This reverts commit 13ec913bdf.
This commit introduces new uses of the overflow checking intrinsics that
depend on implementations in compiler-rt, which Windows users generally
do not link against. I filed an issue (somewhere) to make clang
auto-link the builtins library to resolve this situation, but until that
happens, it isn't reasonable for the optimizer to introduce new link
time dependencies.
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
This is a more convoluted form of the same pattern "sext of NSW trunc",
but in this case the operand of trunc was a right-shift,
and the truncation chops off just the zero bits that were shifted-in.
This fixes a subtle and nasty bug in my 86664638. The problem is that free(nullptr) is well defined (and common).
The specification for the nofree attributes talks about memory objects, and doesn't explicitly address null, but I think it's reasonable to assume that nofree doesn't disallow a call to free(nullptr). If it did, we'd have to prove nonnull on an argument to ever infer nofree which doesn't seem to be the intent.
This was found by Nuno and Alive2 over in https://reviews.llvm.org/D100141#2697374.
Differential Revision: https://reviews.llvm.org/D100779
This patch is related to https://reviews.llvm.org/D100032 which define
some illegal types or operations for x86_amx. There are no arguments,
arrays, pointers, vectors or constants of x86_amx.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D100472
This patch improves https://reviews.llvm.org/D76971 (Deduce attributes for aligned_alloc in InstCombine) and implements "TODO" item mentioned in the review of that patch.
> The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be a multiple of alignment.
Currently, we simply bail out if we see a non-constant size - change that.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D100785
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.
This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".
The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D100141
Currently, the InstCombineCompare is combining two add operations
into a single add operation which always has a nsw flag, without
checking the conditions to see if this flag should be present
according to the original two add operations or not.
This patch will change the InstCombineCompare to emit the nsw or
nuw only when these flags are allowed to be generated according to
the original add operations and remove the possibility of applying
wrong optimization with passes that will perform on the IR later
in the pipeline.
To confirm that the current results are buggy and the results after
proposed patch are the correct IR the following examples from Alive2
are attached; the same results can be seen in the case of nuw flag
and nsw is just used as an example. The following link shows that
the generated IR with current LLVM is a buggy IR when none of the
original add operations have nsw flag.
https://alive2.llvm.org/ce/z/WGaDrm
The following link proves that the generated IR after the patch in
the former case is the correct IR.
https://alive2.llvm.org/ce/z/wQ7G_e
Differential Revision: https://reviews.llvm.org/D100095
This transformation is fundamentally broken when it comes to dominance,
it just happened to work when the source of the memcpy can be moved into
the place of the alloca. The bug shows up a lot more often since
077bff39d4 allows the source to be a
switch.
It would be possible to check dominance of the source and all its
operands, but that seems very heavy for instcombine.
After 077bff39d4,
isDereferenceableForAllocaSize() can recurse into selects,
which is causing a problem for the new test case,
reduced from https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20210412/904154.html
because the replacement (the select) is defined after the first use
of an alloca, so we'd end up with a verifier error.
Now, this new check is too restrictive.
We likely can handle *some* cases, by trying to sink all uses of an alloca
to after the the def.
D24453 enabled libcalls simplication for ARM PCS. This may cause
caller/callee calling conventions mismatch in some situations such as
LTO. This patch makes instcombine aware that the compatible calling
conventions differences are benign (not emitting undef idom).
Differential Revision: https://reviews.llvm.org/D99773
As suggested in the review thread for 5094e12 and seen in the
motivating example from https://llvm.org/PR49885, it's not
clear if we have a way to create the optimal code without
this heuristic.
All of the code that handles general constant here (other than the more
restrictive APInt-dealing code) expects that it is an immediate,
because otherwise we won't actually fold the constants, and increase
instruction count. And it isn't obvious why we'd be okay with
increasing the number of constant expressions,
those still will have to be run..
But after 2829094a8e
this could also cause endless combine loops.
So actually properly restrict this code to immediates.
This fixes the examples from
D99674 and
https://llvm.org/PR49878
The matchers succeed on partial undef/poison vector constants,
but the transform creates a full 'not' (-1) constant, so it
would undo a demanded vector elements change triggered by the
extractelement.
Differential Revision: https://reviews.llvm.org/D100044
The swap of the operands can affect later transforms that
are expecting a constant as operand 1. I don't think we
can trigger a bug with the current code, but I hit that
problem while drafting a new transform for min/max intrinsics.
This reverts commit a547b4e26b,
relanding commit 31d219d299,
which was reverted because there was a conflicting inverse transform,
which was causing an endless combine loop, which has now been adjusted.
Original commit message:
https://alive2.llvm.org/ce/z/67w-wQ
We prefer `add`s over `sub`, and this particular xform
allows further folds to happen:
Fixes https://bugs.llvm.org/show_bug.cgi?id=49858
I.e., if any/all of the consants is an expression, don't do it.
Since those constants won't reduce into an immediate,
but would be left as an constant expression, they could cause
endless combine loops after 31d219d299
added an inverse transformation.
Follow up to a6d2a8d6f5. These were found by simply grepping for "::assume", and are the subset of that result which looked cleaner to me using the isa/dyn_cast patterns.
Follow up to a6d2a8d6f5. This covers all the public interfaces of the bundle related code. I tried to cleanup the internals where the changes were obvious, but there's definitely more room for improvement.
Add the subclass, update a few places which check for the intrinsic to use idiomatic dyn_cast, and update the public interface of AssumptionCache to use the new class. A follow up change will do the same for the newer assumption query/bundle mechanisms.
As shown in the example based on:
https://llvm.org/PR49832
...and the existing test, we can't substitute
a vector value because the equality compare
replacement that we are attempting requires
that the comparison is true for the entire
value. Vector select can be partly true/false.
This is identical to 781d077afb,
but for the other function.
For certain shift amount bit widths, we must first ensure that adding
shift amounts is safe, that the sum won't have an unsigned overflow.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49778
This is discussed in https://llvm.org/PR48999 ,
but it does not solve that request.
The difference in the vector test shows that some
other logic transform is limited to scalar types.
This patch fixes llvm.org/pr49688 by conditionally folding select i1 into and/or:
```
select cond, cond2, false
->
and cond, cond2
```
This is not safe if cond2 is poison whereas cond isn’t.
Unconditionally disabling this transformation affects later pipelines that depend on and/or i1s.
To minimize its impact, this patch conservatively checks whether cond2 is an instruction that
creates a poison or its operand creates a poison.
This approach is similar to what InstSimplify's SimplifyWithOpReplaced is doing.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99674
A bug was found within InstCombineCasts where a function call
is only implemented to work with FixedVectors. This caused a
crash when a ScalableVector was passed to this function.
This commit introduces a regression test which recreates the
failure and a bug fix.
Differential Revision: https://reviews.llvm.org/D98351