The generic SoftFloatVectorExtract.ll test was failing when run on arm
machines, as it tries to create a f64 under soft float. Limit the
transform to when f64 is legal.
Also add a missing override, as reported in D100244.
This adds a combine for extract(x, n); extract(x, n+1) ->
VMOVRRD(extract x, n/2). This allows two vector lanes to be moved at the
same time in a single instruction, and thanks to the other VMOVRRD folds
we have added recently can help reduce the amount of executed
instructions. Floating point types are very similar, but will include a
bitcast to an integer type.
This also adds a shouldRewriteCopySrc, to prevent copy propagation from
DPR to SPR, which can break as not all DPR regs can be extracted from
directly. Otherwise the machine verifier is unhappy.
Differential Revision: https://reviews.llvm.org/D100244
Used to model structural hazards on FP issue, where some
instructions take up 2 issue slots and others one as well
as similar structural hazards on load issue, where some
instructions take up two load lanes and others one.
Differential Revision: https://reviews.llvm.org/D98977
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
This patch prevents phi-node-elimination from generating a COPY
operation for the register defined by t2WhileLoopStartLR, as it is a
terminator that defines a value.
This happens because of the presence of phi-nodes in the loop body (the
Preheader of which is the block containing the t2WhileLoopStartLR). If
this is not done, the COPY is generated above/before the terminator
(t2WhileLoopStartLR here), and since it uses the value defined by
t2WhileLoopStartLR, MachineVerifier throws a 'use before define' error.
This essentially adds on to the change in differential D91887/D97729.
Differential Revision: https://reviews.llvm.org/D100376
Combine sub 0, csinc X, Y, CC to csinv -X, Y, CC providing that the
negation of X is cheap, currently just handling constants. This comes up
during the splat of an i1 to a predicate, where we now generate csetm,
as opposed to cset; rsb.
Differential Revision: https://reviews.llvm.org/D99940
Currently the ARM backend only accpets constant expressions as the
immediate operand in load and store instructions. This allows the
result of symbolic expressions to be used in memory instructions. For
example,
0:
.space 2048
strb r2, [r0, #(.-0b)]
would be assembled into the following instructions.
strb r2, [r0, #2048]
This only adds support to ldr, ldrb, str, and strb in arm mode to
address the build failure of Linux kernel for now, but should facilitate
adding support to similar instructions in the future if the need arises.
Link:
https://github.com/ClangBuiltLinux/linux/issues/1329
Reviewed By: peter.smith, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D98916
Add a number of intrinsics which natively lower to MVE operations to the
lane interleaving pass, allowing it to efficiently interleave the lanes
of chucks of operations containing these intrinsics.
Differential Revision: https://reviews.llvm.org/D97293
FP16 to FP32 converts can be handled in MVE lane interleaving, much like
the sext/zext lowering we do. This expands the pass with fpext and
fptrunc handling, and basic fp operations allowing more efficient
lowering of fp vectors.
Differential Revision: https://reviews.llvm.org/D97292
The patch makes two updates to the arm-block-placement pass:
- Handle arbitrarily nested loops
- Extends the search (for t2WhileLoopStartLR) to the predecessor of the
preHeader.
Differential Revision: https://reviews.llvm.org/D99649
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
This removes the restriction that only Thumb2 targets enable runtime
loop unrolling, allowing it for Thumb1 only cores as well. The existing
T2 heuristics are used (for the time being) to control when and how
unrolling is performed.
Differential Revision: https://reviews.llvm.org/D99588
Mark v6m/v8m-baseline cores as having no branch predictors. This should
not alter very much on its own, but is more correct as the cores do not
have branch predictors and can help in the future.
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
As another addition to MVE lane interleaving, this handles Splat shuffle
vectors, as the shuffle of a splat is a splat.
Differential Revision: https://reviews.llvm.org/D97291
This extends the recent MVE lane interleaving passto handle other
non-instruction leaves, for which a new shuffle is added. This helps
especially for constants and potentially for arguments.
Differential Revision: https://reviews.llvm.org/D97289
MVE does not have a single sext/zext or trunc instruction that takes the
bottom half of a vector and extends to a full width, like NEON has with
MOVL. Instead it is expected that this happens through top/bottom
instructions. So the MVE equivalent VMOVLT/B instructions take either
the even or odd elements of the input and extend them to the larger
type, producing a vector with half the number of elements each of double
the bitwidth. As there is no simple instruction for a normal extend, we
often have to expand sext/zext/trunc into a series of lane moves (or
stack loads/stores, which we do not do yet).
This pass takes vector code that starts at truncs, looks for
interconnected blobs of operations that end with sext/zext and
transforms them by adding shuffles so that the lanes are interleaved and
the MVE VMOVL/VMOVN instructions can be used. This is done pre-ISel so
that it can work across basic blocks.
This initial version of the pass just handles a limited set of
instructions, not handling constants or splats or FP, which can all come
as extensions to this base.
Differential Revision: https://reviews.llvm.org/D95804
If a WhileLoopStartLR is reverted due to calls in the preheader, we may
still be able to instead create a DoLoopStart, preserving the low
overhead loop. This adds code for that, only reverting the
WhileLoopStartR to a Br/Cmp, leaving the rest of the low overhead loop
in place.
Differential Revision: https://reviews.llvm.org/D98413
This UpperBound unrolling was already enabled so long as a series of
conditions in ARMTTIImpl::getUnrollingPreferences pass. This just always
enables it as it can help fully unroll loops that would not otherwise
pass those tests.
Differential Revision: https://reviews.llvm.org/D99174
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
In function ConvertVPTBlocks(), it is assumed that every instruction
within a vector-predicated block is predicated. This is false for debug
instructions, used by LLVM.
Because of this, an assertion failure is reached when an input contains
debug instructions inside VPT blocks. In non-assert builds, an out of
bounds memory access took place.
The present patch properly covers the case of debug instructions.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D99075
This adds an extra pattern for inserting an f16 into a odd vector lane
via an VINS. If the dual-insert-lane pattern does not happen to apply,
this can help with some simple cases.
Differential Revision: https://reviews.llvm.org/D95471
The scalarization overhead was set deliberately high for MVE, whilst the
codegen was new. It helps protect us against the negative ramifications
of mixing scalar and vector instructions. This decreases that,
especially for floating point where the cost of extracting/inserting
lane elements can be low. For integer the cost is still fairly high due
to the cross-register-bank copy, but is no longer n^2 in the length of
the vector.
In general, this will decrease the cost of scalarizing floats and long
integer vectors. i64 increase in cost, having a high cost before and
after this patch. For floats this allows up to start doing things like
vectorizing fdiv instructions, even if they are scalarized.
Differential Revision: https://reviews.llvm.org/D98245
This uses the shuffle mask cost from D98206 to give a better cost of MVE
VREV instructions. This helps especially in VectorCombine where the cost
of shuffles is used to reorder bitcasts, which this helps keep the phase
ordering test for fp16 reductions producing optimal code. The isVREVMask
has been moved to a header file to allow it to be used across target
transform and isel lowering.
Differential Revision: https://reviews.llvm.org/D98210
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
Given a sextload i16, we can usually generate "ldrsh [rn. rm]". If we
don't naturally have a rn, rm addressing mode, we can either generate
"ldrh [rn, #0]; sxth" or "mov rm, #0; ldrsh [rn. rm]".
We currently generate the first, always creating a sxth. They are both
the same number of instructions, but if we generate the second then the
mov #0 will likely be CSE'd or pulled out of a loop, etc.
This adjusts the ISel patterns to do that, creating a mov instead of a
sxth.
Differential Revision: https://reviews.llvm.org/D98693
Prefer (self-documenting) return values to output parameters (which are
liable to be used).
While here, rename Noop to Nop which is more widely used and improves
consistency with hasEmitNops/setEmitNops/emitNop/etc.