It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
This is similar to the subvector extractions,
except that the 0'th subvector isn't free to insert,
because we generally don't know whether or not
the upper elements need to be preserved:
https://godbolt.org/z/rsxP5W4sW
This is needed to avoid regressions in D100684
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100698
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
Sometimes LV has to produce really wide vectors,
and sometimes they end up being not powers of two.
As it can be seen from the diff, the cost computation
is currently completely non-sensical in those cases.
Instead of just scalarizing everything, split/factorize the wide vector
into a number of subvectors, each one having a power-of-two elements,
recurse to get the cost of op on this subvector. Also, check how we'd
legalize this subvector, and if the legalized type is scalar,
also account for the scalarization cost.
Note that for sub-vector loads, we might be able to do better,
when the vectors are properly aligned.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100099
If we are truncating from a i32 source before comparing the result against zero, then see if we can directly compare the source value against zero.
If the upper (truncated) bits are known to be zero then we can compare against that, hopefully increasing the chances of us folding the compare into a EFLAG result of the source's operation.
Fixes PR49028.
Differential Revision: https://reviews.llvm.org/D100491
In the fold SHUFFLE(BINOP(X,Y),BINOP(Z,W)) -> BINOP(SHUFFLE(X,Z),SHUFFLE(Y,W)), check if both X/Z AND Y/W have at least one merge-able shuffle in which case the total number of shuffle should still fall.
Helps with instruction count regressions we saw while fixing PR48823
Extension to rG74f98391a7a4, we can also include any of the upper (known zero) bits in the comparison in the shuffle removal fold, just as long as we demand all the elements of the movmsk source vector.
This is a follow up of D99010. We didn't consider the live range of shape registers when hoist ldtilecfg. There maybe risks, e.g. we happen to insert it to an invalid range of some registers and get unexpected error.
This patch fixes this problem by storing the value to corresponding stack place of ldtilecfg after all its definition immediately.
This patch also fix a problem in previous code: If we don't have a ldtilecfg which dominates all AMX instructions, we cannot initialize shapes for other ldtilecfg.
There're still some optimization points left. E.g. eliminate unused mov instructions, break the def-use dependency before RA etc.
Reviewed By: LuoYuanke, xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D99966
We already allow the comparison of the upper bits of 'IsAllOf' (allbits) patterns, but we can safely compare the known zero bits for 'IsAnyOf' (zerobits) patterns as well.
This fixes an issues where we are comparing a type wide than the number of vector elements, which avoids a regression mentioned in rGbaadbe04bf75.
Fixes the issues noted in PR48768, where the and/or/xor instruction had been promoted to avoid i8/i16 partial-dependencies, but the test against zero had not.
We can almost certainly relax this fold to work for any truncation, although it breaks a number of existing folds (notable movmsk folds which tend to rely on the truncate to determine the demanded bits/elts in the source vector).
There is a reverse combine in TargetLowering.SimplifySetCC so we must wait until after legalization before attempting this.
The previous code calculated the first ldtilecfg by dominating all AMX registers' def. This may result in the ldtilecfg being inserted into a loop.
This patch try to calculate the nearest point where all shapes of AMX registers are reachable.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D99010
Improve AVX512 mask inversion, rG38c799bce801 exposed some missing opportunities to move scalar not() back onto the boolvector types for folding with setcc etc.
Followup to D100177, handle an similar (demorgan inverse style) case from PR47797 as well
The AVX512 test cases could be further improved if we folded not(iX bitcast(vXi1)) -> (iX bitcast(not(vXi1)))
Alive2: https://alive2.llvm.org/ce/z/AnA_-W
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
I've initially just enabled this for BMI which has the ANDN instruction for i32/i64 - the i16/i8 cases give an idea of what'd we get when we enable it in all cases (I'll do this as a later commit).
Additionally, the i16/i8 cases could be freely promoted to i32 (as the args are already zeroext) and we could then make use of ANDN + the free cmp0 there as well - this has come up in PR48768 and PR49028 so I'm going to look at this soon.
https://alive2.llvm.org/ce/z/QVWHP_https://alive2.llvm.org/ce/z/pLngT-
Vector cases do not appear to benefit from this as we end up with having to generate the zero vector as well - this is one of the reasons I didn't try to tie this into hasAndNot/hasAndNotCompare.
Differential Revision: https://reviews.llvm.org/D100177
Main reason is preparation to transform AliasResult to class that contains
offset for PartialAlias case.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98027
Extend D94856 to handle 'and', 'or' and 'xor' instructions as well
We still fail on many i8/i16 cases as the test and the logic-op are performed on different widths
Looking at the Doxygen-generated documentation for the llvm namespace
currently shows all sorts of random comments from different parts of the
codebase. These are mostly caused by:
- File doc comments that aren't marked with \file, so they're attached to
the next declaration, which is usually "namespace llvm {".
- Class doc comments placed before the namespace rather than before the
class.
- Code comments before the namespace that (in my opinion) shouldn't be
extracted by doxygen at all.
This commit fixes these comments. The generated doxygen documentation now
has proper docs for several classes and files, and the docs for the llvm
and llvm::detail namespaces are now empty.
Reviewed By: thakis, mizvekov
Differential Revision: https://reviews.llvm.org/D96736
After rG47321c311bdbe0145b9bf45d822185c37b19fa50 we promote vXi8 reductions to vXi16 to create a much faster PMULLW mul reduction, followed by a (free) truncation. This avoids the high cost of repeated vXi8 multiplications (which extend+multiply+truncate to/from vXi16 types....).
Fixes the missing vXi8 mul reduction vectorization in PR42674 (Comment #20) 'mul16' test case.
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
Fixes PR47603
This should probably be transferable to DAGCombine - the main limitation with the existing trunc(logicop) DAG fold is we don't know if legalization has tried to promote truncated logicops already. We might be able to peek through extensions as well.
Use the getTargetShuffleInputs helper for all shuffle decoding
Reapplied (after reversion in rGfa0aff6d6960) with fix+test for subvector splitting - we weren't accounting for peeking through bitcasts changing the vector element count of the shuffle sources.