This is similar to the subvector extractions,
except that the 0'th subvector isn't free to insert,
because we generally don't know whether or not
the upper elements need to be preserved:
https://godbolt.org/z/rsxP5W4sW
This is needed to avoid regressions in D100684
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100698
Sometimes LV has to produce really wide vectors,
and sometimes they end up being not powers of two.
As it can be seen from the diff, the cost computation
is currently completely non-sensical in those cases.
Instead of just scalarizing everything, split/factorize the wide vector
into a number of subvectors, each one having a power-of-two elements,
recurse to get the cost of op on this subvector. Also, check how we'd
legalize this subvector, and if the legalized type is scalar,
also account for the scalarization cost.
Note that for sub-vector loads, we might be able to do better,
when the vectors are properly aligned.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100099
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
After rG47321c311bdbe0145b9bf45d822185c37b19fa50 we promote vXi8 reductions to vXi16 to create a much faster PMULLW mul reduction, followed by a (free) truncation. This avoids the high cost of repeated vXi8 multiplications (which extend+multiply+truncate to/from vXi16 types....).
Fixes the missing vXi8 mul reduction vectorization in PR42674 (Comment #20) 'mul16' test case.
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
Use instead of the isa_and_nonnull<StoreInst> and use the StoreInst::getPointerOperand wrapper instead of a hardcoded Instruction::getOperand.
Looks cleaner and avoids a spurious clang static analyzer null dereference warning.
Noticed while looking at D92701 - we only really handle TCK_RecipThroughput gather/scatter costs - for now drop back to the default implementation for non-legal gathers/scatters.
Without FMF, we lower these intrinsics into something like this:
vmaxsd %xmm0, %xmm1, %xmm2
vcmpunordsd %xmm0, %xmm0, %xmm0
vblendvpd %xmm0, %xmm1, %xmm2, %xmm0
But if we can ignore NANs, the single min/max instruction is enough
because there is no need to fix up the x86 logic that corresponds to
X > Y ? X : Y.
We probably want to make other adjustments for FP intrinsics with FMF
to account for specialized codegen (for example, FSQRT).
Differential Revision: https://reviews.llvm.org/D92337
Update costs now that D92095 and D92102 have tweaked the SSE2 implementation
The SSE42 BLENDVPD cost can actually be used on SSE41 as we don't attempt to generate PCMPGT anymore
Add scalar i16/i32/i64 costs as we can do this cheaply with CMOV
We can use GF2P8AFFINEQB to reverse bits in a byte. Shuffles are needed to reverse the bytes in elements larger than i8. LegalizeVectorOps takes care of inserting the shuffle for the larger element size.
We already have Custom lowering for v16i8 with SSSE3, v32i8 with AVX, and v64i8 with AVX512BW.
I think we might be able to use this for scalars too by moving into a vector and back. But I'll save that for a follow up as its a little more involved.
Reviewed By: RKSimon, pengfei
Differential Revision: https://reviews.llvm.org/D91515
As noticed in D90554 ,
the AVX2 costs for 256-bit vectors did not include FMAXNUM entries,
so we fell back to AVX1 which assumes those ops will be split into
128-bit halves or something close to that.
Differential Revision: https://reviews.llvm.org/D90613
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
I'm assuming the standard size integer instructions for this end up as something like:
mulq %rsi
seto %al
And the 'mul' generally has reciprocal throughput of 1 on typical implementations
(higher latency, but that's not handled here).
The default costs may end up much higher than that, and that's what we see in the test diffs.
Vector types are left as a 'TODO'.
Differential Revision: https://reviews.llvm.org/D90431
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
In each 128-lane, if there is at least one index is demanded and not all
indices are demanded and this 128-lane is not the first 128-lane of the
legalized-vector, then this 128-lane needs a extracti128;
If in each 128-lane, there is at least one index is demanded, this 128-lane
needs a inserti128.
The following cases will help you build a better understanding:
Assume we insert several elements into a v8i32 vector in avx2,
Case#1: inserting into 1th index needs vpinsrd + inserti128
Case#2: inserting into 5th index needs extracti128 + vpinsrd +
inserti128
Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
Reviewed By: pengfei, RKSimon
Differential Revision: https://reviews.llvm.org/D89767
This is my first LLVM patch, so please tell me if there are any process issues.
The main observation for this patch is that we can lower UMIN/UMAX with v8i16 by using unsigned saturated subtractions in a clever way. Previously this operation was lowered by turning the signbit of both inputs and the output which turns the unsigned minimum/maximum into a signed one.
We could use this trick in reverse for lowering SMIN/SMAX with v16i8 instead. In terms of latency/throughput this is the needs one large move instruction. It's just that the sign bit turning has an increased chance of being optimized further. This is particularly apparent in the "reduce" test cases. However due to the slight regression in the single use case, this patch no longer proposes this.
Unfortunately this argument also applies in reverse to the new lowering of UMIN/UMAX with v8i16 which regresses the "horizontal-reduce-umax", "horizontal-reduce-umin", "vector-reduce-umin" and "vector-reduce-umax" test cases a bit with this patch. Maybe some extra casework would be possible to avoid this. However independent of that I believe that the benefits in the common case of just 1 to 3 chained min/max instructions outweighs the downsides in that specific case.
Patch By: @TomHender (Tom Hender) ActuallyaDeviloper
Differential Revision: https://reviews.llvm.org/D87236
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
Other types can be handled in future patches but their uniform / non-uniform costs are more similar and don't appear to cause many vectorization issues.
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
These cost methods don't make much sense in X86Subtarget. Make
them methods in X86's TTI and move the feature checks from the
X86Subtarget constructor into these methods.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84594
The main interface has been migrated to Align already but a few backends where broadening the type from Align to MaybeAlign.
This patch makes sure all implementations conform to the public API.
Differential Revision: https://reviews.llvm.org/D82465
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.
Reviewers: samparker
Reviewed By: samparker
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82383
Have BasicTTI call the base implementation so that both agree on the
default behaviour, which the default being a cost of '1'. This has
required an X86 specific implementation as it seems to be very
reliant on those instructions being free. Changes are also made to
AMDGPU so that their implementations distinguish between cost kinds,
so that the unrolling isn't affected. PowerPC also has its own
implementation to prevent changes to the reg-usage vectorizer test.
The cost model test changes now reflect that ret instructions are not
generally free.
Differential Revision: https://reviews.llvm.org/D79164