This fixes an oversight in D99747 which moved the IMG init code from
SIAddIMGInit to AdjustInstrPostInstrSelection, but did not set the
hasPostISelHook flag on gather4 instructions.
Differential Revision: https://reviews.llvm.org/D99953
Previously we could only vectorize FP reductions if fast math was enabled, as this allows us to
reorder FP operations. However, it may still be beneficial to vectorize the loop by moving
the reduction inside the vectorized loop and making sure that the scalar reduction value
be an input to the horizontal reduction, e.g:
%phi = phi float [ 0.0, %entry ], [ %reduction, %vector_body ]
%load = load <8 x float>
%reduction = call float @llvm.vector.reduce.fadd.v8f32(float %phi, <8 x float> %load)
This patch adds a new flag (IsOrdered) to RecurrenceDescriptor and makes use of the changes added
by D75069 as much as possible, which already teaches the vectorizer about in-loop reductions.
For now in-order reduction support is off by default and controlled with the `-enable-strict-reductions` flag.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D98435
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
Changes getRecurrenceIdentity to always return a neutral value of -0.0 for FAdd.
Reviewed By: dmgreen, spatel
Differential Revision: https://reviews.llvm.org/D98963
For VPWidenPHIRecipes that model all incoming values as VPValue
operands, print those operands instead of printing the original PHI.
D99294 updates recipes of reduction PHIs to use the VPValue for the
incoming value from the loop backedge, making use of this new printing.
After rG47321c311bdbe0145b9bf45d822185c37b19fa50 we promote vXi8 reductions to vXi16 to create a much faster PMULLW mul reduction, followed by a (free) truncation. This avoids the high cost of repeated vXi8 multiplications (which extend+multiply+truncate to/from vXi16 types....).
Fixes the missing vXi8 mul reduction vectorization in PR42674 (Comment #20) 'mul16' test case.
This patch enhances hasAddressTaken() to ignore bitcasts as a
callee in callbase instruction. Such bitcast usage doesn't really take
the address in a useful meaningful way.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D98884
It is generally beneficial to prefer "movi d0, #0" over "fmov s0, wzr" as this
is most efficient across all cores; it is recognised as a zeroing idiom. For
newer cores, fmov instructions can also be eliminated early and there is no
difference with movi, but some implementations lack this so is not true for
other/older cores. Thus this standardises on using movi as this should always
gives the same or better performance than the fmov with wzr.
Differential Revision: https://reviews.llvm.org/D99586
This was using the .2d variant which zeros 128 bits, but using the .2s variant
that zeros 64 bits is faster on some cores.
This is a prep step for D99586 to always using movi for zeroing floats.
Differential Revision: https://reviews.llvm.org/D99710
The reason for the NewPM redesign is described in the commit
cba3e783389a: [NewPM] Disable PreservedCFGChecker ...
The checker introduces an internal custom CFG analysis that tracks
current up-to date CFG snapshot. The analysis is invalidated along
any other CFG related analysis (the key is CFGAnalyses). If the CFG
analysis is not invalidated at a functional pass exit then the checker
asserts that the CFG snapshot taken from this analysis is equals to
a snapshot of the current CFG.
Along the way:
- the function CFG::printDiff() is simplified by removing function
name calculation. The name is printed by the caller;
- fixed CFG invalidated condition (see CFG::invalidate());
- StandardInstrumentations::registerCallbacks() gets additional
optional parameter of type FunctionAnalysisManager*, which is
needed by the checker to get the custom CFG analysis;
- several PM related tests updated to explicitly set
-verify-cfg-preserved=1 as they need.
This patch is safe to land as the CFGChecker is left switched off
(the options -verify-cfg-preserved is false by default). It will be
switched on by a separate patch to minimize possible reverts.
Reviewed By: skatkov, kuhar
Differential Revision: https://reviews.llvm.org/D91327
I missed a few intrinsics in 3dd4aa7d09
when I did this for masked loads and masked segment loads/stores.
Found while trying to share more code between these custom isel
functions.
When we are able to SROA an alloca, we know all uses of it, meaning we
don't have to preserve the invariant group intrinsics and metadata.
It's possible that we could lose information regarding redundant
loads/stores, but that's unlikely to have any real impact since right
now the only user is Clang and vtables.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99760
This is the sibling fix to c590a9880d -
as there, we can't subsitute a vector value the equality
compare replacement that we are trying requires that the
comparison is true for the entire value. Vector select
can be partly true/false.
It's a bit silly, but it allows us to write stricter type
constraints for isel. There's still some extra type checks in
the generated table due to some type interference limitations
around HWMode.
For use in an uncoming patch. Left out the phi case (which could otherwise fit in this framework) as it would cause infinite recursion in said patch. We can probably also leverage this in instcombine to ensure we keep the two sets of related analysis and transforms in sync.
These look like $00A0cf for hex and %001010101 for binary. They are used in Motorola assembly syntax.
Differential Revision: https://reviews.llvm.org/D98519
TextAPI/ELF has moved out into InterfaceStubs, so theres no longer a
need to seperate out TextAPI between formats.
Reviewed By: ributzka, int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D99811
This patch supports bitcasts from scalar types to fixed-length vectors
and vice versa. It custom-lowers and custom-legalizes them to
EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT operations, using a single-element
vectors to hold the scalar where appropriate.
Previously, some of these would fail to select, others would be expanded
through stack loads and stores. Effort was made to ensure the codegen
avoids the stack for both legal and illegal scalar types.
Some of the codegen could be improved, but on first glance it looks like
a general optimization of EXTRACT_VECTOR_ELT when extracting an i64
element on RV32.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99667
As shown in the example based on:
https://llvm.org/PR49832
...and the existing test, we can't substitute
a vector value because the equality compare
replacement that we are attempting requires
that the comparison is true for the entire
value. Vector select can be partly true/false.
In 0dbcb36394, most most target symbols were made hidden by default
with the public ones marked with LLVM_EXTERNAL_VISIBILITY. When the
M68k target was added, this particular change was forgotten so that
external tools cannot make use of the public M68k target functions
in libLLVM.so. Thus, add the missing LLVM_EXTERNAL_VISIBILITY macro
to all public target functions in the M68k backend.
Differential Revision: https://reviews.llvm.org/D99869
Caught in internal testing, these operations are assumed legal by
default, even for scalable vector types. Expand them back into separate
truncations and stores, or loads and extensions.
Also add explicit fixed-length vector tests for these operations, even
though they should have been correct already.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99654
During vectorization better to postpone the vectorization of the CmpInst
instructions till the end of the basic block. Otherwise we may vectorize
it too early and may miss some vectorization patterns, like reductions.
Reworked part of D57059
Differential Revision: https://reviews.llvm.org/D99796
This patch introduces a DIPrinter interface to implement by different output style printer implementations. DIPrinterGNU and DIPrinterLLVM implement the GNU and LLVM output style printing respectively. No functional changes.
This refactoring clarifies and simplifies the code, and makes a new output style addition easier.
Reviewed By: jhenderson, dblaikie
Differential Revision: https://reviews.llvm.org/D98994
The W version of orc.b does not exist in Zbp so we need to use
gorci encoding. If we have Zbp, we can use gorciw which can avoid a
sext.w in some cases.
This is identical to 781d077afb,
but for the other function.
For certain shift amount bit widths, we must first ensure that adding
shift amounts is safe, that the sum won't have an unsigned overflow.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49778
This is discussed in https://llvm.org/PR48999 ,
but it does not solve that request.
The difference in the vector test shows that some
other logic transform is limited to scalar types.
When converting a switch with two cases and a default into a
select, also handle the denegerate case where two cases have the
same value.
Generate this case directly as
%or = or i1 %cmp1, %cmp2
%res = select i1 %or, i32 %val, i32 %default
rather than
%sel1 = select i1 %cmp1, i32 %val, i32 %default
%res = select i1 %cmp2, i32 %val, i32 %sel1
as InstCombine is going to canonicalize to the former anyway.
Even if one of the operands is overdefined, we may still produce
a non-overdefined result, e.g. due to a min/max operation. This
matches our handling elsewhere, e.g. for binary operators.
The slot poisoning comment refers to a much older LVI cache
implementation.
As long as it's a constant we can directly pattern match it
without any problems. It's only when it isn't a constant that
we need to add an AND.
In theory this should allow more target independent optimizations
to remain active.
This patch fixes llvm.org/pr49688 by conditionally folding select i1 into and/or:
```
select cond, cond2, false
->
and cond, cond2
```
This is not safe if cond2 is poison whereas cond isn’t.
Unconditionally disabling this transformation affects later pipelines that depend on and/or i1s.
To minimize its impact, this patch conservatively checks whether cond2 is an instruction that
creates a poison or its operand creates a poison.
This approach is similar to what InstSimplify's SimplifyWithOpReplaced is doing.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99674
This was prompted by D95727, which had the side-effect to break the
'release' mode build bot for ML-driven policies. The problem is that now
the pre-compiled object files don't get transitively carried through as
'source' anymore; that being said, the previous way of consuming them
was problematic, because it was only working for static builds; in
dynamic builds, the whole tf_xla_runtime was linked, which is
undesirable.
The alternative is to treat tf_xla_runtime as an archive, which then
leads to the desired effect.
Differential Revision: https://reviews.llvm.org/D99829
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
Fixes PR47603
This should probably be transferable to DAGCombine - the main limitation with the existing trunc(logicop) DAG fold is we don't know if legalization has tried to promote truncated logicops already. We might be able to peek through extensions as well.
Use the getTargetShuffleInputs helper for all shuffle decoding
Reapplied (after reversion in rGfa0aff6d6960) with fix+test for subvector splitting - we weren't accounting for peeking through bitcasts changing the vector element count of the shuffle sources.
Started to see build errors like this
../lib/Support/Z3Solver.cpp:19:10: fatal error: 'z3.h' file not found
#include <z3.h>
^~~~~~
1 error generated.
after commit 43ceb74eb1.
The -isystem path to the Z3_INCLUDE_DIR wen't missing in the compile
commands. No idea why target_include_directories stopped working with
that commit, but using include_directories seem to work better.
InstCombine performs simple forwarding from stores to loads, but
currently only handles the case where the load and store have the
same size. This extends it to also handle a store of a constant
with a larger size followed by a load with a smaller size.
This is implemented through ConstantFoldLoadThroughBitcast() which
is fairly primitive (e.g. does not allow storing a large integer
and then loading a small one), but at least can forward the first
element of a vector store. Unfortunately it seems that we currently
don't have a generic helper for "read a constant value as a different
type", it's all tangled up with other logic in either
ConstantFolding or VNCoercion.
Differential Revision: https://reviews.llvm.org/D98114
The AAMDNodes part of the MemoryLocation is not used by the BasicAA
cache, so don't store it. This reduces the size of each cache entry
from 112 bytes to 48 bytes.
BasicAA itself doesn't make use of AA metadata, but passes it
through to recursive queries and makes it part of the cache key.
Aliasing decisions that are based on AA metadata (i.e. TBAA and
ScopedAA) are based *only* on AA metadata, so checking them with
different pointer values or sizes is not useful, the result will
always be the same.
While this change is a mild compile-time improvement by itself,
the actual goal here is to reduce the size of AA cache keys in
a followup change.
Differential Revision: https://reviews.llvm.org/D90098
Define -fatal-warnings to make warnings fatal, and accept /WX as an ML.EXE compatible alias for it.
Also make sure that if Warning() returns true, we always treat it as an error.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92504
Head files are included in a separate patch in case the name needs to be changed.
RV32 / 64:
clmul
clmulh
clmulr
Differential Revision: https://reviews.llvm.org/D99711
Forgot to amend the Author.
Original commit message:
Header files are included in a separate patch in case the name needs to be changed.
RV32 / 64:
orc.b
Differential Revision: https://reviews.llvm.org/D99320
Make variables and text-macro references case-insensitive, to match ml.exe.
Also improve error handling for text-macro expansion.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92503
Implementation for RISC-V Zbr extension intrinsic.
Header files are included in separate patch in case the name needs to be changed
RV32 / 64:
crc32b
crc32h
crc32w
crc32cb
crc32ch
crc32cw
RV64 Only:
crc32d
crc32cd
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99009
For positive constants we try shifting left to remove leading zeros
and fill the bottom bits with 1s. We then materialize that constant
shift it right.
This patch adds a new strategy to try filling the bottom bits with
zeros instead. This catches some additional cases.
When run under valgrind, or with a malloc that poisons freed memory,
this can lead to segfaults or other problems.
To avoid modifying the AdditionalUsers DenseMap while still iterating,
save the instructions to be notified in a separate SmallPtrSet, and use
this to later call OperandChangedState on each instruction.
Fixes PR49582.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D98602
This patch moves mapping of IR operands to VPValues out of
tryToCreateWidenRecipe. This allows using existing VPValue operands when
widening recipes directly, which will be introduced in future patches.
The safepoints being inserted exists to free memory, or coordinate with another thread to do so. Thus, we must strip any inferred attributes and reinfer them after the lowering.
I'm not aware of any active miscompiles caused by this, but since I'm working on strengthening inference of both and leveraging them in the optimization decisions, I figured a bit of future proofing was warranted.
Change the definition of G_SBFX and G_UBFX so that the lsb and width
can have different types than the src and dst operands.
Differential Revision: https://reviews.llvm.org/D99739
The ultimate reduction node may have multiple uses, but if the ultimate
reduction is min/max reduction and based on SelectInstruction, the
condition of this select instruction must have only single use.
Differential Revision: https://reviews.llvm.org/D99753
In order to bring up scalable vector support in LLVM incrementally,
we introduced behaviour to emit a warning, instead of an error, when
asking the wrong question of a scalable vector, like asking for the
fixed number of elements.
This patch puts that behaviour under a flag. The default behaviour is
that the compiler will always error, which means that all LLVM unit
tests and regression tests will now fail when a code-path is taken that
still uses the wrong interface.
The behaviour to demote an error to a warning can be individually enabled
for tools that want to support experimental use of scalable vectors.
This patch enables that behaviour when driving compilation from Clang.
This means that for users who want to try out scalable-vector support,
fixed-width codegen support, or build user-code with scalable vector
intrinsics, Clang will not crash and burn when the compiler encounters
such a case.
This allows us to do away with the following pattern in many of the SVE tests:
RUN: .... 2>%t
RUN: cat %t | FileCheck --check-prefix=WARN
WARN-NOT: warning: ...
The behaviour to emit warnings is only temporary and we expect this flag
to be removed in the future when scalable vector support is more stable.
This patch also has fixes the following tests:
unittests:
ScalableVectorMVTsTest.SizeQueries
SelectionDAGAddressAnalysisTest.unknownSizeFrameObjects
AArch64SelectionDAGTest.computeKnownBitsSVE_ZERO_EXTEND_VECTOR_INREG
regression tests:
Transforms/InstCombine/vscale_gep.ll
Reviewed By: paulwalker-arm, ctetreau
Differential Revision: https://reviews.llvm.org/D98856
The motivation for this patch is to better estimate the cost of
extracelement instructions in cases were they are going to be free,
because the source vector can be used directly.
A simple example is
%v1.lane.0 = extractelement <2 x double> %v.1, i32 0
%v1.lane.1 = extractelement <2 x double> %v.1, i32 1
%a.lane.0 = fmul double %v1.lane.0, %x
%a.lane.1 = fmul double %v1.lane.1, %y
Currently we only consider the extracts free, if there are no other
users.
In this particular case, on AArch64 which can fit <2 x double> in a
vector register, the extracts should be free, independently of other
users, because the source vector of the extracts will be in a vector
register directly, so it should be free to use the vector directly.
The SLP vectorized version of noop_extracts_9_lanes is 30%-50% faster on
certain AArch64 CPUs.
It looks like this does not impact any code in
SPEC2000/SPEC2006/MultiSource both on X86 and AArch64 with -O3 -flto.
This originally regressed after D80773, so if there's a better
alternative to explore, I'd be more than happy to do that.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99719
D99717 introduced some test cases which showed that the output of one
vsetvli into another would not be picked up by the RISCVCleanupVSETVLI
pass. This patch teaches the optimization about such a pattern. The
pattern is quite common when using the RVV vsetvli intrinsic to pass the
VL onto other intrinsics.
The second test case introduced by D99717 is left unoptimized by this
patch. It is a rarer case and will require us to rewire any uses of the
redundant vset[i]vli's output to the previous one's.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99730
Support reassociation for min/max. With that we should be able to transform min(min(a, b), c) -> min(min(a, c), b) if min(a, c) is already available.
Reviewed By: mkazantsev, lebedev.ri
Differential Revision: https://reviews.llvm.org/D88287
Recently we switched to use InvalidProbeCount = UINT64_MAX (instead of 0) to represent dangling probe, but UINT64_MAX is not excluded when computing profile summary. This caused profile summary to produce incorrect hot/cold threshold. The change fixed it by excluding UINT64_MAX from summary builder.
Differential Revision: https://reviews.llvm.org/D99788
This is a patch to fix the bug in alignment calculation (see https://reviews.llvm.org/D90529#2619492).
Consider this code:
```
call void @llvm.assume(i1 true) ["align"(i32* %a, i32 32, i32 28)]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 -1
; aligment of %arrayidx?
```
The llvm.assume guarantees that `%a - 28` is 32-bytes aligned, meaning that `%a` is 32k + 28 for some k.
Therefore `a - 4` cannot be 32-bytes aligned but the existing code was calculating the pointer as 32-bytes aligned.
The reason why this happened is as follows.
`DiffSCEV` stores `%arrayidx - %a` which is -4.
`OffSCEV` stores the offset value of “align”, which is 28.
`DiffSCEV` + `OffSCEV` = 24 should be used for `a - 4`'s offset from 32k, but `DiffSCEV` - `OffSCEV` = 32 was being used instead.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D98759
The code is assuming that having an exact exit count for the loop implies that exit counts for every exit are known. This used to be true, but when we added handling for dead exits we broke this invariant. The new invariant is that an exact loop count implies that any exits non trivially dead have exit counts.
We could have fixed this by either a) explicitly checking for a dead exit, or b) just testing for SCEVCouldNotCompute. I chose the second as it was simpler.
(Debugging this took longer than it should have since I'd mistyped the original assert and it wasn't checking what it was meant to...)
p.s. Sorry for the lack of test case. Getting things into a state to actually hit this is difficult and fragile. The original repro involves loop-deletion leaving SCEV in a slightly inprecise state which lets us bypass other transforms in IndVarSimplify on the way to this one. All of my attempts to separate it into a standalone test failed.
This occurs when we type legalize an i64 scalar input on RV32. We
need to manually splat, which requires a vector input. Rather
than special case this in lowering just pattern match it.
This removes the restriction that only Thumb2 targets enable runtime
loop unrolling, allowing it for Thumb1 only cores as well. The existing
T2 heuristics are used (for the time being) to control when and how
unrolling is performed.
Differential Revision: https://reviews.llvm.org/D99588
The default legalization strategy is PromoteFloat which keeps
half in single precision format through multiple floating point
operations. Conversion to/from float is done at loads, stores,
bitcasts, and other places that care about the exact size being 16
bits.
This patches switches to the alternative method softPromoteHalf.
This aims to keep the type in 16-bit format between every operation.
So we promote to float and immediately round for any arithmetic
operation. This should be closer to the IR semantics since we
are rounding after each operation and not accumulating extra
precision across multiple operations. X86 is the only other
target that enables this today. See https://reviews.llvm.org/D73749
I had to update getRegisterTypeForCallingConv to force f16 to
use f32 when the F extension is enabled. This way we can still
pass it in the lower bits of an FPR for ilp32f and lp64f ABIs.
The softPromoteHalf would otherwise always give i16 as the
argument type.
Reviewed By: asb, frasercrmck
Differential Revision: https://reviews.llvm.org/D99148
This implements the most basic possible nosync inference. The choice of inference rule is taken from the comments in attributor and the discussion on the review of the change which introduced the nosync attribute (0626367202).
This is deliberately minimal. As noted in code comments, I do plan to add a more robust inference which actually scans the function IR directly, but a) I need to do some refactoring of the attributor code to use common interfaces, and b) I wanted to get something in. I also wanted to minimize the "interesting" analysis discussion since that's time intensive.
Context: This combines with existing nofree attribute inference to help prove dereferenceability in the ongoing deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D99749
Hookup TLI when inferring object size from allocation calls. This allows the analysis to prove dereferenceability for known allocation functions (such as malloc/new/etc) in addition to those marked explicitly with the allocsize attribute.
This is a follow up to 0129cd5 now that the bug fixed by e2c6621e6 is resolved.
As noted in the test, this relies on being able to prove that there is no free between allocation and context (e.g. hoist location). At the moment, this is handled conservatively. I'm working strengthening out ability to reason about no-free regions separately.
Differential Revision: https://reviews.llvm.org/D99737
We have this logic duplicated in several cases, none of which were exhaustive. Consolidate it in one place.
I don't believe this actually impacts behavior of the callers. I think they all filter their inputs such that their partial implementations were correct. If not, this might be fixing a cornercase bug.
We need to splat the scalar separately and use .vv, but there is
no vmsgt(u).vv. So add isel patterns to select vmslt(u).vv with
swapped operands.
We also need to get VT to use for the splat from an operand rather
than the result since the result VT is nxvXi1.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D99704
There's no target independent ISD opcode for MULHSU, so custom
legalize 2*XLen multiplies ourselves. We have to be a little
careful to prefer MULHU or MULHSU.
I thought about doing this in isel by pattern matching the
(add (mul X, (srai Y, XLen-1)), (mulhu X, Y)) pattern. I decided
against this because the add might become part of a chain of adds.
I don't trust DAG combine not to reassociate with other adds making
it difficult to find both pieces again.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D99479
Doing this during instruction selection avoids the cost of running
SIAddIMGInit which is yet another pass over the MIR.
Differential Revision: https://reviews.llvm.org/D99670
Doing this in a post-isel hook avoids the cost of running SIAddIMGInit
which is yet another pass over the MIR.
Differential Revision: https://reviews.llvm.org/D99747
This adds a new integer materialization strategy mainly targeted
at 64-bit constants like 0xffffffff where there are 32 or more trailing
ones with leading zeros. We can materialize these by using an addi -1
and srli to restore the leading zeros. This matches what gcc does.
I haven't limited to just these cases though. The implementation
here takes the constant, shifts out all the leading zeros and
shifts ones into the LSBs, creates the new sequence, adds an srli,
and checks if this is shorter than our original strategy.
I've separated the recursive portion into a standalone function
so I could append the new strategy outside of the recursion. Since
external users are no longer using the recursive function, I've
cleaned up the external interface to return the sequence instead of
taking a vector by reference.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D98821
Support deriving dereferenceability facts from allocation sites with known object sizes while correctly accounting for any possibly frees between allocation and use site. (At the moment, we're conservative and only allowing it in functions where we know we can't free.)
This is part of the work on deref-at-point semantics. I'm making the change unconditional as the miscompile in this case is way too easy to trip by accident, and the optimization was only recently added (by me).
There will be a follow up patch wiring through TLI since that should now be doable without introducing widespread miscompiles.
Differential Revision: https://reviews.llvm.org/D95815
The main part of the patch is the change in RegAllocGreedy.cpp: Q.collectInterferringVregs()
needs to be called before iterating the interfering live ranges.
The rest of the patch offers support that is the case: instead of clearing the query's
InterferingVRegs field, we invalidate it. The clearing happens when the live reg matrix
is invalidated (existing triggering mechanism).
Without the change in RegAllocGreedy.cpp, the compiler ices.
This patch should make it more easily discoverable by developers that
collectInterferringVregs needs to be called before iterating.
I will follow up with a subsequent patch to improve the usability and maintainability of Query.
Differential Revision: https://reviews.llvm.org/D98232
- This patch adds in support to accept the "#" character as part of an Identifier.
- This support is needed especially for the HLASM dialect since "#" is treated as part of the valid "Alphabet" range
- The way this is done is by making use of the previous precedent set by the `AllowAtInIdentifier` field in `MCAsmLexer.h`. A new field called `AllowHashInIdentifier` is introduced.
- The static function `IsIdentifierChar` is also updated to accept the `#` character if the `AllowHashInIdentifier` field is set to true.
Note: The field introduced in `MCAsmLexer.h` could very well be moved to `MCAsmInfo.h`. I'm not opposed to it. I decided to put it in `MCAsmLexer` since there seems to be some sort of precedent already with `AllowAtInIdentifier`.
Reviewed By: abhina.sreeskantharajan, nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D99277
When an SVE function calls another SVE function using the C calling
convention we use the more efficient SVE VectorCall PCS. However,
for the Fast calling convention we're incorrectly falling back to
the generic AArch64 PCS.
This patch adds the same "can use SVE vector calling convention"
detection used by CallingConv::C to CallingConv::Fast.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D99657
1. Need to cleanup InstrElementSize map for each new tree, otherwise might
use sizes from the previous run of the vectorization attempt.
2. No need to include into analysis the instructions from the different basic
blocks to save compile time.
Differential Revision: https://reviews.llvm.org/D99677
If the inner shuffle already contains undef elements, then accept them in the merged shuffle as well.
This helps some X86 HADD/SUB patterns where slow targets were ending up with HADD/SUB because the (un)merged shuffles were stuck either side of the ADD/SUB - meaning we ended up with a total cost much higher than the "2*shuffle+add" that a slow target usually expands a HADD/SUB to.
By convention, VOP1/2/C instructions which can be promoted to VOP3 have _e32 suffix while promoted instructions have _e64 suffix. Instructions which have a single variant should have no _e32/_e64 suffix. Unfortunately there was no simple way to identify single variant instructions - it was implemented by a hack. See bug https://bugs.llvm.org/show_bug.cgi?id=39086.
This fix simplifies handling of single VOP instructions by adding a dedicated flag.
Differential Revision: https://reviews.llvm.org/D99408
Removes CFGAnalyses from the preserved analyses set
returned by LoopFlattenPass::run().
Reviewed By: Dave Green, Ta-Wei Tu
Differential Revision: https://reviews.llvm.org/D99700
A frequent pattern for floating point conditional branches use an xor
to invert the input for the branch. Instead we can fold away the xor
by swapping the branch target instead.
Differential Revision: https://reviews.llvm.org/D99171
Name GVN uses name 'LI' for two different unrelated things:
LoadInst and LoopInfo. This patch relates the variables with
former meaning into 'Load' to disambiguate the code.
Before this change, the `llvm.access.group` metadata was dropped
when moving a load instruction in GVN. This prevents vectorizing
a C/C++ loop with `#pragma clang loop vectorize(assume_safety)`.
This change propagates the metadata as well as other metadata if
it is safe (the move-destination basic block and source basic
block belong to the same loop).
Differential Revision: https://reviews.llvm.org/D93503
This commit adjusts the order of two swappable if statements to
make code cleaner.
Reviewed By: lattner, nikic
Differential Revision: https://reviews.llvm.org/D99648
This allows these optimisations to apply to e.g. `urem i16` directly
before `urem` is promoted to i32 on architectures where i16 operations
are not intrinsically legal (such as on Aarch64). The legalization then
later can happen more directly and generated code gets a chance to avoid
wasting time on computing results in types wider than necessary, in the end.
Seems like mostly an improvement in terms of results at least as far as x86_64 and aarch64 are concerned, with a few regressions here and there. It also helps in preventing regressions in changes like {D87976}.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88785
While probing stack, the stack register is moved without dwarf
information, which could cause panic if unwind the backtrace.
This commit only add annotation for the inline stack probe case.
Dwarf information for the loop case should be done in another
patch and need further discussion.
Reviewed By: nagisa
Differential Revision: https://reviews.llvm.org/D99579
Use SetVector instead of SmallPtrSet to track values with uniform use. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test consecutive-ptr-uniforms.ll .
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99549
Removes the prototype builtin and intrinsic for i64x2.eq and implements that
instruction as well as the other i64x2 comparison instructions in the final SIMD
spec. Unsigned comparisons were not included in the final spec, so they still
need to be scalarized via a custom lowering.
Differential Revision: https://reviews.llvm.org/D99623
This is a patch teaching ValueTracking that `s/u*.with.overflow` intrinsics do not
create undef/poison and they propagate poison.
I couldn't write a nice example like the one with ctpop; ValueTrackingTest.cpp were simply updated
to check these instead.
This patch helps reducing regression while fixing https://llvm.org/pr49688 .
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99671
This fixes an issue introduced with my change d4648e, and reported in pr49768.
The root problem is that dominance collapses in unreachable code, and that LoopInfo explicitly only models reachable code. Since the recurrence matcher doesn't filter by reachability (and can't easily because not all consumers have domtree), we need to bailout before assuming that finding a recurrence implies we found a loop.
The default expansion creates a MUL and either a MULHS/MULHU. Each
of those separately expand to sequences that use one or more
PMULLW instructions as well as additional instructions to
extend the types to vXi16. The MULHS/MULHU expansion computes the
whole 16-bit product, but only keeps the high part.
We can improve the lowering of SMULO/UMULO for some cases by using the MULHS/MULHU
expansion, but keep both the high and low parts. And we can use
those parts to calculate the overflow.
For AVX512 we might have vXi1 overflow outputs. We can improve those by using
vpcmpeqw to produce a k register if AVX512BW is enabled. This is a little better
than truncating the high result to use vpcmpeqb. If we don't have avx512bw we
can extend up to v16i32 to use vpcmpeqd to produce a k register.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97624
On ppc64 linux , MachineLICM will hoist caller preserved registers, including TOC loads of the global variable address, out of loops. This is to enable this on AIX for both ppc64 and ppc32.
Differential Revision: https://reviews.llvm.org/D99076
We previously couldn't optimize out a TEST if the branch/setcc/cmov
used the overflow flag. This patches allows the TEST to be removed
if the flag producing instruction is known to clear the OF flag.
Thats what the TEST instruction would have done so that should be
equivalent.
Need to add test cases. I'll try to get back to this if I have bandwidth.
Fixes PR48768.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D94856
in this patch we add a new libLTO API to specify debug options independent of an lto_code_gen_t.
This allows clients to pass codegen flags (through libLTO) which otherwise today are ignored.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D92611
Our CLZW isel pattern is quite easily broken by surrounding code
preventing it from matching sometimes. This usually results in
failing to remove the and X, 0xffffffff inserted by type
legalization. The add with -32 that type legalization also inserts
will often gets combined into other add/sub nodes. That doesn't
usually result in extra code when we don't use clzw.
CTTZ seems to be less fragile, but I wanted to keep it consistent
with CTLZ.
Reviewed By: asb, HsiangKai
Differential Revision: https://reviews.llvm.org/D99317
Also modify the simm5_plus1 check because Imm-1 is UB if Imm happens
to be INT64_MIN. I don't think the compiler would optimize based on that in this
usage, but it could fail UBSan or -ftrapv.
Reviewed By: HsiangKai, frasercrmck
Differential Revision: https://reviews.llvm.org/D99637
This marks FSIN and other operations to EXPAND for scalable
vectors, so that they are not assumed to be legal by the cost-model.
Depends on D97470
Reviewed By: dmgreen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D97471
Attempts to compute savings more accurately cannot impact the set of critically important call sites.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D98577
This is an improvement over Zen 2, where only branch fusion is supported,
as per Agner, 21.4 Instruction fusion.
AMD SOG 17h has no mention of fusion.
AMD SOG 19h, 2.9.3 Branch Fusion
The following flag writing instructions support branch fusion
with their reg/reg, reg/imm and reg/mem forms
* CMP
* TEST
* SUB
* ADD
* INC (no fusion with branches dependent on CF)
* DEC (no fusion with branches dependent on CF)
* OR
* AND
* XOR
Agner, 22.4 Instruction fusion
<...> This applies to CMP, TEST, ADD, SUB, AND, OR, XOR, INC, DEC and
all conditional jumps, except if the arithmetic or logic instruction has a rip-relative address or
both an address displacement and an immediate operand.
This adds almost everything required for supporting the new stepvector
intrinsic on RVV. It is lowered to the existing VID_VL SDNode.
The only exception is a limitation that RV32 cannot yet lower the
intrinsic on i64 vectors. This is because the step operand is
(currently) required to be at least as large as the vector element type.
I will look into patching that out and loosening the requirement to only
an integer pointer type.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99594
This includes gfx908 which only has a no-return version of the
global_atomic_add_f32 instruction, using the same hack that was
previously implemented for selecting from the
llvm.amdgcn.global.atomic.fadd intrinsic.
Differential Revision: https://reviews.llvm.org/D97767
Currently the code only checks for integer constants (ConstantSDNode)
and triggers an infinite cycle for single-element floating point
vector constants. We need to check for both FP and integer constants.
Reviewed By: t.p.northover
Differential Revision: https://reviews.llvm.org/D99384
Adds utilities for creating anonymous pointers and jump stubs to x86_64.h. These
are used by the GOT and Stubs builder, but may also be used by pass writers who
want to create pointer stubs for indirection.
This patch also switches the underlying type for LinkGraph content from
StringRef to ArrayRef<char>. This avoids any confusion when working with buffers
that contain null bytes in the middle like, for example, a newly added null
pointer content array. ;)
Summary: Try to insert dbg.declare to entry.resume basic block in resume
function. In this way, we could print alloca such as __promise in
gdb/lldb under O2, which would be beneficial to debug coroutine program.
Test Plan: check-llvm
Reviewed by: aprantl
Differential Revision: https://reviews.llvm.org/D96938
We only use this in Pat patterns, so it just needs to be an
ImmLeaf. If we did need it as an instruction operand, the
ParserMatchClass, EncoderMethod, and DecoderMethod were probably wrong.
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp: In member function ‘bool llvm::CombinerHelper::matchFunnelShiftToRotate(llvm::MachineInstr&)’:
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp:3882:35: warning: ?: using integer constants in boolean context, the expression will always evaluate to ‘true’ [-Wint-in-bool-context]
3882 | Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
MemberOffsets are stored at the end of StructLayout. The class
contains a single entry array to mark the start of the member
offsets. getStructLayout calculates the additional space needed
for additional elements before allocating memory.
This patch converts this to use TrailingObjects. This simplifies
the size computation in getStructLayout and gets rid of the
single entry array.
This is prep work, but to use TypeSize instead of uint64_t for
D98169. The single entry array doesn't work with TypeSize because
TypeSize doesn't have a default constructor. We thought this
change was an improvement by itself so we've separated it out.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99608
The number of events and the type index should be encoded in ULEB128,
but they were incorrctly encoded in LEB128. The smallest number with
which its LEB128 and ULEB128 encodings are different is 64.
There's no way we can generate 64 events in the C++ toolchain
implementation so we can't test that, but the attached test tests when
the type index is 64.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D99627
another one for distributed mode.
Currently during module importing, ThinLTO opens all the source modules,
collect functions to be imported and append them to the destination module,
then leave all the modules open through out the lto backend pipeline. This
patch refactors it in the way that one source module will be closed before
another source module is opened. All the source modules will be closed after
importing phase is done. It will save some amount of memory when there are
many source modules to be imported.
Note that this patch only changes the distributed thinlto mode. For in
process thinlto mode, one source module is shared acorss different thinlto
backend threads so it is not changed in this patch.
Differential Revision: https://reviews.llvm.org/D99554
Mark v6m/v8m-baseline cores as having no branch predictors. This should
not alter very much on its own, but is more correct as the cores do not
have branch predictors and can help in the future.
Use SetVector instead of SmallPtrSet for external definitions created for VPlan.
Doing this can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM-Unit test VPRecipeTest.dump.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99544
This patch adds 3 methods, one for power-of-2 vectors which use tree
reductions using vector ops, before a final reduction op. For non-pow-2
types it generates multiple narrow reductions and combines the values with
scalar ops.
Differential Revision: https://reviews.llvm.org/D97163
For imported pattern purposes, we have a custom rule that promotes the rotate
amount to 64b as well.
Differential Revision: https://reviews.llvm.org/D99463
Negative numbers are represented using DW_OP_consts along with signed representation
of the number as the argument.
Test case IR is generated using Fortran front-end.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99273
Currently prof metadata with branch counts is added only for BranchInst and SwitchInst, but not for IndirectBrInst. As a result, BPI/BFI make incorrect inferences for indirect branches, which can be very hot.
This diff adds metadata for IndirectBrInst, in addition to BranchInst and SwitchInst.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99550
Use profiled call edges to augment the top-down order. There are cases that the top-down order computed based on the static call graph doesn't reflect real execution order. For example:
1. Incomplete static call graph due to unknown indirect call targets. Adjusting the order by considering indirect call edges from the profile can enable the inlining of indirect call targets by allowing the caller processed before them.
2. Mutual call edges in an SCC. The static processing order computed for an SCC may not reflect the call contexts in the context-sensitive profile, thus may cause potential inlining to be overlooked. The function order in one SCC is being adjusted to a top-down order based on the profile to favor more inlining.
3. Transitive indirect call edges due to inlining. When a callee function is inlined into into a caller function in LTO prelink, every call edge originated from the callee will be transferred to the caller. If any of the transferred edges is indirect, the original profiled indirect edge, even if considered, would not enforce a top-down order from the caller to the potential indirect call target in LTO postlink since the inlined callee is gone from the static call graph.
4. #3 can happen even for direct call targets, due to functions defined in header files. Header functions, when included into source files, are defined multiple times but only one definition survives due to ODR. Therefore, the LTO prelink inlining done on those dropped definitions can be useless based on a local file scope. More importantly, the inlinee, once fully inlined to a to-be-dropped inliner, will have no profile to consume when its outlined version is compiled. This can lead to a profile-less prelink compilation for the outlined version of the inlinee function which may be called from external modules. while this isn't easy to fix, we rely on the postlink AutoFDO pipeline to optimize the inlinee. Since the survived copy of the inliner (defined in headers) can be inlined in its local scope in prelink, it may not exist in the merged IR in postlink, and we'll need the profiled call edges to enforce a top-down order for the rest of the functions.
Considering those cases, a profiled call graph completely independent of the static call graph is constructed based on profile data, where function objects are not even needed to handle case #3 and case 4.
I'm seeing an average 0.4% perf win out of SPEC2017. For certain benchmark such as Xalanbmk and GCC, the win is bigger, above 2%.
The change is an enhancement to https://reviews.llvm.org/D95988.
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D99351
Basically a port of isBitfieldExtractOpFromSExtInReg in AArch64ISelDAGToDAG.
This is only done post-legalization for now. Once the legalizer knows how to
decompose these back into shifts, this requirement can probably be removed.
Differential Revision: https://reviews.llvm.org/D99230
Without Zfh the half type isn't legal, but it could still be
used as an argument/return in IR. Clang will not generate this today.
Previously we promoted the half value to float for arguments and
returns if the F extension is enabled but Zfh isn't. Then depending on
which ABI is enabled we would pass it in either an FPR or a GPR in
float format.
If the F extension isn't enabled, it would get passed in the lower
16 bits of a GPR in half format.
With this patch the value will always in half format and will be
in the lower bits of a GPR or FPR. This should be consistent
with where the bits are located when Zfh is enabled.
I've based this implementation off of how this is done on ARM.
I've manually nan-boxed the value to 32 bits using integer ops.
It looks like flw, fsw, fmv.s, fmv.w.x, fmf.x.w won't
canonicalize nans so should leave the value alone. I think those
are the instructions that could get used on this value.
Reviewed By: kito-cheng
Differential Revision: https://reviews.llvm.org/D98670
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
This was crashing with the example from:
https://llvm.org/PR49716
...and that was avoided with a283d72583 ,
but as we can see from the SSE vs. AVX test code diff,
we can try harder to match the pattern.
This matcher code was adapted from another pmadd pattern
match in D49636, but it needs different ops to deal with
size mismatches.
Differential Revision: https://reviews.llvm.org/D99531
This fixes the miscompilation reported in https://reviews.llvm.org/rG5bb38e84d3d0#986154 .
`select _, true, false` matches both m_LogicalAnd and m_LogicalOr, making later
transformations confused.
Simplify the branch condition to not have the form.
As another addition to MVE lane interleaving, this handles Splat shuffle
vectors, as the shuffle of a splat is a splat.
Differential Revision: https://reviews.llvm.org/D97291
This patch adds support for the vectorization of induction variables when
using scalable vectors, which required the following changes:
1. Removed assert from InnerLoopVectorizer::getStepVector.
2. Modified InnerLoopVectorizer::createVectorIntOrFpInductionPHI to use
a runtime determined value for VF and removed an assert.
3. Modified InnerLoopVectorizer::buildScalarSteps to work for scalable
vectors. I did this by calculating the full vector value for each Part
of the unroll factor (UF) and caching this in the VP state. This means
that we are always able to extract an arbitrary element from the vector
if necessary. In addition to this, I also permitted the caching of the
individual lane values themselves for the known minimum number of elements
in the same way we do for fixed width vectors. This is a further
optimisation that improves the code quality since it avoids unnecessary
extractelement operations when extracting the first lane.
4. Added an assert to InnerLoopVectorizer::widenPHIInstruction, since while
testing some code paths I noticed this is currently broken for scalable
vectors.
Various tests to support different cases have been added here:
Transforms/LoopVectorize/AArch64/sve-inductions.ll
Differential Revision: https://reviews.llvm.org/D98715
We previously made a change to getUserCost to return a Invalid cost
when one of the TTI costs returned '-1' (meaning 'unknown' or
'infinitely expensive'). It makes no sense to say that:
shufflevector <2 x i8> %x, <2 x i8> %y, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
has an invalid cost. Perhaps the cost is not known, but the IR is valid
and can be code-generated. Invalid should only be used for IR that
cannot possibly be code-generated and where a cost is nonsensical.
With more passes now asserting that the cost must be valid, it is possible
that those assertions will fail for perfectly valid IR. An incomplete
cost-model probably shouldn't be a reason for the compiler to break.
It's better to consider these costs as 'very expensive' and ignore them
for other reasons. At some point, we should consider replacing -1 with
some other mechanism.
Reviewed By: paulwalker-arm, dmgreen
Differential Revision: https://reviews.llvm.org/D99502
This option tells LLJIT to disable platform support explicitly: JITDylibs aren't scanned for special init/deinit symbols and no runtime API interposes are injected.
It's useful in two cases: for platforms that don't have such requirements and platforms for which we have no explicit support yet and that don't work well with the generic IR platform.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D99416
This is needed for Fortran assumed shape arrays whose dimensions are
defined as,
- 'count' is taken from array descriptor passed as parameter by
caller, access from descriptor is defined by type DIExpression.
- 'lowerBound' is defined by callee.
The current alternate way represents using upperBound in place of
count, where upperBound is calculated in callee in a temp variable
using lowerBound and count
Representation with count (DIExpression) is not only clearer as
compared to upperBound (DIVariable) but it has another advantage that
variable count is accessed by being parameter has better chance of
survival at higher optimization level than upperBound being local
variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99335
Empty functions (functions with no real code) are irrelevant for propeller optimizations and their addresses sometimes conflict with other functions which obfuscates the analysis.
This simple change skips the BB address map emission for such functions.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D99395
This commit adds debugging support for set types defined in languages
such as Pascal and Modula-2.
Patch by Peter McKinna!
Differential Revision: https://reviews.llvm.org/D76115
When I updated the SIMD opcodes in f5764a8654, I accidentally missed updating
i8x16.popcnt. This patch fixes the omission.
Differential Revision: https://reviews.llvm.org/D99536
Use SmallVector instead of SmallSet to track the context profiles mapped. Doing this
can help avoid non-determinism caused by iterating over unordered containers.
This bug was found with reverse iteration turning on,
--extra-llvm-cmake-variables="-DLLVM_REVERSE_ITERATION=ON".
Failing LLVM test profile-context-tracker-debug.ll .
Reviewed By: MaskRay, wenlei
Differential Revision: https://reviews.llvm.org/D99547
dsymutil is not relocating the DW_AT_low_pc for a DW_TAG_label. This
patch fixes that and adds a test.
Differential revision: https://reviews.llvm.org/D99534
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Currently performExtendCombine assumes that the src-element bitwidth * 2
is a valid MVT. But this is not the case for i1 and it causes a crash on
the v64i1 test cases added in this patch.
It turns out that this code appears to not be needed; the same patterns are
handled by other code and we end up with the same results, even without the
custom lowering. I also added additional test cases in a50037aaa6.
Let's just remove the unneeded code.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D99437
If the successor block has a phi node, then additional moves may
be inserted into predecessors, which may clobber eflags. Don't try
to fold the with.overflow result into the branch in that case.
This is done by explicitly checking for any phis in successor
blocks, not sure if there's some more principled way to address
this. Other fused compare and branch patterns avoid the issue by
emitting the comparison when handling the branch, so that no
instructions may be inserted in between. In this case, the
with.overflow call is emitted separately (and I don't think this
is avoidable, as it will generally have at least two users).
Fixes https://bugs.llvm.org/show_bug.cgi?id=49587.
Differential Revision: https://reviews.llvm.org/D98600
Note, only src0 and src1 will be commuted if the isCommutable flag
is set. This patch does not change that, it just makes it possible
to commute src0 and src1 of more instructions.
Reviewed By: foad, rampitec
Differential Revision: https://reviews.llvm.org/D99376
Change-Id: I61e20490962d95ea429beb355c55f55c024dafdc
D89239 adjusts the stack offset of emergency spill slots for overaligned
stacks. However the adjustment is not valid for targets whose stack
grows up (such as AMDGPU).
This change makes the adjustment conditional only to those targets whose
stack grows down.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49686
Differential Revision: https://reviews.llvm.org/D99504
This matches what we do in our isel patterns. In our internal
testing we've found this is needed to make the fast register
allocator happy at -O0. Otherwise it may assign V0 to an earlier
operand and find itself with no registers left when it reaches
the mask operand. By using V0 explicitly, the fast register allocator
will see it when it checks for phys register usages before it
starts allocating vregs. I'll try to update this with a test case.
Unfortunately, this does appear to prevent some instruction reordering
by the pre-RA scheduler which leads to the increased spills seen in
some tests. I suspect that problem could already occur for other
instructions that already used V0 directly.
There's a lot of repeated code here that could do with some
wrapper functions. Not sure if that should be at the level of the
new code that deals with V0. That would require multiple output
parameters to pass the glue, chain and register back. Maybe it
should be at a higher level over the entire set of push_backs.
Reviewed By: frasercrmck, HsiangKai
Differential Revision: https://reviews.llvm.org/D99367
Previously we only used RIP relative when PIC was enabled. But
we know we're in small/kernel code model here so we should
be able to always use RIP-relative which will give a smaller
encoding.
Here's a godbolt link that demonstrates the current codegen https://godbolt.org/z/j3158o
Note in the non-PIC version the load from .LCPI0_0 doesn't use
RIP-relative addressing, but if you change the constant in the
source from 0.0 to 1.0 it will become RIP-relative.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97208
In D97111 we changed the RVV frame layout when using sp or bp to address
the stack slots so we could address the emergency stack slot. The idea
is to put the RVV objects as far as possible (in offset terms) from the
frame reference register (sp / fp / bp).
When using fp this happens naturally because the RVV objects are already
the top of the stack and due to the constraints of RVV (VLENB being a
power of two >= 128) the stack remains aligned. The rest of this summary
does not apply to this case.
When using sp / bp we need to skip the non-RVV stack slots. The size of
the the non-RVV objects is computed subtracting the callee saved
register size (whose computation is added in D97111 itself) to the total
size of the stack (which does not account for RVV stack slots). However,
when doing so we round to 16 bytes when computing that size and we end
emitting a smaller offset that may belong to a scalar stack slot (see
D98801). So this change removes that rounding.
Also, because we want the RVV objects be between the non-RVV stack slots
and the callee-saved register slots, we need to make sure the RVV
objects are properly aligned to 8 bytes. Adding a padding of 8 would
render the stack unaligned. So when allocating space for RVV (only when
we don't use fp) we need to have extra padding that preserves the stack
alignment. This way we can round to 8 bytes the offset that skips the
non-RVV objects and we do not misalign the whole stack in the way. In
some circumstances this means that the RVV objects may have padding
before (=lower offsets from sp/bp) and after (before the CSR stack
slots).
Differential Revision: https://reviews.llvm.org/D98802
This change sets up a framework in llvm-profgen to estimate inline decision and adjust context-sensitive profile based on that. We call it a global pre-inliner in llvm-profgen.
It will serve two purposes:
1) Since context profile for not inlined context will be merged into base profile, if we estimate a context will not be inlined, we can merge the context profile in the output to save profile size.
2) For thinLTO, when a context involving functions from different modules is not inined, we can't merge functions profiles across modules, leading to suboptimal post-inline count quality. By estimating some inline decisions, we would be able to adjust/merge context profiles beforehand as a mitigation.
Compiler inline heuristic uses inline cost which is not available in llvm-profgen. But since inline cost is closely related to size, we could get an estimate through function size from debug info. Because the size we have in llvm-profgen is the final size, it could also be more accurate than the inline cost estimation in the compiler.
This change only has the framework, with a few TODOs left for follow up patches for a complete implementation:
1) We need to retrieve size for funciton//inlinee from debug info for inlining estimation. Currently we use number of samples in a profile as place holder for size estimation.
2) Currently the thresholds are using the values used by sample loader inliner. But they need to be tuned since the size here is fully optimized machine code size, instead of inline cost based on not yet fully optimized IR.
Differential Revision: https://reviews.llvm.org/D99146
during profile update.
When we inline a function and update the profile, the value profiles of the
indirect call in the inliner and inlinee will be scaled. In
https://reviews.llvm.org/D96806 and https://reviews.llvm.org/D97350, we start
using the magic number NOMORE_ICP_MAGICNUM (-1) to mark targets which have
been promoted. The magic number shouldn't be scaled during the profile update.
Although the problem has been suppressed by https://reviews.llvm.org/D98187
for SampleFDO, which stops profile update for inlining in sampleFDO, the patch
is still wanted since it will be more consistent to handle the magic number
properly in profile update.
Differential Revision: https://reviews.llvm.org/D99394
Re-apply 25fbe803d4, with a small update to emit the right remark
class.
Original message:
[LV] Move runtime pointer size check to LVP::plan().
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
This is currently performed in SelectionDAGLegalize, here we make it also
happen in LegalizeVectorOps, allowing a target to lower the SETCC condition
codes first in LegalizeVectorOps and then lower to a custom node afterwards,
without having to duplicate all of the SETCC condition legalization in the
target specific lowering.
As a result of this, fixed length floating point SETCC nodes can now be
properly lowered for SVE.
Differential Revision: https://reviews.llvm.org/D98939
This is a 2nd try of:
3c8473ba53
which was reverted at:
a26312f9d4
because of crashing.
This version includes extra code and tests to avoid the known
crashing examples as discussed in PR49730.
Original commit message:
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
This removes the need for the remaining doesNotMeet check and instead
directly checks if there are too many runtime checks for vectorization
in the planner.
A subsequent patch will adjust the logic used to decide whether to
vectorize with runtime to consider their cost more accurately.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98634
Using $ breaks demangling of the symbols. For example,
$ c++filt _Z3foov\$123
_Z3foov$123
This causes problems for developers who would like to see nice stack traces
etc., but also for automatic crash tracking systems which try to organize
crashes based on the stack traces.
Instead, use the period as suffix separator, since Itanium demanglers normally
ignore such suffixes:
$ c++filt _Z3foov.123
foo() [clone .123]
This is already done in some places; try to do it everywhere.
Differential revision: https://reviews.llvm.org/D97484
The following operations have no associated cost for them
when applied to scalable vectors, and as a consequence
can trigger a crash when a call is made to
AArch64TTIImpl::getCastInstrCost():
- fptrunc
- trunc
- fpext
- fpto(u,s)i
This patch adds costs for these operations and
relevant regression tests.
Differential Revision: https://reviews.llvm.org/D98934
This extends the recent MVE lane interleaving passto handle other
non-instruction leaves, for which a new shuffle is added. This helps
especially for constants and potentially for arguments.
Differential Revision: https://reviews.llvm.org/D97289
LLVMOrcDisposeObjectLayer and LLVMOrcExecutionSessionGetJITDylibByName did not
have matching signatures between the C-API header and binding implementations.
Fixes http://llvm.org/PR49745.
Patch by Mats Larsen. Thanks Mats!
Reviewed by: lhames
Differential Revision: https://reviews.llvm.org/D99478
This can only happen if offset types that are larger than the
pointer size are involved. The previous implementation did not
assert in this case because it initialized the APInts to the
width of one of the variables -- though I strongly suspect it
did not compute correct results in this case.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32621
reported by fhahn.
For these cases we need to extract the upper or lower elements,
multiply them using 16-bit multiplies and repack them.
Previously we used punpcklbw/punpckhbw+psraw or pmovsxbw+pshudfd to
extract and sign extend so we could use pmullw to compute the 16-bit
product and then shift down the high bits.
We can avoid the need to sign extend if we unpack the bytes into
the high byte of each word and fill the lower byte with 0 using
pxor. This puts the sign bit of each byte into the sign bit of
each word. Since the LHS and RHS have 8 trailing zeros, the full
32-bit product of those 16-bit values will have 16 trailing zeros.
This means the 16-bit product of the original bytes is in the upper
16 bits which we can calculate using pmulhw.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D98587
MVE does not have a single sext/zext or trunc instruction that takes the
bottom half of a vector and extends to a full width, like NEON has with
MOVL. Instead it is expected that this happens through top/bottom
instructions. So the MVE equivalent VMOVLT/B instructions take either
the even or odd elements of the input and extend them to the larger
type, producing a vector with half the number of elements each of double
the bitwidth. As there is no simple instruction for a normal extend, we
often have to expand sext/zext/trunc into a series of lane moves (or
stack loads/stores, which we do not do yet).
This pass takes vector code that starts at truncs, looks for
interconnected blobs of operations that end with sext/zext and
transforms them by adding shuffles so that the lanes are interleaved and
the MVE VMOVL/VMOVN instructions can be used. This is done pre-ISel so
that it can work across basic blocks.
This initial version of the pass just handles a limited set of
instructions, not handling constants or splats or FP, which can all come
as extensions to this base.
Differential Revision: https://reviews.llvm.org/D95804
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
If the sizes of both memory locations are unknown, we can only
perform a check on the underlying objects. There's no point in
going through GEP decomposition in this case.
This patch adds a new isIntOrFPConstant helper function to check if a
SDValue is a integer of FP constant. This pattern is used in various
places.
There also are places that incorrectly just check for integer constants,
e.g. D99384, so hopefully this helper will help people avoid that issue.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D99428
We have a special pattern for
(mul (and X, 0xffffffff), (and Y, 0xffffffff)), to optimize the
ANDs to shift. But if a sext_inreg coms first, we'll form a MULW
and limit the effectiveness of the special match. So this patch
adds a larger pattern to suppress the MULW formation by emitting
a sext.w and then the same output we use for the
(mul (and X, 0xffffffff), (and Y, 0xffffffff)). This should all
get CSEd.
This is the issue I was trying to fix with D99029, but that affected
many more tests.
The current linear expression decomposition handles zext/sext by
decomposing the casted operand, and then checking NUW/NSW flags
to determine whether the extension can be distributed. This has
some disadvantages:
First, it is not possible to perform a partial decomposition. If
we have zext((x + C1) +<nuw> C2) then we will fail to decompose
the expression entirely, even though it would be safe and
profitable to decompose it to zext(x + C1) +<nuw> zext(C2)
Second, we may end up performing unnecessary decompositions,
which will later be discarded because they lack nowrap flags
necessary for extensions.
Third, correctness of the code is not entirely obvious: At a high
level, we encounter zext(x -<nuw> C) in the form of a zext on the
linear expression x + (-C) with nuw flag set. Notably, this case
must be treated as zext(x) + -zext(C) rather than zext(x) + zext(-C).
The code handles this correctly by speculatively zexting constants
to the final bitwidth, and performing additional fixup if the
actual extension turns out to be an sext. This was not immediately
obvious to me.
This patch inverts the approach: An ExtendedValue represents a
zext(sext(V)), and linear expression decomposition will try to
decompose V further, either by absorbing another sext/zext into the
ExtendedValue, or by distributing zext(sext(x op C)) over a binary
operator with appropriate nsw/nuw flags. At each step we can
determine whether distribution is legal and abort with a partial
decomposition if not. We also know which extensions we need to
apply to constants, and don't need to speculate or fixup.
Remove VBROADCAST/MOVDDUP/splat-shuffle handling from foldShuffleOfHorizOp
This can all be handled by canonicalizeShuffleMaskWithHorizOp along as we check that the HADD/SUB are only used once (to prevent infinite loops on slow-horizop targets which will try to reuse the nodes again followed by a post-hop shuffle).
While explicit sext instructions were handled correctly, the
implicit sext that occurs if the offset is smaller than the
pointer size blindly assumed that sext(X * Scale + Offset) is the
same as sext(X) * Scale + Offset, which is obviously not correct.
Fix this by extracting the code that handles linear expression
extension and reusing it for the implicit sext as well.
A number of variables need to be correctly initialized on entry
to GetLinearExpression() for the implementation to behave reasonably.
The fact that SExtBits can currenlty be non-zero on entry is a bug,
as demonstrated by the added test: For implicit sexts by the GEP,
we do currently skip legality checks.
Currently, we'd produce an incorrect decomposition, because we
already recursively called GetLinearExpression(), so the Scale=1,
Offset=0 will not necessarily be relative to the shl itself.
Now, this doesn't actually matter for functional correctness,
because such a shift is poison anyway, so its okay to return
an incorrect decomposition. It's still unnecessarily confusing
though, and we can easily avoid this by checking the bitwidth
earlier.
Nowrap flags between mul and shl differ in that mul nsw allows
multiplication of 1 * INT_MIN, while shl nsw does not. This means
that it is always fine to transfer shl nowrap flags to muls, but
not necessarily the other way around. In this case the NUW/NSW
results refer to mul/add operations, so it's fine to retain the
flags from the shl.
See if the combined shuffle mask is equivalent to an identity shuffle, typically this is due to repeated LHS/RHS ops in horiz-ops, but isTargetShuffleEquivalent might see other patterns as well.
This is another small step towards getting rid of foldShuffleOfHorizOp and relying on canonicalizeShuffleMaskWithHorizOp and generic shuffle combining.
This is a small patch to make FoldBranchToCommonDest poison-safe by default.
After fc3f0c9c, only two syntactic changes are needed to fix unit tests.
This does not cause any assembly difference in testsuite as well (-O3, X86-64 Manjaro).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99452
It's unlikely that FMADD and FMSUB would have different scheduling
information so merge them.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D99140
During context promotion, intermediate nodes that are on a call path but do not come with a profile can be promoted together with their parent nodes. Do not print sample context string for such nodes since they do not have profile.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D99441
I've used IALU for the simplest operations from Zbb:
min, minu, max, maxu, sext.b, sext.h, zext.h, andn, orn, xnor
I've put add.uw in IALU32 and slli.uw in ShiftImm32.
Remaining instructions have received new classes.
All 3 sh*add are grouped together. sh*add.uw are grouped together.
Rotate left and right are together. Everything else got their own
class containing one instruction.
I think what I have here is the minimum granularity we need. I
could be convinced that we need more classes.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D99040
Handle (x << s) != (y << s) where x != y and the shifts are
non-wrapping. Once again, this establishes parity with the
corresponing mul fold that already exists. The shift case is
more powerful because we don't need to guard against multiplies
by zero.
This handles the pattern X != X << C for non-zero X and C and a
non-overflowing shift. This establishes parity with the corresponing
fold for multiplies.
This is mainly for clarity: It doesn't make sense to do any
negative/positive checks when dealing with a nuw add/mul. These
only make sense to nsw add/mul.
If the result of an atomic operation is not used then it can be more
efficient to build a reduction across all lanes instead of a scan. Do
this for GFX10, where the permlanex16 instruction makes it viable. For
wave64 this saves a couple of dpp operations. For wave32 it saves one
readlane (which are generally bad for performance) and one dpp
operation.
Differential Revision: https://reviews.llvm.org/D98953
Add the constraint when destination EEW not equals the source EEW for
correctness.
The RVV spec has three register overlap rules and I implement the first
stricter constraint because the others are difficult to enforce.
Reviewed By: frasercrmck, craig.topper
Differential Revision: https://reviews.llvm.org/D98920
This reverts commit 3c8473ba53 and includes test diffs to
maintain testing status.
There's at least 1 place that was not updated with 7202f47508 ,
so we can crash mismatching select and intrinsics as shown in
PR49730.
This patch simplifies the calculation of certain costs in
getInstructionCost when isScalarAfterVectorization() returns a true value.
There are a few places where we multiply a cost by a number N, i.e.
unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
return N * TTI.getArithmeticInstrCost(...
After some investigation it seems that there are only these cases that occur
in practice:
1. VF is a scalar, in which case N = 1.
2. VF is a vector. We can only get here if: a) the instruction is a
GEP/bitcast with scalar uses, or b) this is an update to an induction variable
that remains scalar.
I have changed the code so that N is assumed to always be 1. For GEPs
the cost is always 0, since this is calculated later on as part of the
load/store cost. For all other cases I have added an assert that none of the
users needs scalarising, which didn't fire in any unit tests.
Only one test required fixing and I believe the original cost for the scalar
add instruction to have been wrong, since only one copy remains after
vectorisation.
Differential Revision: https://reviews.llvm.org/D98512
This patch should fix the errors shown on the Windows bots by turning off text mode. I plan to investigate a better fix but this should unblock the buildbots for now.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99363
This patch enables the cost-benefit-analysis-based inliner by default
if we have instrumentation profile.
- SPEC CPU 2017 shows a 0.4% improvement.
- An internal large benchmark shows a 0.9% reduction in the cycle
count along with 14.6% reduction in the number of call instructions
executed.
Differential Revision: https://reviews.llvm.org/D98213
When prioritize call site to consider for inlining in sample loader, use number of samples as a first tier breaker before using name/guid comparison. This would favor smaller functions when hotness is the same (from the same block). We could try to retrieve accurate function size if this turns out to be more important.
Differential Revision: https://reviews.llvm.org/D99370
JITLink now requires section names to be unique. In MachO section names are only
guaranteed to be unique within their containing segment (e.g. a '__const' section
in the '__DATA' segment does not clash with a '__const' section in the '__TEXT'
segment), so we need to use the fully qualified <segment>,<section> section
names (e.g. '__DATA,__const' or '__TEXT,__const') when constructing
jitlink::Sections for MachO objects.
Darwin platforms for both AArch64 and X86 can provide optimized `bzero()`
routines. In this case, it may be preferable to use `bzero` in place of a
memset of 0.
This adds a G_BZERO generic opcode, similar to G_MEMSET et al. This opcode can
be generated by platforms which may want to use bzero.
To emit the G_BZERO, this adds a pre-legalize combine for AArch64. The
conditions for this are largely a port of the bzero case in
`AArch64SelectionDAGInfo::EmitTargetCodeForMemset`.
The only difference in comparison to the SelectionDAG code is that, when
compiling for minsize, this will fire for all memsets of 0. The original code
notes that it's not beneficial to do this for small memsets; however, using
bzero here will save a mov from wzr. For minsize, I think that it's preferable
to prioritise omitting the mov.
This also fixes a bug in the libcall legalization code which would delete
instructions which could not be legalized. It also adds a check to make sure
that we actually get a libcall name.
Code size improvements (Darwin):
- CTMark -Os: -0.0% geomean (-0.1% on pairlocalalign)
- CTMark -Oz: -0.2% geomean (-0.5% on bullet)
Differential Revision: https://reviews.llvm.org/D99358
getPointersDiff would previously round down the difference between two
pointers to a multiple of the element size of the pointee, which could
result in a pointer value being decreased a little.
Alexey Bataev has graciously agreed to add a testcase for this;
submitting the bugfix now to unblock.
This permits extern function (BTF_KIND_FUNC) be added
to BTF_KIND_DATASEC if a section name is specified.
For example,
-bash-4.4$ cat t.c
void foo(int) __attribute__((section(".kernel.funcs")));
int test(void) {
foo(5);
return 0;
}
The extern function foo (BTF_KIND_FUNC) will be put into
BTF_KIND_DATASEC with name ".kernel.funcs".
This will help to differentiate two kinds of external functions,
functions in kernel and functions defined in other bpf programs.
Differential Revision: https://reviews.llvm.org/D93563
loop:
%cmp.0 = phi i32 [ 3, %entry ], [ %inc, %loop ]
%pos.0 = phi i32 [ 1, %entry ], [ %cmp.0, %loop ]
...
%inc = add i32 %cmp.0, 1
br label %loop
On above example, %pos.0 uses previous iteration's %cmp.0 with backedge
according to PHI's instruction's defintion. If the %inc is not same among
iterations, we can say the two PHIs are not same.
Differential Revision: https://reviews.llvm.org/D98422
In DeadArgumentElimination pass, if a function's argument is never used, corresponding caller's parameter can be changed to undef. If the param/arg has attribute noundef or other related attributes, LLVM LangRef(https://llvm.org/docs/LangRef.html#parameter-attributes) says its behavior is undefined. SimplifyCFG(D97244) takes advantage of this behavior and does bad transformation on valid code.
To avoid this undefined behavior when change caller's parameter to undef, this patch removes noundef attribute and other attributes imply noundef on param/arg.
Differential Revision: https://reviews.llvm.org/D98899
All of these are scoped allocations which remain dereferenceable during the lifetime of the callee.
Differential Revision: https://reviews.llvm.org/D99310
getMinRVVVectorSizeInBits() asserts if the V extension isn't
enabled. So check that gather/scatter is legal first since it
already contains a check for V extension being enabled. It
also already checks getMinRVVVectorSizeInBits for fixed length
vectors so we don't need a check in getGatherScatterOpCost.
Instructions that have more uops than the processor's IssueWidth are
issued in multiple cycles.
The patch fixes PR49712.
Differential Revision: https://reviews.llvm.org/D99339
This *only* changes the cases where we *really* don't care
about the iteration order of the underlying contained,
namely when we will use the values from it to form DTU updates.
Rather than special-casing assume in BasicAA getModRefBehavior(),
do this one level higher, in the attribute handling of CallBase.
For assumes with operand bundles, the inaccessiblememonly attribute
applies regardless of operand bundles.
The function utilizes Windows' SearchPathW function, which as I found out today, may also return directories. After looking at the Unix implementation of the file I found that it contains a check whether the found path is also executable. While fixing the Windows implementation, I also learned that sys::fs::access returns successfully when querying whether directories are executable, which the Unix version does not.
This patch makes both of these functions equivalent to their Unix implementation and insures that any path returned by sys::findProgramByName on Windows may only be executable, just like the Unix implementation.
The equivalent additions I have made to the Windows implementation, in the Unix implementation are here:
sys::findProgramByName: 39ecfe6143/llvm/lib/Support/Unix/Program.inc (L90)
sys::fs::access: c2a84771bb/llvm/lib/Support/Unix/Path.inc (L608)
I encountered this issue when running the LLVM testsuite. Commands of the form not test ... would fail to correctly execute test.exe, which is part of GnuWin32, as it actually tried to execute a folder called test, which happened to be in a directory on my PATH.
Differential Revision: https://reviews.llvm.org/D99357
If a WhileLoopStartLR is reverted due to calls in the preheader, we may
still be able to instead create a DoLoopStart, preserving the low
overhead loop. This adds code for that, only reverting the
WhileLoopStartR to a Br/Cmp, leaving the rest of the low overhead loop
in place.
Differential Revision: https://reviews.llvm.org/D98413
We look for this pattern frequently in isel patterns so its a
good idea to try to preserve it.
This also let's us remove our special isel handling for srliw
and use a direct pattern match of (srl (and X, 0xffffffff), C)
since no bits will be removed from the and mask.
Differential Revision: https://reviews.llvm.org/D99042
The SCEV commit b46c085d2b [NFCI] SCEVExpander:
emit intrinsics for integral {u,s}{min,max} SCEV expressions
seems to reveal a new crash in SLPVectorizer.
SLP crashes expecting a SelectInst as an externally used value
but umin() call is found.
The patch relaxes the assumption to make the IR flag propagation safe.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D99328
Summary:
The colour characters currently added to the output of -print-changed=diff
and -print-changed=diff-quiet cause difficulties when capturing the output
and examining it in an editor. Change the function to not have the colour
characters and add 2 new choices (-print-changed=cdiff and
-print-changed=cdiff-quiet) to retain the existing functionality of adding
the colour characters.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: aeubanks (Arthur Eubanks) yrouban (Yevgeny Rouban)
Differential Revision: https://reviews.llvm.org/D97398
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
In future patches I will be setting the IsText parameter frequently so I will refactor the args to be in the following order. I have removed the FileSize parameter because it is never used.
```
static ErrorOr<std::unique_ptr<MemoryBuffer>>
getFile(const Twine &Filename, bool IsText = false,
bool RequiresNullTerminator = true, bool IsVolatile = false);
static ErrorOr<std::unique_ptr<MemoryBuffer>>
getFileOrSTDIN(const Twine &Filename, bool IsText = false,
bool RequiresNullTerminator = true);
static ErrorOr<std::unique_ptr<MB>>
getFileAux(const Twine &Filename, uint64_t MapSize, uint64_t Offset,
bool IsText, bool RequiresNullTerminator, bool IsVolatile);
static ErrorOr<std::unique_ptr<WritableMemoryBuffer>>
getFile(const Twine &Filename, bool IsVolatile = false);
```
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D99182
We do not need to scan further if the upper end or lower end of the
basic block is reached already and the instruction is not found. It
means that the instruction is definitely in the lower part of basic
block or in the upper block relatively.
This should improve compile time for the very big basic blocks.
Differential Revision: https://reviews.llvm.org/D99266
This patch adds a small optimization for vector shuffle lowering,
detecting shuffles which can be re-expressed as vector selects.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99270
Unswitching a loop on a non-trivial divergent branch is expensive
since it serializes the execution of both version of the
loop. But identifying a divergent branch needs divergence analysis,
which is a function level analysis.
The legacy pass manager handles this dependency by isolating such a
loop transform and rerunning the required function analyses. This
functionality is currently missing in the new pass manager, and there
is no safe way for the SimpleLoopUnswitch pass to depend on
DivergenceAnalysis. So we conservatively assume that all non-trivial
branches are divergent if the target has divergence.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D98958
This patch adds further optimization techniques to RVV BUILD_VECTOR
lowering. It teaches the compiler to find splats of larger vector
element types "hidden" in smaller ones. For example, a v4i8 build_vector
(0x1, 0x2, 0x1, 0x2) could be splat as v2i16 0x0201. This is generally
more optimal than the dominant-element BUILD_VECTORs and so takes
priority.
This optimization is currently limited to all-constant-or-undef
BUILD_VECTORs as those were found to be the most common. There's no
reason this couldn't be extended to other BUILD_VECTORs, but the
additional bit-manipulation instructions may require more sophisticated
heuristics.
There are some cases where the materialization of the larger constant
takes more scalar instructions than it does to build the vector with
vector instructions. We could add heuristics to try and catch this.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99195
Until AVX512 we don't have any vector truncation instructions, and always lower using shuffles instead.
combineVectorTruncation performs this earlier than lowering as it makes it easier to use any sign/zero-extended bits in the truncated bits with PACKSS/PACKUS to perform the shuffle.
We currently don't attempt to use combineVectorTruncation on AVX2 targets as in the past 256-bit PACKSS/PACKUS tended to cause 128-bit lane shuffle regressions - but these should now be all resolved with combineHorizOpWithShuffle and in all cases we now reduce the amount of cross-lane shuffling and variable shuffle mask usage.
Differential Revision: https://reviews.llvm.org/D96609
LowerVSETCC calls splitIntVSETCC after canonicalizing certain patterns, in particular (X & CPow2 != 0) -> (X & CPow2 == CPow2).
Unfortunately if we're splitting for AVX1/non-AVX512BW cases, we lose these canonicalizations as we call the split with the original SetCC node, and when the split nodes are later lowered in LowerVSETCC the patterns are lost behind extract_subvector etc. But if we pass the canonicalized operands for splitting we retain the optimizations.
Differential Revision: https://reviews.llvm.org/D99256
This may occur when swifterror codegen in the translator generates these,
but we shouldn't try to handle them since they should have regclasses anyway.
rdar://75784009
Differential Revision: https://reviews.llvm.org/D99287
This implements a subset of the initial set of inference rules proposed in the llvm-dev thread "RFC: Decomposing deref(N) into deref(N) + nofree". The nolias one got moved to a separate review as there was some concerns raised which require further discussion.
Differential Revision: https://reviews.llvm.org/D99135
With cost-benefit analysis for inlining, we bypass the cost-threshold by returning inline result from call analyzer early.
However the cost and threshold are still available from call analyzer, and when cost is actually higher than threshold, we incorrect set the reason.
The change makes the decision from cost-benefit analysis explicit. It's mostly NFC, except that it allows the priority-based sample loader inliner used by CSSPGO to use cost-benefit heuristic.
Differential Revision: https://reviews.llvm.org/D99302
This patch enables the cost-benefit-analysis-based inliner by default
if we have instrumentation profile.
- SPEC CPU 2017 shows a 0.4% improvement.
- An internal large benchmark shows a 0.9% reduction in the cycle
count along with 14.6% reduction in the number of call instructions
executed.
Differential Revision: https://reviews.llvm.org/D98213
This is similar to the select logic just ahead of the new code.
Min/max choose exactly one value from the inputs, so if both of
those are a power-of-2, then the result must be a power-of-2.
This might help with D98152, but we likely still need other
pieces of the puzzle to avoid regressions.
The change in PatternMatch.h is needed to build with clang.
It's possible there is a better way to deal with the 'const'
incompatibities.
Differential Revision: https://reviews.llvm.org/D99276
SCEV currently tries to prove implications of x pred y by also
trying to imply ~y pred ~x. This is expensive in terms of
compile-time (in fact, the majority of isImpliedCond compile-time
is spent here) and generally not fruitful. The issue is that this
also swaps the operands and thus breaks canonical ordering. If
originally we were trying to prove an implication like
X > C1 -> Y > C2, then we'll now try to prove X > C1 -> C3 > ~Y,
which will not work.
The only real case where we can get some use out of this transform
is if the original conditions were in the form X > C1 -> Y < C2, were
then swapped to X > C1 -> C2 > Y and are then swapped again here to
X > C1 -> ~Y > C3.
As such, handle this at a higher level, where we are doing the
swapping in the first place. There's four different ways that we
can line up a predicate and a swapped predicate, so we use some
heuristics to pick some profitable way.
Because we now try this transform at a higher level
(isImpliedCondOperands rather than isImpliedCondOperandsHelper),
we can also prove additional facts. Of the added tests, one was
proven previously while the other wasn't.
Differential Revision: https://reviews.llvm.org/D90926
This patch exploits the xxsplti32dx instruction available on Power10
in place of constant pool loads where xxspltidp would not be able to,
usually because the immediate cannot fit into 32 bits.
Differential Revision: https://reviews.llvm.org/D95458
This is yet another attempt to fix tightlyNested().
Add checks in tightlyNested() for the inner loop exit block,
such that 1) if there is control-flow divergence in between the inner
loop exit block and the outer loop latch, or 2) if the inner loop exit
block contains unsafe instructions, tightlyNested() returns false.
The reasoning behind is that after interchange, the original inner loop
exit block, which was part of the outer loop, would be put into the new
inner loop, and will be executed different number of times before and
after interchange. Thus it should be dealt with appropriately.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D98263
FileCheck string substitution block parsing code only report an invalid
variable name in a string variable use if it starts with a forbidden
character. It does not report anything if there are unparsed characters
after the variable name, i.e. [[X-Y]] is parsed as [[X]] and no error is
returned. This commit fixes that.
Reviewed By: jdenny, jhenderson
Differential Revision: https://reviews.llvm.org/D98691
Userspace page aliasing allows us to use middle pointer bits for tags
without untagging them before syscalls or accesses. This should enable
easier experimentation with HWASan on x86_64 platforms.
Currently stack, global, and secondary heap tagging are unsupported.
Only primary heap allocations get tagged.
Note that aliasing mode will not work properly in the presence of
fork(), since heap memory will be shared between the parent and child
processes. This mode is non-ideal; we expect Intel LAM to enable full
HWASan support on x86_64 in the future.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98875
Add selection support for G_SBFX and G_UBFX and add a test.
These must always have a constant LSB and width.
Differential Revision: https://reviews.llvm.org/D99224
This will tell loop idiom recognize that it can make popcount loops countable
using the ctpop intrinsic. I didn't bother checking for illegal types.
Type legalization knows how to split a ctpop into multiple ctops added together.
Assuming we only receive reasonable integer bit widths, a few cpop instructions
added together is probably better than the loop.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D99203
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
LICM can sink instructions that have uses inside the loop, as
long as these uses are considered "free". However, if there were
only free uses inside the loop, and no uses outside the loop at
all, the instruction would still count towards the NumSunk
statistic. This resulted in a wild inflation of the NumSunk metric.
After this patch it drops down from 1141787 to 5852 on test-suite O3.
FindAvailableLoadedValue() relies on FindAvailablePtrLoadStore() to run
the alias analysis when searching for an equivalent value. However,
FindAvailablePtrLoadStore() calls the alias analysis framework with a
memory location for the load constructed from an address and a size,
which thus lacks TBAA metadata info. This commit modifies
FindAvailablePtrLoadStore() to accept an optional memory location as
parameter to allow FindAvailableLoadedValue() to create it based on the
load instruction, which would then have TBAA metadata info attached.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99206
As reported here: https://bugs.llvm.org/show_bug.cgi?id=48378#c0
and here: https://github.com/rust-lang/rust/issues/81051
since 79657e2339, some programs such as llvm-ar
don't work properly on Windows 7.
The issue is shown in the snippet by Oleksandr Prodan:
https://pastebin.com/v51m3uBU
In essence, once the 'DeleteFile' flag has been set on FILE_DISPOSITION_INFO,
the file path can't be queried anymore with GetFinalPathNameByHandleW. This
however works on Windows 10, GetFinalPathNameByHandleW would return sucessfully.
To workaround the issue, we simply reset the 'DeleteFile' flag before even
checking if we're dealing with a network file.
Tested with `llvm-ar r empty.a a.obj` ran on a network mount. At the moment, we
cannot specifically add a test coverage for this, since it requres mounting a
network drive.
This UpperBound unrolling was already enabled so long as a series of
conditions in ARMTTIImpl::getUnrollingPreferences pass. This just always
enables it as it can help fully unroll loops that would not otherwise
pass those tests.
Differential Revision: https://reviews.llvm.org/D99174
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
The VSelectCombine handler within AArch64ISelLowering,
uses an interface call which only expects fixed vectors.
This generates a warning when the call is made on a
scalable vector. This warning has been suppressed with this change,
by using the ElementCount interface, which supports both fixed and scalable vectors.
I have also added a regression test which recreates the warning.
Differential Revision: https://reviews.llvm.org/D98249
- https://reviews.llvm.org/rGb605cfb336989705f391d255b7628062d3dfe9c3 was reverted due to sanitizer bugs in the introduced unit-test (specifically in the Address sanitizer https://lab.llvm.org/buildbot/#/builders/5/builds/5697)
- This patch attempts to rectify that, as well as re-factor parts of the test
- The issue was previously, within the `setupCallToAsmParser` function in the unit-test, `SrcMgr` was declared as a local variable. `SrcMgr` owns a unique pointer. Since the variable goes out of scope at the end of the function, the unique pointer is released.
- This patch, moves the declaration of the `SrcMgr` variable to a class field, since the scope will remain until the class's destructor is invoked (which in this case is at the end of the unit test)
- Furthermore, this patch also moves the `MCContext Ctx` declaration from a local variable instance inside a function, to a unique pointer class field. This ensures the instantiation of the MCContext remains until the tear down of the test.
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D99004
If we're truncating to vXi1 from a wider type, then prefer the original wider vector as is simplifies folding the separate truncations + extensions.
AVX1 this is only worth it for v8i1 cases, not v4i1 where we're always better off truncating down to v4i32 for movmsk.
Helps with some regressions encountered in D96609
Add an option to tell the compiler that it can use privileged instructions.
This patch only adds the option. Backend implementation will be added in a
future patch.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99193
Summary:
Currently the OMPIRBuilder overwrites the function's existing attributes
when it assigns the ones defined in OMPKinds.def. This changes the
behaviour to append the current function's attributes with them instead.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D98740
Prefer broadcast from scalar on AVX targets as this makes it easier for later folds to strip away bitcasts etc.
This helps a lot with the AVX1 poor codegen from PR49658.
There's a trivial regression in bitcast-int-to-vector-bool-*ext.ll tests due to SimplifyDemandedBits not being able to see a multi-use case, but there's bigger existing codegen issues to be addressed first in those tests (unnecessary NOTs).
Folding EXEC copy into it's single use may lead to constant bus constraint violation as it adds one more SGPR operand.
This change makes it validate the user instruction with the new SGPR operand and only fold it if it is legal.
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D98888
We know if the loop contains FP instructions preventing vectorization
after we are done with legality checks. This patch updates the code the
check for un-vectorizable FP operations earlier, to avoid unnecessarily
running the cost model and picking a vectorization factor. It also makes
the code more direct and moves the check to a position where similar
checks are done.
I might be missing something, but I don't see any reason to handle this
check differently to other, similar checks.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D98633
This is a follow-up for:
D98604 [MCA] Ensure that writes occur in-order
When instructions are aligned by the order of writes, they retire
in-order naturally. There is no need for an RCU, so it is disabled.
Differential Revision: https://reviews.llvm.org/D98628
In order to have the same option on power PC LLVM and power PC gcc
the option will be changed from -mrop-protection to -mrop-protect.
The feature will be off by default and turned on when the option is used.
Reviewed By: lei, amyk
Differential Revision: https://reviews.llvm.org/D99185
The `InductionPHI` is not necessarily the increment instruction, as
demonstrated in pr49571.ll.
This patch removes the assertion and instead bails out from the
`LoopFlatten` pass if that happens.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49571
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99252
This commit adds a full WasmTableType to MCSymbolWasm, differing from
the current situation (just an ElemType) in that it additionally records
a WasmLimits.
We add support for specifying the limits in .S files also, via the
following syntax variations:
.tabletype SYM, ELEMTYPE
.tabletype SYM, ELEMTYPE, MINSIZE
.tabletype SYM, ELEMTYPE, MINSIZE, MAXSIZE
Depends on D99186.
Differential Revision: https://reviews.llvm.org/D99191
This patch renames the "Initial" member of WasmLimits to the name used
in the spec, "Minimum".
In the core WebAssembly specification, the Limits data type has one
required "min" member and one optional "max" member, indicating the
minimum required size of the corresponding table or memory, and the
maximum size, if any.
Although the WebAssembly spec does instantiate locally-defined tables
and memories with the initial size being equal to the minimum size, it
can't impose such a requirement for imports. It doesn't make sense to
require an initial size for a memory import, for example. The compiler
can only sensibly express the minimum and maximum sizes.
See
https://github.com/WebAssembly/js-types/blob/master/proposals/js-types/Overview.md#naming-of-size-limits
for a related discussion that agrees that the right name of "initial" is
"minimum" when querying the type of a table or memory from JavaScript.
(Of course it still makes sense for JS to speak in terms of an initial
size when it explicitly instantiates memories and tables.)
Differential Revision: https://reviews.llvm.org/D99186
Copysign from double and to double patterns have lack of HasStdExtD predicate.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D99234
Statepoint instruction is known to have a variable and big number of operands.
It is possible that Register Allocator will split live intervals in the way that all
physical registers are occupied by "zero-length" live intervals which are marked
as not-spillable.
While intervals are marked as not-spillable in the moment of creation when they are
really zero-length it is possible that in future as part of re-materialization there will
need for physical register between def and use of such tiny interval (the use is not
related to this interval at all).
As all physical registers are assigned to not-spillable intervals there is not avaialbe
registers and RA reports an error.
The idea of the fix is avoid marking tiny live intervals where there is a use in statepoint
instruction in var args section. Such interval may be perfectly spilled and folded to
operand of statepoint.
Reviewers: reames, dantrushin, qcolombet, dsanders, dmgreen
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D98766
None of the code in this function was written to handle
vectors. Most of the cases already fail for vectors for one
reason or another. The exception is an optimization that
detects identical operands. This can be triggered by vectors,
but the code always creates a 0 or 1 constants in a scalar
register which is incorrect for vectors.
Fixes PR49706.
The current implementation keeps buffers generated for each object file
until it completes loading of all files. This approach requires a lot of memory
if there are a lot of huge object files. Thus, make it to load coverage records
immediately rather than waiting for other binaries to be loaded.
This reduces memory usage of llvm-cov from >128GB to 5GB when
loading Chromium binaries in Windows.
Additional testing: check-profile, check-llvm
Differential Revision: https://reviews.llvm.org/D99110
As mentioned in [[ https://reviews.llvm.org/D96979 | D96979 ]], I'm extending the **IsGuaranteedLoopInvariant** check also to the `MemorySSA.cpp` file.
@fhahn For now I didn't unify the function into `MemorySSA.h` because, as you mentioned, it's not directly MSSA related. I'm open to suggestions to find a better place so we can improve the unification process.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D97155
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
This fixes a regression reported on D99022: If a call has operand
bundles, then the inaccessiblememonly attribute on the function
will be ignored, as operand bundles can affect modref behavior in
the general case. However, for assume operand bundles in particular
this is not the case.
Adjust getModRefBehavior() to always report inaccessiblememonly
for assumes, regardless of presence of operand bundles.
Added getPointersDiff function to LoopAccessAnalysis and used it instead
direct calculatoin of the distance between pointers and/or
isConsecutiveAccess function in SLP vectorizer to improve compile time
and detection of stores consecutive chains.
Part of D57059
Differential Revision: https://reviews.llvm.org/D98967
This adds some missing legalizer tests, which uncovered a v2s64 selection
test that wasn't working since there's no legalization or instruction for that.
This select of ctpop with 0 pattern can get left behind after
loop idiom recognize converts a loop to ctpop. LLVM 10 was able
to optimize this, but LLVM 11 and later is not. The difference
seems to be that some select transforms are now limited based
on canCreateUndefOrPoison.
Teaching canCreateUndefOrPoison about ctpop restores the
LLVM 10 codegen.
Differential Revision: https://reviews.llvm.org/D99207
NFC. Extract IsShrinkable into a helper function, and
make Subtarget a member variable.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D99099
Change-Id: If4bc97a88a9ae4eb1df47e717345d46a6ed515bf
Previously we used selectImm for RV64 and isel patterns for
RV32. This should be NFC, but will allow RV32 and RV64 to share
improvements in the future. For example, it might be useful to
use BSETI from Zbs to make single bit constants.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D98877
Coyp SchedRW from pseudos to real instructions so that llvm-mca has
access to it. This is NFC for normal compiler codegen, which schedules
pseudos not real instructions.
Add an llvm-mca test for some high latency double-precision instructions
as a smoke test.
Differential Revision: https://reviews.llvm.org/D99187
`FoldBranchToCommonDest()` has a certain budget (`-bonus-inst-threshold=`)
for bonus instruction duplication. And currently it calculates the cost
as-if it will actually duplicate into each predecessor.
But ignoring the budget, it won't always duplicate into each predecessor,
there are some correctness and profitability checks.
So when calculating the cost, we should first check into which blocks
will we *actually* duplicate, and only then use that block count
to do budgeting.
Before this patch, register writes were always invalidated by the
RegisterFile at instruction commit stage. So,
the RegisterFile was often losing the knowledge about the `execute
cycle` of writes already committed. While this was not problematic
for non-delayed reads, this was sometimes leading to inaccurate read
latency computations in the presence of negative read-advance cycles.
This patch fixes the issue by changing how the RegisterFile component
internally keeps track of the `execute cycle` information of each
write. On every instruction executed, the RegisterFile gets notified
by the RetireStage, so that it can internally record the execute
cycle of each executed write.
The `execute cycle` information is stored within WriteRef itself, and
it is not invalidated when the write is committed.
We clone bonus instructions to the end of the predecessor block,
and then use `SSAUpdater::RewriteUseAfterInsertions()`.
But that only deals with the cases where the use-to-be-rewritten
are either in different block from the def, or come after the def.
But in some loop cases, the external use may be in the beginning of
predecessor block, before the newly cloned bonus instruction.
`SSAUpdater::RewriteUseAfterInsertions()` does not deal with that.
Notably, the external use can't happen to be both in the same block
and *after* the newly-cloned instruction, because of the fold preconditions.
To properly handle these cases, when the use is in the same block,
we should instead use `SSAUpdater::RewriteUse()`.
TBN, they do the same thing for PHI users.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49510
Likely Fixes https://bugs.llvm.org/show_bug.cgi?id=49689
This patch builds upon the initial BUILD_VECTOR work introduced in
D98700. It further optimizes the lowering of BUILD_VECTOR by using
VSELECT operations to effectively insert repeated elements into the
vector with relatively few instructions. This allows us to optimize more
BUILD_VECTORs without significantly increasing the size of the generated
code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98969
2nd try (original: 27ae17a6b0) with fix/test for crash. We must make
sure that TTI is available before trying to use it because it is not
required (might be another bug).
Original commit message:
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
Summary:
The IR is saved in its print form before each pass is started and a
signal handler is registered. If the compilation crashes, the signal
handler will print the saved IR to dbgs(). This option
can be modified using -print-module-scope to get the IR for the complete
module. Note that this option only works with the new pass manager.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: aeubanks (Arthur Eubanks) yrouban (Yevgeny Rouban)
Differential Revision: https://reviews.llvm.org/D86657
This avoids temporary and memcpy call when computing large expressions.
It's basically some kind of poor man's expression template, but it seems easier
to maintain to have a single generic `apply` call instead of the whole
expression template machinery here.
Differential Revision: https://reviews.llvm.org/D98176
Follow up from D92955 and D83636. This patch makes the base cpp files
OMP.cpp and ACC.cpp normal files and they now include the XXX.inc file
generated by tablegen. This reduces the number of file generated by the
DirectiveEmitter backend and makes it closer to the proposal in D83636.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D93560
Apply the way createLocalIndirectStubsManagerBuilder() deals with unsupported achritectures to createLocalLazyCallThroughManager(). The returned call-through manager is dysfunctional: It runs into an unreachable as soon as a lazy JIT attempts to use it. However, this results in broader platform support for lli in default (greedy) ORC mode where no lazy materialization is required.
As noted in D98152, we need to patch SLP to avoid regressions when
we start canonicalizing to integer min/max intrinsics.
Most of the real work to make this possible was in:
7202f47508
Differential Revision: https://reviews.llvm.org/D98981
- Give unwieldy repeated expression a name
- Use a ranged `for` basic block iterator
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
Hoist early return for decl-only clones to before DIFinder
calculation.
Also fix an out of date assert message after invariants changed in
22a52dfddc.
Reviewed by: nikic, dexonsmith
Differential Revisision: https://reviews.llvm.org/D98957
A bug was found within InstCombineCasts where a function call
is only implemented to work with FixedVectors. This caused a
crash when a ScalableVector was passed to this function.
This commit introduces a regression test which recreates the
failure and a bug fix.
Differential Revision: https://reviews.llvm.org/D98351
The summary remarks are generated on a per-function basis. Using the
first instruction's location is sub-optimal for 2 reasons:
1. Sometimes the first instruction is missing !dbg
2. The location of the first instruction may be mis-leading.
Instead, just use the location of the function directly.
In function ConvertVPTBlocks(), it is assumed that every instruction
within a vector-predicated block is predicated. This is false for debug
instructions, used by LLVM.
Because of this, an assertion failure is reached when an input contains
debug instructions inside VPT blocks. In non-assert builds, an out of
bounds memory access took place.
The present patch properly covers the case of debug instructions.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D99075
In places where we create a ConstantVector whose elements are a
linear sequence of the form <start, start + 1, start + 2, ...>
I've changed the code to make use of CreateStepVector, which creates
a vector with the sequence <0, 1, 2, ...>, and a vector addition
operation. This patch is a non-functional change, since the output
from the vectoriser remains unchanged for fixed length vectors and
there are existing asserts that still fire when attempting to use
scalable vectors for vectorising induction variables.
In a later patch we will enable support for scalable vectors
in InnerLoopVectorizer::getStepVector(), which relies upon the new
stepvector intrinsic in IRBuilder::CreateStepVector.
Differential Revision: https://reviews.llvm.org/D97861
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.
For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as
mul step_vector(1), 2 -> step_vector(2)
add step_vector(1), step_vector(1) -> step_vector(2)
shl step_vector(1), 1 -> step_vector(2)
etc.
that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.
I've added cost model tests for both fixed width and scalable
vectors:
llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll
as well as codegen lowering tests for fixed width and scalable
vectors:
llvm/test/CodeGen/AArch64/neon-stepvector.ll
llvm/test/CodeGen/AArch64/sve-stepvector.ll
See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
This patch adds an optimization for mask-vector BUILD_VECTOR nodes whose
elements are all constants or undef. It lowers such operations by
building up the vector via a series of integer operations, in which
multiple mask elements are inserted into a vector at a time via
i8/i16/i32/i64 element types. The final result is then bitcast from that
integer vector.
We restrict this optimization in certain circumstances when optimizing
for size. If we are required to use more than one integer insert
operation, then it will likely increase code size compared with using a
load from a constant pool.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98860
The name is included when printing in DOT mode. Also print it in non-DOT
mode after 93a9d2de8f.
This will become more important to distinguish different plans once
VPlans are gradually refined.
Helps fix cases where we've splatted smaller types to a wider vector element type without needing the upper bits.
Avoid this on AVX512 targets as that can affect broadcast folding.
meetBDVState utility may sets the base pointer for the conflict state.
At this moment the base for conflict state does not have any meaning but
is used in comparison of BDV states. This comparison is used as an indicator
of progress done on iteration and RS4GC pass uses infinite loop to reach
fixed point.
As a result for added test on each iteration state for some phi nodes is updated
with other base value for conflict state and it indicates as a progress while
for conflict state there is no any progress more possible.
In reality the base value is transferred from one state to another and pass
detects the progress on these states.
The test is very fragile. The traversal order of states and operands of phi nodes
plays important role.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D99058
This patch adds a fallthrough bit to basic block metadata, indicating whether the basic block can fallthrough without taking any branches. The bit will help us avoid an intel LBR bug which results in occasional duplicate entries at the beginning of the LBR stack.
This patch uses `MachineBasicBlock::canFallThrough()` to set the bit. This is not a const method because it eventually calls `TargetInstrInfo::analyzeBranch`, but it calls this function with the default `AllowModify=false`. So we can either make the argument to the `getBBAddrMapMetadata` non-const, or we can use `const_cast` when calling `canFallThrough`. I decide to go with the latter since this is purely due to legacy code, and in general we should not allow the BasicBlock to be mutable during `getBBAddrMapMetadata`.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D96918
It doesn't look like any instructions have ever been assigned to these classes.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D99050
This restores previous behaviour and is a step toward removing
unbundling entirely.
Reviewed By: foad, rampitec
Differential Revision: https://reviews.llvm.org/D99061
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Sometimes you want to get a type with same vector element count
as the current type, but different element type,
but there's no QOL wrapper to do that. Add one.
This reverts commit 27ae17a6b0.
There are bot failures that end with:
#4 0x00007fff7ae3c9b8 CrashRecoverySignalHandler(int) CrashRecoveryContext.cpp:0:0
#5 0x00007fff84e504d8 (linux-vdso64.so.1+0x4d8)
#6 0x00007fff7c419a5c llvm::TargetTransformInfo::getPredictableBranchThreshold() const (/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1.install/bin/../lib/libLLVMAnalysis.so.13git+0x479a5c)
...but not sure how to trigger that yet.
This is an alternative to D98391/D98585, playing things more
conservatively. If AllowRefinement == false, then we don't use
InstSimplify methods at all, and instead explicitly implement a
small number of non-refining folds. Most cases are handled by
constant folding, and I only had to add three folds to cover
our unit tests / test-suite. While this may lose some optimization
power, I think it is safer to approach from this direction, given
how many issues this code has already caused.
Differential Revision: https://reviews.llvm.org/D99027
These intrinsics don't need to be marked as arbitrary writing,
it's sufficient to write inaccessible memory (aka "side effect")
to preserve control dependencies. This means less special-casing
in BasicAA. This is intended as an alternative to D98925.
Differential Revision: https://reviews.llvm.org/D99022
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
This is no-functional-change intended (NFC), but needed to allow
optimizer passes to use the API. See D98898 for a proposed usage
by SimplifyCFG.
I'm simplifying the code by removing the cl::opt. That was added
back with the original commit in D19488, but I don't see any
evidence in regression tests that it was used. Target-specific
overrides can use the usual patterns to adjust as necessary.
We could also restore that cl::opt, but it was not clear to me
exactly how to do it in the convoluted TTI class structure.
We've messed this up a few times recently on RISCV. Experiments
with these asserts found a couple issues on other targets as well.
They've all been cleaned up now so we can put in these asserts to
catch future issues
I had to waive Glue because ADDC/ADDE/etc legalization replaces
Glue with i32 on at least AArch64. X86 used to do the same before
we switched to ADDCARRY. So I guess that's just how that works.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D98979
I've split the gather/scatter custom handler to avoid complicating
it with even more differences between gather/scatter.
Tests are the scalable vector tests with the vscale removed and
dropped the tests that used vector.insert. We're probably not
as thorough on the splitting cases since we use 128 for VLEN here
but scalable vector use a known min size of 64.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98991
Don't leak ResourceKeys from MaterializationResponsibility::withResourceKeyDo() in notifyEmitted().
Also make some improvements in the overall implementation.
Differential Revision: https://reviews.llvm.org/D98863
There can be multiple MaterializationResponsibilitys in-flight for a single ResourceKey. Hence, pending debug objects must be tracked by MaterializationResponsibility and not by ResourceKey.
Differential Revision: https://reviews.llvm.org/D98785
This patch exploits the knowledge that we may be running many fewer than bitwidth iterations of the loop, and may be able to disallow the overflow case. This patch specifically implements only the shl case, but this can be generalized to ashr and lshr without difficulty.
Differential Revision: https://reviews.llvm.org/D98222
Make sure we use PowerOf2Floor instead of PowerOf2Ceil when
calculating max number of elements that fits inside a vector
register (otherwise we could end up creating vectors larger
than the maximum vector register size).
Also make sure we honor the min/max VF (as given by TTI or
cmd line parameters) when doing vectorizeStores.
Reviewed By: anton-afanasyev
Differential Revision: https://reviews.llvm.org/D97691
Switch to use cold threshold from profile summary for cold context merging and trimming, instead of relying on hard coded values. Minor refactoring included for switch names, etc.
Differential Revision: https://reviews.llvm.org/D98921
Subsequent patches will implement page-aliasing mode for x86_64, which
will initially only work for the primary heap allocator. We force
callback instrumentation to simplify the initial aliasing
implementation.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D98069
Do not try to materialize a constant using prefix instructions if the selection
using non prefix instructions was able to do it using a single non prefix
instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D98791
writeToOutput function is useful when it is necessary to create different kinds
of streams(based on stream name) and when we need to use a temporary file
while writing(which would be renamed into the resulting file in a success case).
This patch moves the writeToStream helper into the Support library.
Differential Revision: https://reviews.llvm.org/D98426
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
This adds some conversion match patterns for which we want to keep the int
values in FP registers using the corresponding NEON instructions (not the FP
instructions) to avoid more costly int <-> fp register transfers.
Differential Revision: https://reviews.llvm.org/D98956
When eliminating comparisons, we can use common dominator of
all its users as context. This gives better results when ICMP is not
computed right before the branch that uses it.
Differential Revision: https://reviews.llvm.org/D98924
Reviewed By: lebedev.ri
Introduces DefineExternalSectionStartAndEndSymbols.h, which defines a template
for a JITLink pass that transforms external symbols meeting a user-supplied
predicate into defined symbols pointing at the start and end of a Section
identified by the predicate. JITLink.h is updated with a new makeAbsolute
function to support this pass.
Also renames BasicGOTAndStubsBuilder to PerGraphGOTAndPLTStubsBuilder -- the new
name better describes the intent of this GOT and PLT stubs builder, and will
help to distinguish it from future GOT and PLT stub builders that build entries
that may be shared between multiple graphs.
08196e0b2e exposed LowerExpectIntrinsic's
internal implementation detail in the form of
LikelyBranchWeight/UnlikelyBranchWeight options to the outside.
While this isn't incorrect from the results viewpoint,
this is suboptimal from the layering viewpoint,
and causes confusion - should transforms also use those weights,
or should they use something else, D98898?
So go back to status quo by making LikelyBranchWeight/UnlikelyBranchWeight
internal again, and fixing all the code that used it directly,
which currently is only clang codegen, thankfully,
to emit proper @llvm.expect intrinsics instead.
Upon reviewing D98898 i've come to realization that these are
implementation detail of LowerExpectIntrinsicPass,
and they should not be exposed to outside of it.
This reverts commit ee8b53815d.
Don't bother calling ComputeNumSignBits if N00Bits < ExtVTBits. No
matter what answer we get back this will be true:
(N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) < ExtVTBits)
So we might as well save the computation. This makes the code more
consistent with the similar (sext_in_reg (sext x)) handling above.
X != X * C is true if:
* C is not 0 or 1
* X is not 0
* mul is nsw or nuw
Proof: https://alive2.llvm.org/ce/z/uwF29z
This is motivated by one of the cases in D98422.
The pseudo was using SSrc_b64, so it allowed folding immediates into
the destination operand for a tail call to null. However, this is not
a valid operand for the s_setpc_b64 this will be lowered to. Avoids
printing the operand as an invalid immediate.
Avoids a regression when tail calls are enabled in GlobalISel (somehow
tail calls to null get deleted in the DAG).
There seems to be an impedance mismatch between what the type
system considers an aggregate (structs and arrays) and what
constants consider an aggregate (structs, arrays and vectors).
Adjust the type check to consider vectors as well. The previous
version of the patch dropped the type check entirely, but it
turns out that getAggregateElement() does require the constant
to be an aggregate in some edge cases: For Poison/Undef the
getNumElements() API is called, without checking in advance that
we're dealing with an aggregate. Possibly the implementation should
avoid doing that, but for now I'm adding an assert so the next
person doesn't fall into this trap.
As commented by @craig.topper on rG1ba5c550d418, we can't guarantee that we'll be extending zero bits, just sign bit. So, revert to the old code for zero_extend_vector_inreg cases.
This adds an extra pattern for inserting an f16 into a odd vector lane
via an VINS. If the dual-insert-lane pattern does not happen to apply,
this can help with some simple cases.
Differential Revision: https://reviews.llvm.org/D95471
The reason for generating mv a0, a0 instruction is when the stack object offset is large then int<12>. To deal this situation, in the elimintateFrameIndex function, it will
create a virtual register, which needs the register scavenger to scavenge it. If the machine instruction that contains the stack object and the opcode is ADDI(the addi
was generated by frameindexNode), and then this instruction's destination register was the same as the register that was generated by the register scavenger, then the
mv a0, a0 was generated. So to eliminnate this instruction, in the eliminateFrameIndex function, if the instrution opcode is ADDI, then the virtual register can't be created.
Differential Revision: https://reviews.llvm.org/D92479
The target shuffle code handles vector sources, but X86ISD::VBROADCAST can also accept a scalar source for splatting.
Suggested by @craig.topper on PR49658
This optimization is trying to save SRLI instructions needed to
implement the ANDs. If we have zext.w we won't save anything.
Because we don't check that the multiply is the only user of the
AND we might even increase instruction count.
This patterns computes the full 64 bit product of a 32x32 unsigned
multiply. This requires a two pairs of SLLI+SRLI to zero the
upper 32 bits of the inputs.
We can do better than this by using two SLLI to move the lower
bits to the upper bits then use MULHU to compute the product. This
is the high half of a full 64x64 product. Since we put 32 0s in the lower
bits of the inputs we know the 128-bit product will have zeros in the
lower 64 bits. So the upper 64 bits, which MULHU computes, will contain
the original 64 bit product we were after.
The same trick would work for (mul (sext_inreg X, i32), (sext_inreg Y, i32))
using MULHS, but sext_inreg is sext.w which is already one instruction so we
wouldn't save anything.
Differential Revision: https://reviews.llvm.org/D99026
This makes the settings available for use in other passes by housing
them within the Support lib, but NFC otherwise.
See D98898 for the proposed usage in SimplifyCFG
(where this change was originally included).
Differential Revision: https://reviews.llvm.org/D98945
Now that intrinsic name mangling can cope with unnamed types, the custom name mangling in PredicateInfo (introduced by D49126) can be removed.
(See D91250, D48541)
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91661
The BB we initialized the ldtilecfg is special. We don't need to check
if its predecessor BBs need to insert ldtilecfg for calls.
We reused the flag HasCallBeforeAMX, so that the predecessors won't be
added to CfgNeedInsert.
This case happens only when the entry BB is in a loop. We need to hoist
the first tile config point out of the loop in future.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D98845
There are some instances where we produce constants of type MVT::i64
unconditionally in the target DAG combines. This is not actually
valid in 32-bit mode.
Previously only immediate shifts were in WriteShift. Register
shifts were grouped with IALU. Seems likely that immediate shifts
would be as fast or faster than register shifts. And that immediate
shifts wouldn't be any faster than IALU. So if any deserved to be in
their own group it should be register shifts not immediate shifts.
Rather than try to flip them let's just add more granularity
and give each kind their own class. I've used new names for both to
make them unambiguous and to force any downstream implementations to
be forced to put correct information in their scheduler models.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D98911
Pass no longer handles skips. Pass now removes unnecessary
unconditional branches and lowers early termination branches.
Hence rename to SILateBranchLowering.
Move code to handle returns to epilog from SIPreEmitPeephole
into SILateBranchLowering. This means SIPreEmitPeephole only
contains optional optimisations, and all required transforms
are in SILateBranchLowering.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D98915
SIRemoveShortExecBranches is an optimisation so fits well in the
context of SIPreEmitPeephole.
Test changes relate to early termination from kills which have now
been lowered prior to considering branches for removal.
As these use s_cbranch the execz skips are now retained instead.
Currently either behaviour is valid as kill with EXEC=0 is a nop;
however, if early termination is used differently in future then
the new behaviour is the correct one.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D98917
Add code so duplication index register changes can be removed from
inside bundles.
Reviewed By: rampitec, foad
Differential Revision: https://reviews.llvm.org/D98940
The TargetMachine uses the triple to determine endianness. Just
use that logic rather than replicating it in PPCSubtarget.
Differential revision: https://reviews.llvm.org/D98674
Issuing a lookup for an empty symbol set is legal, but can actually result in
unrelated work being done if there was a work queue left over from the previous
lookup. We can avoid doing this unrelated work (reducing stack depth and
interleaving of debugging output) by not issuing these no-op lookups in the
first place.
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those when the checks are enabled (which is by default with
expensive checks on).
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
This is a reland of https://reviews.llvm.org/D98820 which was reverted
due to unacceptably large compile time regressions in normal debug
builds.
There is a bunch of similar bitfield extraction code throughout *ISelDAGToDAG.
E.g, ARMISelDAGToDAG, AArch64ISelDAGToDAG, and AMDGPUISelDAGToDAG all contain
code that matches a bitfield extract from an and + right shift.
Rather than duplicating code in the same way, this adds two opcodes:
- G_UBFX (unsigned bitfield extract)
- G_SBFX (signed bitfield extract)
They work like this
```
%x = G_UBFX %y, %lsb, %width
```
Where `lsb` and `width` are
- The least-significant bit of the extraction
- The width of the extraction
This will extract `width` bits from `%y`, starting at `lsb`. G_UBFX zero-extends
the result, while G_SBFX sign-extends the result.
This should allow us to use the combiner to match the bitfield extraction
patterns rather than duplicating pattern-matching code in each target.
Differential Revision: https://reviews.llvm.org/D98464
All loop passes should preserve all analyses in LoopAnalysisResults. Add
checks for those.
Note that due to PR44815, we don't check LAR's ScalarEvolution.
Apparently calling SE.verify() can change its results.
Only verify MSSA when VerifyMemorySSA, normally it's very expensive.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D98820
Found by adding asserts to LegalizeDAG to make sure custom legalized
results had the right types.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D98968
The scalarization overhead was set deliberately high for MVE, whilst the
codegen was new. It helps protect us against the negative ramifications
of mixing scalar and vector instructions. This decreases that,
especially for floating point where the cost of extracting/inserting
lane elements can be low. For integer the cost is still fairly high due
to the cross-register-bank copy, but is no longer n^2 in the length of
the vector.
In general, this will decrease the cost of scalarizing floats and long
integer vectors. i64 increase in cost, having a high cost before and
after this patch. For floats this allows up to start doing things like
vectorizing fdiv instructions, even if they are scalarized.
Differential Revision: https://reviews.llvm.org/D98245
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
The generic cost of logical or/and reductions should be cost of bitcast
<ReduxWidth x i1> to iReduxWidth + cmp eq|ne iReduxWidth.
Differential Revision: https://reviews.llvm.org/D97961
Found by adding asserts to LegalizeDAG to catch incorrect result
types being returned.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98964
As far as I can tell, the node coming in has an i64 result so the
return should have the same type. The HexagonISD node used for
this has a type profile that says the result is i64.
Found while trying to add assserts to LegalizeDAG to catch
result type mismatches.
Reviewed By: kparzysz
Differential Revision: https://reviews.llvm.org/D98962
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
I'm not sure how I failed to notice this before, but when optimizing
dominant-element BUILD_VECTORs we would lower via the scalable container type,
which lost us the information about the fixed length of the vector types. By
lowering via the fixed-length type we can preserve that information and
eliminate redundant vsetvli instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98938
Returning the scalable-vector container type would present problems when
the fixed-length INSERT_VECTOR_ELT was used by later operations.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98776
Reuse the existing KnownBits multiplication code to handle the 'extend + multiply + extract high bits' pattern for multiply-high ops.
Noticed while looking at the codegen for D88785 / D98587 - the patch helps division-by-constant expansion code in particular, which suggests that we might have some further KnownBits div/rem cases we could handle - but this was far easier to implement.
Differential Revision: https://reviews.llvm.org/D98857
Followup to D96345, handle unary shuffles of binops (as well as binary shuffles) if we can merge the shuffle with inner operand shuffles.
Differential Revision: https://reviews.llvm.org/D98646
This requires changes to TableGen files and some C++ files due to
incompatible multiclass template arguments that slipped through
before the improved handling.
Replace the unknown operand used for immediate operands for DIV/MUL with a fixed 16-bit immediate.
This is required since the assembly parser generator requires that all operands are typed.
Differential Revision: https://reviews.llvm.org/D98819
This patch adds support for intrinsic overloading on unnamed types.
This fixes PR38117 and PR48340 and will also be needed for the Full Restrict Patches (D68484).
The main problem is that the intrinsic overloading name mangling is using 's_s' for unnamed types.
This can result in identical intrinsic mangled names for different function prototypes.
This patch changes this by adding a '.XXXXX' to the intrinsic mangled name when at least one of the types is based on an unnamed type, ensuring that we get a unique name.
Implementation details:
- The mapping is created on demand and kept in Module.
- It also checks for existing clashes and recycles potentially existing prototypes and declarations.
- Because of extra data in Module, Intrinsic::getName needs an extra Module* argument and, for speed, an optional FunctionType* argument.
- I still kept the original two-argument 'Intrinsic::getName' around which keeps the original behavior (providing the base name).
-- Main reason is that I did not want to change the LLVMIntrinsicGetName version, as I don't know how acceptable such a change is
-- The current situation already has a limitation. So that should not get worse with this patch.
- Intrinsic::getDeclaration and the verifier are now using the new version.
Other notes:
- As far as I see, this should not suffer from stability issues. The count is only added for prototypes depending on at least one anonymous struct
- The initial count starts from 0 for each intrinsic mangled name.
- In case of name clashes, existing prototypes are remembered and reused when that makes sense.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91250
When a D-Form instruction is fed by an add-immediate, we attempt
to merge the two immediates to form a single displacement so we
can remove the add-immediate.
However, we don't check whether the new displacement fits into
a 16-bit signed immediate field early enough. Namely, we do a
sign-extend from 16 bits first which will discard high bits and
then we check whether the result is a 16-bit signed immediate.
It of course will always be.
Move the check prior to the sign extend to ensure we are checking
the correct value.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49640
This patch consists of the initial changes to help distinguish between text and binary content correctly on z/OS. I would like to get feedback from Windows users on setting OF_None for all ToolOutputFiles. This seems to have been done as an optimization to prevent CRLF translation on Windows in the past.
Reviewed By: zibi
Differential Revision: https://reviews.llvm.org/D97785
This makes it simpler to determine when two registers are actually the
same vs just partially aliasing.
The only real caveat is that it becomes impossible to know which name
was used for the register previously. (i.e. parsing assembly and then
disassembling it can result in the register name changing.)
Differential Revision: https://reviews.llvm.org/D98536
This is required in order to determine during disassembly whether a
Reg bead without associated DA bead is referring to a data register.
Differential Revision: https://reviews.llvm.org/D98534
We can prove more predicates when we have a context when eliminating ICmp.
As first (and very obvious) approximation we can use the ICmp instruction itself,
though in the future we are going to use a common dominator of all its users.
Need some refactoring before that.
Observed ~0.5% negative compile time impact.
Differential Revision: https://reviews.llvm.org/D98697
Reviewed By: lebedev.ri
This changes adds attribute field for metadata of context profile. Currently we have an inline attribute that indicates whether the leaf frame corresponding to a context profile was inlined in previous build.
This will be used to help estimating inlining and be taken into account when trimming context. Changes for that in llvm-profgen will follow. It will also help tuning.
Differential Revision: https://reviews.llvm.org/D98823
By definition of Implication operator, `false -> true` and `false -> false`. It means that
`false` implies any predicate, no matter true or false. We don't need to go any further
trying to prove the statement we need and just always say that `false` implies it in this case.
In practice it means that we are trying to prove something guarded by `false` condition,
which means that this code is unreachable, and we can safely prove any fact or perform any
transform in this code.
Differential Revision: https://reviews.llvm.org/D98706
Reviewed By: lebedev.ri
For Zvlsseg, we create several tuple register classes. When spilling for
these tuple register classes, we need to iterate NF times to load/store
these tuple registers.
Differential Revision: https://reviews.llvm.org/D98629
On ELF, we place the metadata sections (`__sancov_guards`, `__sancov_cntrs`,
`__sancov_bools`, `__sancov_pcs` in section groups (either `comdat any` or
`comdat noduplicates`).
With `--gc-sections`, LLD since D96753 and GNU ld `-z start-stop-gc` may garbage
collect such sections. If all `__sancov_bools` are discarded, LLD will error
`error: undefined hidden symbol: __start___sancov_cntrs` (other sections are similar).
```
% cat a.c
void discarded() {}
% clang -fsanitize-coverage=func,trace-pc-guard -fpic -fvisibility=hidden a.c -shared -fuse-ld=lld -Wl,--gc-sections
...
ld.lld: error: undefined hidden symbol: __start___sancov_guards
>>> referenced by a.c
>>> /tmp/a-456662.o:(sancov.module_ctor_trace_pc_guard)
```
Use the `extern_weak` linkage (lowered to undefined weak symbols) to avoid the
undefined error.
Differential Revision: https://reviews.llvm.org/D98903
We returned the input chain instead of the output chain from the
new load. This bypasses the load in the chain. I haven't found a
good way to test this yet. IR order prevents my initial attempts
at causing reordering.
This is only adding support to the dfsan instrumentation pass but not
to the runtime.
Added more RUN lines for testing: for each instrumentation test that
had a -dfsan-fast-16-labels invocation, a new invocation was added
using fast8.
Reviewed By: stephan.yichao.zhao
Differential Revision: https://reviews.llvm.org/D98734
This reverts commit 962b73dd0f.
This commit was reverted because of some internal SPEC test failures.
It turns out that this wasn't actually relevant to anything in open source, so
it's safe to recommit this.
This is the alternative approach to D96931.
In LTO, for each module with inlineasm block, prepend directive ".lto_discard <sym>, <sym>*" to the beginning of the inline
asm. ".lto_discard" is both a module inlineasm block marker and (optionally) provides a list of symbols to be discarded.
In MC while emitting for inlineasm, discard symbol binding & symbol
definitions according to ".lto_disard".
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D98762
This reverts commit 6b053c9867.
The build is broken:
ld.lld: error: undefined symbol: llvm::VPlan::printDOT(llvm::raw_ostream&) const
>>> referenced by LoopVectorize.cpp
>>> LoopVectorize.cpp.o:(llvm::LoopVectorizationPlanner::printPlans(llvm::raw_ostream&)) in archive lib/libLLVMVectorize.a
I foresee two uses for this:
1) It's easier to use those in debugger.
2) Once we start implementing more VPlan-to-VPlan transformations (especially
inner loop massaging stuff), using the vectorized LLVM IR as CHECK targets in
LIT test would become too obscure. I can imagine that we'd want to CHECK
against VPlan dumps after multiple transformations instead. That would be
easier with plain text dumps than with DOT format.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D96628
Updates the names (e.g. widen => extend, saturate => sat) and opcodes of all
SIMD instructions to match the finalized SIMD spec. Deliberately does not change
the public interface in wasm_simd128.h yet; that will require more care.
Depends on D98466.
Differential Revision: https://reviews.llvm.org/D98676
Removes the instruction definitions, intrinsics, and builtins for qfma/qfms,
signselect, and prefetch instructions, which were not included in the final
WebAssembly SIMD spec.
Depends on D98457.
Differential Revision: https://reviews.llvm.org/D98466
Now that the WebAssembly SIMD specification is finalized and engines are
generally up-to-date, there is no need for a separate target feature for gating
SIMD instructions that engines have not implemented. With this change,
v128.const is now enabled by default with the simd128 target feature.
Differential Revision: https://reviews.llvm.org/D98457