a chain of "x & (x - 1)" when CTPOP isn't legal.
A subsequent patch will attempt to fine tune the X86 code gen.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89952
FastISel generates instructions to materialize "local values" at the
top of a block, in the hope that these values could be reused within
the block. To reduce spills and restores, FastISel treats calls as
sub-block boundaries, flushing the "local value map" at each call.
This patch treats the mem* intrinsics as if they were calls, because
at O0 generally they are calls. Eliminating these spills/restores is
actually better for debugging (especially a "continue at this line"
command), code size, stack frame size, and maybe even performance.
Differential Revision: https://reviews.llvm.org/D90877
Fold
VT = (and (sign_extend NarrowVT to VT) #bitmask)
into
VT = (zero_extend NarrowVT)
With this combine, the test replaces a sign extended load + an
unsigned extention with a zero extended load to render one of the
operands of the last multiplication.
BEFORE | AFTER
f_i16_i32: | f_i16_i32:
.fnstart | .fnstart
ldrsh r0, [r0] | ldrh r1, [r1]
ldrsh r1, [r1] | ldrsh r0, [r0]
smulbb r0, r1, r0 | smulbb r0, r0, r1
uxth r1, r1 | mul r0, r0, r1
mul r0, r0, r1 | bx lr
bx lr |
Reviewed By: resistor
Differential Revision: https://reviews.llvm.org/D90605
Results of convergent operations are implicitly affected by the
enclosing control flows and should not be hoisted out of arbitrary
loops.
Patch by Xiaoqing Wu <xiaoqing_wu@apple.com>
Differential Revision: https://reviews.llvm.org/D90361
The debug location is removed from any outlined instruction. This
causes the MachineVerifier to crash on outlined DBG_VALUE
instructions.
Then, debug instructions are "invisible" to the outliner, that is, two
ranges of instructions from different functions are considered
identical if the only difference is debug instructions. Since a debug
instruction from one function is unlikely to provide sensible debug
information about all functions, sharing an outlined sequence, this
patch just removes debug instructions from the outlined functions.
Differential Revision: https://reviews.llvm.org/D89485
The if was checking !Res.getNode() but that's always true since
Res was initialized to SDValue() and not touched before the if.
This appears to be a leftover from a previous implementation of
Custom legalization where Res was updated instead of returning
immediately.
Convert GISelKnownBits.computeKnownBitsImpl shift handling to use the common KnownBits implementations, which makes use of the known leading/trailing bits for shifted values in cases where we don't know the shift amount value, as detailed in https://blog.regehr.org/archives/1709
Differential Revision: https://reviews.llvm.org/D90527
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
Add more profitable sinking patterns if the target bb register pressure
is not too high.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D88126
Hook up legalizations for VECREDUCE_SEQ_FMUL. This is following up on the VECREDUCE_SEQ_FADD work from D90247.
Differential Revision: https://reviews.llvm.org/D90644
Summary:
For vector element types which are not byte-sized, we would generate
incorrect scalar offsets and produce incorrect codegen.
This optimization could potentially be supported in the future, e.g. by
loading in bytes, then shifting and masking out the remaining bits of
the vector element. However, without an upstream target to test against
it's best to avoid the bad codegen in the simplest possible way.
Related to this bug:
https://bugs.llvm.org/show_bug.cgi?id=27600
Reviewed by: foad
Differential Revision: https://reviews.llvm.org/D78568
This patch uses the existing LowerFixedLengthReductionToSVE function to also lower
scalable vector reductions. A separate function has been added to lower VECREDUCE_AND
& VECREDUCE_OR operations with predicate types using ptest.
Lowering scalable floating-point reductions will be addressed in a follow up patch,
for now these will hit the assertion added to expandVecReduce() in TargetLowering.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D89382
- Basically iterate each pair of memory operands from both instructions
and return true if any of them may alias.
- The exception are memory instructions without any memory operand. They
may touch everything and could alias to any memory instruction.
Differential Revision: https://reviews.llvm.org/D89447
As discussed on D90527, we should be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.
Replaces https://reviews.llvm.org/D74158
Differential Revision: https://reviews.llvm.org/D89613
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
This caused an explosion in ICF times during linking on Windows when libfuzzer
instrumentation is enabled. For a small binary we see ICF time go from ~0 to
~10 s. For a large binary it goes from ~1 s to forevert (I gave up after 30
minutes).
See comment on the code review.
> If we are going to write handler data (that is written as variable
> length data following after the unwind info in .xdata), we need to
> emit the handler data immediately, but for cases where no such
> info is going to be written, skip emitting it right away. (Unwind
> info for all remaining functions that hasn't gotten it emitted
> directly is emitted at the end.)
>
> This does slightly change the ordering of sections (triggering a
> bunch of updates to DebugInfo/COFF tests), but the change should be
> benign.
>
> This also matches GCC's assembly output, which doesn't output
> .seh_handlerdata unless it actually is needed.
>
> For ARM64, the unwind info can be packed into the runtime function
> entry itself (leaving no data in the .xdata section at all), but
> that can only be done if there's no follow-on data in the .xdata
> section. If emission of the unwind info is triggered via
> EmitWinEHHandlerData (or the .seh_handlerdata directive), which
> implicitly switches to the .xdata section, there's a chance of the
> caller wanting to pass further data there, so the packed format
> can't be used in that case.
>
> Differential Revision: https://reviews.llvm.org/D87448
This reverts commit 36c64af9d7.
MC currently produces monolithic .gcc_except_table section. GCC can split up .gcc_except_table:
* if comdat: `.section .gcc_except_table._Z6comdatv,"aG",@progbits,_Z6comdatv,comdat`
* otherwise, if -ffunction-sections: `.section .gcc_except_table._Z3fooi,"a",@progbits`
This ensures that (a) non-prevailing copies are discarded and (b)
.gcc_except_table associated to discarded text sections can be discarded by a
.gcc_except_table-aware linker (GNU ld, but not gold or LLD)
This patches matches the GCC behavior. If -fno-unique-section-names is
specified, we don't append the suffix. If -ffunction-sections is additionally specified,
use `.section ...,unique`.
Note, if clang driver communicates that the linker is LLD and we know it
is new (11.0.0 or later) we can use SHF_LINK_ORDER to avoid string table
costs, at least in the -fno-unique-section-names case. We cannot use it on GNU
ld because as of binutils 2.35 it does not support mixed SHF_LINK_ORDER &
non-SHF_LINK_ORDER components in an output section
https://sourceware.org/bugzilla/show_bug.cgi?id=26256
For RISC-V -mrelax, this patch additionally fixes an assembler-linker
interaction problem: because a section is shrinkable, the length of a call-site
code range is not a constant. Relocations referencing the associated text
section (STT_SECTION) are needed. However, a STB_LOCAL relocation referencing a
discarded section group member from outside the group is disallowed by the ELF
specification (PR46675):
```
// a.cc
inline int comdat() { try { throw 1; } catch (int) { return 1; } return 0; }
int main() { return comdat(); }
// b.cc
inline int comdat() { try { throw 1; } catch (int) { return 1; } return 0; }
int foo() { return comdat(); }
clang++ -target riscv64-linux -c a.cc b.cc -fPIC -mno-relax
ld.lld -shared a.o b.o => ld.lld: error: relocation refers to a symbol in a discarded section:
```
-fbasic-block-sections= is similar to RISC-V -mrelax: there are outstanding relocations.
Reviewed By: jrtc27, rahmanl
Differential Revision: https://reviews.llvm.org/D83655
I recently modified this pass to better support CHERI-RISC-V and while
doing so I noticed that this pass was calling M->getOrInsertFunction()
with the result of TLI->getLibcallName(RTLibType). However, AMDGPU fills
the libcalls array with nullptr, so this creates an anonymous function
instead. This patch changes expandAtomicOpToLibcall to return false in
case the libcall does not exist and changes the assert() in the callees to
a report_fatal_error() instead.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D88800
We have added a new load/store cluster algorithm in D85517. However, AArch64 see
some compiling deg with the new algorithm as the IsReachable() is not cheap if
the DAG is complex. O(M+N) See https://bugs.llvm.org/show_bug.cgi?id=47966
So, this patch added a heuristic to switch to old cluster algorithm if the DAG is too complex.
Reviewed By: Owen Anderson
Differential Revision: https://reviews.llvm.org/D90144
Unsigned 32-bit or shorter integer to ppcf128 conversion are currently
expanded as signed-to-double with an extra fadd to 'complement'. But on
PowerPC we have native instruction to directly convert unsigned to
double since ISA v2.06. This patch exploits it.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D89786
Add Legalization support for VECREDUCE_SEQ_FADD, so that we don't need to depend on ExpandReductionsPass.
Differential Revision: https://reviews.llvm.org/D90247
This commit adds a missed out line in earlier commit for DW_TAG_generic_subrange.
Previous commit ID: a6dd01afa3
Differential Revision: https://reviews.llvm.org/D89218
Thanks markus for pointing this out.
Instcombine will currently sink identical shuffles though vector binary
operations. This is probably generally useful, but can break up the code
pattern we use to represent an interleaving load group. This patch
reverses that in the InterleaveAccessPass to re-recognise the pattern of
shuffles sunk past binary operations and folds them back if an
interleave group can be created.
Differential Revision: https://reviews.llvm.org/D89489