If we are truncating from a i32 source before comparing the result against zero, then see if we can directly compare the source value against zero.
If the upper (truncated) bits are known to be zero then we can compare against that, hopefully increasing the chances of us folding the compare into a EFLAG result of the source's operation.
Fixes PR49028.
Differential Revision: https://reviews.llvm.org/D100491
In the fold SHUFFLE(BINOP(X,Y),BINOP(Z,W)) -> BINOP(SHUFFLE(X,Z),SHUFFLE(Y,W)), check if both X/Z AND Y/W have at least one merge-able shuffle in which case the total number of shuffle should still fall.
Helps with instruction count regressions we saw while fixing PR48823
Extension to rG74f98391a7a4, we can also include any of the upper (known zero) bits in the comparison in the shuffle removal fold, just as long as we demand all the elements of the movmsk source vector.
We already allow the comparison of the upper bits of 'IsAllOf' (allbits) patterns, but we can safely compare the known zero bits for 'IsAnyOf' (zerobits) patterns as well.
This fixes an issues where we are comparing a type wide than the number of vector elements, which avoids a regression mentioned in rGbaadbe04bf75.
Fixes the issues noted in PR48768, where the and/or/xor instruction had been promoted to avoid i8/i16 partial-dependencies, but the test against zero had not.
We can almost certainly relax this fold to work for any truncation, although it breaks a number of existing folds (notable movmsk folds which tend to rely on the truncate to determine the demanded bits/elts in the source vector).
There is a reverse combine in TargetLowering.SimplifySetCC so we must wait until after legalization before attempting this.
Improve AVX512 mask inversion, rG38c799bce801 exposed some missing opportunities to move scalar not() back onto the boolvector types for folding with setcc etc.
Followup to D100177, handle an similar (demorgan inverse style) case from PR47797 as well
The AVX512 test cases could be further improved if we folded not(iX bitcast(vXi1)) -> (iX bitcast(not(vXi1)))
Alive2: https://alive2.llvm.org/ce/z/AnA_-W
I've initially just enabled this for BMI which has the ANDN instruction for i32/i64 - the i16/i8 cases give an idea of what'd we get when we enable it in all cases (I'll do this as a later commit).
Additionally, the i16/i8 cases could be freely promoted to i32 (as the args are already zeroext) and we could then make use of ANDN + the free cmp0 there as well - this has come up in PR48768 and PR49028 so I'm going to look at this soon.
https://alive2.llvm.org/ce/z/QVWHP_https://alive2.llvm.org/ce/z/pLngT-
Vector cases do not appear to benefit from this as we end up with having to generate the zero vector as well - this is one of the reasons I didn't try to tie this into hasAndNot/hasAndNotCompare.
Differential Revision: https://reviews.llvm.org/D100177
Fixes PR47603
This should probably be transferable to DAGCombine - the main limitation with the existing trunc(logicop) DAG fold is we don't know if legalization has tried to promote truncated logicops already. We might be able to peek through extensions as well.
Use the getTargetShuffleInputs helper for all shuffle decoding
Reapplied (after reversion in rGfa0aff6d6960) with fix+test for subvector splitting - we weren't accounting for peeking through bitcasts changing the vector element count of the shuffle sources.
The default expansion creates a MUL and either a MULHS/MULHU. Each
of those separately expand to sequences that use one or more
PMULLW instructions as well as additional instructions to
extend the types to vXi16. The MULHS/MULHU expansion computes the
whole 16-bit product, but only keeps the high part.
We can improve the lowering of SMULO/UMULO for some cases by using the MULHS/MULHU
expansion, but keep both the high and low parts. And we can use
those parts to calculate the overflow.
For AVX512 we might have vXi1 overflow outputs. We can improve those by using
vpcmpeqw to produce a k register if AVX512BW is enabled. This is a little better
than truncating the high result to use vpcmpeqb. If we don't have avx512bw we
can extend up to v16i32 to use vpcmpeqd to produce a k register.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97624
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
This was crashing with the example from:
https://llvm.org/PR49716
...and that was avoided with a283d72583 ,
but as we can see from the SSE vs. AVX test code diff,
we can try harder to match the pattern.
This matcher code was adapted from another pmadd pattern
match in D49636, but it needs different ops to deal with
size mismatches.
Differential Revision: https://reviews.llvm.org/D99531
For these cases we need to extract the upper or lower elements,
multiply them using 16-bit multiplies and repack them.
Previously we used punpcklbw/punpckhbw+psraw or pmovsxbw+pshudfd to
extract and sign extend so we could use pmullw to compute the 16-bit
product and then shift down the high bits.
We can avoid the need to sign extend if we unpack the bytes into
the high byte of each word and fill the lower byte with 0 using
pxor. This puts the sign bit of each byte into the sign bit of
each word. Since the LHS and RHS have 8 trailing zeros, the full
32-bit product of those 16-bit values will have 16 trailing zeros.
This means the 16-bit product of the original bytes is in the upper
16 bits which we can calculate using pmulhw.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D98587
Remove VBROADCAST/MOVDDUP/splat-shuffle handling from foldShuffleOfHorizOp
This can all be handled by canonicalizeShuffleMaskWithHorizOp along as we check that the HADD/SUB are only used once (to prevent infinite loops on slow-horizop targets which will try to reuse the nodes again followed by a post-hop shuffle).
See if the combined shuffle mask is equivalent to an identity shuffle, typically this is due to repeated LHS/RHS ops in horiz-ops, but isTargetShuffleEquivalent might see other patterns as well.
This is another small step towards getting rid of foldShuffleOfHorizOp and relying on canonicalizeShuffleMaskWithHorizOp and generic shuffle combining.
Until AVX512 we don't have any vector truncation instructions, and always lower using shuffles instead.
combineVectorTruncation performs this earlier than lowering as it makes it easier to use any sign/zero-extended bits in the truncated bits with PACKSS/PACKUS to perform the shuffle.
We currently don't attempt to use combineVectorTruncation on AVX2 targets as in the past 256-bit PACKSS/PACKUS tended to cause 128-bit lane shuffle regressions - but these should now be all resolved with combineHorizOpWithShuffle and in all cases we now reduce the amount of cross-lane shuffling and variable shuffle mask usage.
Differential Revision: https://reviews.llvm.org/D96609
LowerVSETCC calls splitIntVSETCC after canonicalizing certain patterns, in particular (X & CPow2 != 0) -> (X & CPow2 == CPow2).
Unfortunately if we're splitting for AVX1/non-AVX512BW cases, we lose these canonicalizations as we call the split with the original SetCC node, and when the split nodes are later lowered in LowerVSETCC the patterns are lost behind extract_subvector etc. But if we pass the canonicalized operands for splitting we retain the optimizations.
Differential Revision: https://reviews.llvm.org/D99256
If we're truncating to vXi1 from a wider type, then prefer the original wider vector as is simplifies folding the separate truncations + extensions.
AVX1 this is only worth it for v8i1 cases, not v4i1 where we're always better off truncating down to v4i32 for movmsk.
Helps with some regressions encountered in D96609
Prefer broadcast from scalar on AVX targets as this makes it easier for later folds to strip away bitcasts etc.
This helps a lot with the AVX1 poor codegen from PR49658.
There's a trivial regression in bitcast-int-to-vector-bool-*ext.ll tests due to SimplifyDemandedBits not being able to see a multi-use case, but there's bigger existing codegen issues to be addressed first in those tests (unnecessary NOTs).
Helps fix cases where we've splatted smaller types to a wider vector element type without needing the upper bits.
Avoid this on AVX512 targets as that can affect broadcast folding.
The target shuffle code handles vector sources, but X86ISD::VBROADCAST can also accept a scalar source for splatting.
Suggested by @craig.topper on PR49658
For slow-hop targets, see if any single-op hops are duplicating work already done on another (dual-op) hop, which can sometimes occur as isHorizontalBinOp tries to find potential duplicates (but can't merge them itself). If so, reuse the other hop and shuffle the result.