Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
As briefly discussed in IRC with @craig.topper,
the pass is disabled basically since it's original introduction (nov 2018)
due to known correctness issues (miscompilations),
and there hasn't been much work done to fix that.
While i won't promise that i will "fix" the pass,
i have looked at it previously, and i'm sure i won't try to fix it
if that requires actually fixing this existing code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D84775
These cost methods don't make much sense in X86Subtarget. Make
them methods in X86's TTI and move the feature checks from the
X86Subtarget constructor into these methods.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84594
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
The main interface has been migrated to Align already but a few backends where broadening the type from Align to MaybeAlign.
This patch makes sure all implementations conform to the public API.
Differential Revision: https://reviews.llvm.org/D82465
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.
Reviewers: samparker
Reviewed By: samparker
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82383
Have BasicTTI call the base implementation so that both agree on the
default behaviour, which the default being a cost of '1'. This has
required an X86 specific implementation as it seems to be very
reliant on those instructions being free. Changes are also made to
AMDGPU so that their implementations distinguish between cost kinds,
so that the unrolling isn't affected. PowerPC also has its own
implementation to prevent changes to the reg-usage vectorizer test.
The cost model test changes now reflect that ret instructions are not
generally free.
Differential Revision: https://reviews.llvm.org/D79164
Motivating examples are seen in the PhaseOrdering tests based on:
https://bugs.llvm.org/show_bug.cgi?id=43953#c2 - if we have
intrinsics there, some pass can fold them.
The intrinsics are still named "experimental" at this point, but
if there is no fallout from this patch, that will be a good
indicator that it is safe to finalize them.
Differential Revision: https://reviews.llvm.org/D80867
Use getMemoryOpCost from the generic implementation of getUserCost
and have getInstructionThroughput return the result of that for loads
and stores.
This also means that the X86 implementation of getUserCost can be
removed with the functionality folded into its getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D80984
Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.
This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.
This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.
A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.
Reviewed By: @craig.topper
Differential Revision: https://reviews.llvm.org/D78216
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
The API for shuffles and reductions uses generic Type parameters,
instead of VectorType, and so assertions and casts are used a lot.
This patch makes those types explicit, which means that the clients
can't be lazy, but results in less ambiguity, and that can only be a
good thing.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45562
Differential Revision: https://reviews.llvm.org/D78357
This is similar to what I recently did for getArithmeticReductionCost.
I'm trying to account for the narrowing from 512->256->128 as we go.
I've also added a new helper method getMinMaxCost that tries to
handle the cases where we have native min/max instructions and
fall back to cmp+select when we don't.
Differential Revision: https://reviews.llvm.org/D76634
Refines the gather/scatter cost model, but also changes the TTI
function getIntrinsicInstrCost to accept an additional parameter
which is needed for the gather/scatter cost evaluation.
This did require trivial changes in some non-ARM backends to
adopt the new parameter.
Extending gathers and truncating scatters are now priced cheaper.
Differential Revision: https://reviews.llvm.org/D75525
Add an extra parameter so alignment can be taken under
consideration in gather/scatter legalization.
Differential Revision: https://reviews.llvm.org/D71610
Soon Intrinsic::ID will be a plain integer, so this overload will not be
possible.
Rename both overloads to ensure that downstream targets observe this as
a build failure instead of a runtime failure.
Split off from D71320
Reviewers: efriedma
Differential Revision: https://reviews.llvm.org/D71381
This attempts to teach the cost model in Arm that code such as:
%s = shl i32 %a, 3
%a = and i32 %s, %b
Can under Arm or Thumb2 become:
and r0, r1, r2, lsl #3
So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.
We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.
Differential Revision: https://reviews.llvm.org/D70966
-mvzeroupper will force the vzeroupper insertion pass to run on
CPUs that normally wouldn't. -mno-vzeroupper disables it on CPUs
where it normally runs.
To support this with the default feature handling in clang, we
need a vzeroupper feature flag in X86.td. Since this flag has
the opposite polarity of the fast-partial-ymm-or-zmm-write we
used to use to disable the pass, we now need to add this new
flag to every CPU except KNL/KNM and BTVER2 to keep identical
behavior.
Remove -fast-partial-ymm-or-zmm-write which is no longer used.
Differential Revision: https://reviews.llvm.org/D69786