This fixes the miscompilation reported in https://reviews.llvm.org/rG5bb38e84d3d0#986154 .
`select _, true, false` matches both m_LogicalAnd and m_LogicalOr, making later
transformations confused.
Simplify the branch condition to not have the form.
Hello all,
I'm trying to fix unsafe propagation of poison values in and/or conditions by using
equivalent select forms (`select i1 A, i1 B, i1 false` and `select i1 A, i1 true, i1 false`)
instead.
D93065 has links to patches for this.
This patch allows unswitch to happen if the condition is in this form as well.
`collectHomogenousInstGraphLoopInvariants` is updated to keep traversal if
Root and the visiting I matches both m_LogicalOr()/m_LogicalAnd().
Other than this, the remaining changes are almost straightforward and simply replaces
Instruction::And/Or check with match(m_LogicalOr()/m_LogicalAnd()).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D97756
Some benchmarks regress with non-trivial unswitching, so add an option
to opt-out of performing non-trivial unswitching while investigating.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95796
From C11 and C++11 onwards, a forward-progress requirement has been
introduced for both languages. In the case of C, loops with non-constant
conditionals that do not have any observable side-effects (as defined by
6.8.5p6) can be assumed by the implementation to terminate, and in the
case of C++, this assumption extends to all functions. The clang
frontend will emit the `mustprogress` function attribute for C++
functions (D86233, D85393, D86841) and emit the loop metadata
`llvm.loop.mustprogress` for every loop in C11 or later that has a
non-constant conditional.
This patch modifies LoopDeletion so that only loops with
the `llvm.loop.mustprogress` metadata or loops contained in functions
that are required to make progress (`mustprogress` or `willreturn`) are
checked for observable side-effects. If these loops do not have an
observable side-effect, then we delete them.
Loops without observable side-effects that do not satisfy the above
conditions will not be deleted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86844
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This matches the legacy PM name and makes all tests in
Transforms/LoopSimplifyCFG pass under NPM.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87948
When getUserCost was transitioned to use an explicit CostKind,
TCK_CodeSize was used even though the original kind was implicitly
SizeAndLatency so restore this behaviour. We now only query for
CodeSize when optimising for minsize.
I expect this to not change anything as, I think all, targets will
currently return the same value for CodeSize and SizeLatency. Indeed
I see no changes in the test suite for Arm, AArch64 and X86.
Differential Revision: https://reviews.llvm.org/D85829
We can preserve make.implicit metadata in the split block if it is
guaranteed that after following the branch we always reach the block
where processing of null case happens, which is equivalent to
"initial condition must execute if the loop is entered".
Differential Revision: https://reviews.llvm.org/D84925
Reviewed By: asbirlea
Non-trivial unswitching simply moves terminator being unswitch from the loop
up to the switch block. It also preserves all metadata that was there. It might not
be a correct thing to do for `make.implicit` metadata. Consider case:
```
for (...) {
cond = // computed in loop
if (cond) return X;
if (p == null) throw_npe(); !make implicit
}
```
Before the unswitching, if `p` is null and we reach this check, we are guaranteed
to go to `throw_npe()` block. Now we unswitch on `p == null` condition:
```
if (p == null) !make implicit {
for (...) {
if (cond) return X;
throw_npe()
}
} else {
for (...) {
if (cond) return X;
}
}
```
Now, following `true` branch of `p == null` does not always lead us to
`throw_npe()` because the loop has side exit. Now, if we run ImplicitNullCheck
pass on this code, it may end up making the unswitch condition implicit. This may
lead us to turning normal path to `return X` into signal-throwing path, which is
not efficient.
Note that this does not happen during trivial unswitch: it guarantees that we do not
have side exits before condition being unswitched.
This patch fixes this situation by unconditional dropping of `make.implicit` metadata
when we perform non-trivial unswitch. We could preserve it if we could prove that the
condition always executes. This can be done as a follow-up.
Differential Revision: https://reviews.llvm.org/D84916
Reviewed By: asbirlea
To match NewPM pass name, and also for readability.
Also rename rpo-functionattrs -> rpo-function-attrs while we're here.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D84694
Currently if instructions defined in a block are used in unreachable
blocks and SimpleLoopUnswitch attempts deleting the block, it triggers
assertion "Uses remain when a value is destroyed!".
This patch fixes it by replacing all uses of instructions from BB with
undefs before BB deletion.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D80551
Summary:
Update check to include the check for unreachable.
Basic blocks ending in unreachable are special cased, as these blocks may be already unswitched. Before this patch this check is only done for the default destination.
The condition for the exit cases and the default case must be the same, because we should never leave edges from the switch instruction to a basic block that we are unswitching. In PR45355 we still have a remaining edge (that we're attempting to remove from the DT) because its the default edge to an unreachable-terminated block where we unswitch a case edge to that block.
Resolves PR45355.
Reviewers: chandlerc
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78279
Summary:
Update the check for the default exit block to not only check that the
terminator is not unreachable, but also check that unreachable block has
*only* the unreachable instruction.
Reviewers: chandlerc
Subscribers: hiraditya, uabelho, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78277
Summary:
Loop unswitch hoists branches on loop-invariant conditions. However, if this
condition is poison/undef and the branch wasn't originally reachable, loop
unswitch introduces UB (since the optimized code will branch on poison/undef and
the original one didn't)).
We fix this problem by freezing the condition to ensure we don't introduce UB.
We will now transform the following:
while (...) {
if (C) { A }
else { B }
}
Into:
C' = freeze(C)
if (C') {
while (...) { A }
} else {
while (...) { B }
}
This patch fixes the root cause of the following bug reports (which use the old loop unswitch, but can be reproduced with minor changes in the code and -enable-nontrivial-unswitch):
- https://llvm.org/bugs/show_bug.cgi?id=27506
- https://llvm.org/bugs/show_bug.cgi?id=31652
Reviewers: reames, majnemer, chenli, sanjoy, hfinkel
Reviewed By: reames
Subscribers: hiraditya, jvesely, nhaehnle, filcab, regehr, trentxintong, nlopes, llvm-commits, mzolotukhin
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D29015
SCEV caches the exiting blocks when computing exit counts. In
SimpleLoopUnswitch, we split the exit block of the loop to unswitch.
Currently we only invalidate the loop containing that exit block, but if
that block is the exiting block for a parent loop, we have stale cache
entries. We have to invalidate the top-most loop that contains the exit
block as exiting block. We might also be able to skip invalidating the
loop containing the exit block, if the exit block is not an exiting
block of that loop.
There are also 2 more places in SimpleLoopUnswitch, that use a similar
problematic approach to get the loop to invalidate. If the patch makes
sense, I will also update those places to a similar approach (they deal
with multiple exit blocks, so we cannot directly re-use
getTopMostExitingLoop).
Fixes PR43972.
Reviewers: skatkov, reames, asbirlea, chandlerc
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D70786
Summary:
Add a flag to the FunctionToLoopAdaptor that allows enabling MemorySSA only for the loop pass managers that are known to preserve it.
If an LPM is known to have only loop transforms that *all* preserve MemorySSA, then use MemorySSA if `EnableMSSALoopDependency` is set.
If an LPM has loop passes that do not preserve MemorySSA, then the flag passed is `false`, regardless of the value of `EnableMSSALoopDependency`.
When using a custom loop pass pipeline via `passes=...`, use keyword `loop` vs `loop-mssa` to use MemorySSA in that LPM. If a loop that does not preserve MemorySSA is added while using the `loop-mssa` keyword, that's an error.
Add the new `loop-mssa` keyword to a few tests where a difference occurs when enabling MemorySSA.
Reviewers: chandlerc
Subscribers: mehdi_amini, Prazek, george.burgess.iv, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66376
llvm-svn: 369548
Only instructions with two or more unique successors should be considered for unswitching.
Patch Author: Daniil Suchkov.
Reviewers: reames, asbirlea, skatkov
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64404
llvm-svn: 365611
This test exposes a bug in SimpleLoopUnswitch that leads to a crash on
assert(SuccessorsCount > 1 && "Cannot unswitch a condition without multiple distinct successors!");
when SimpleLoopUnswitch considers unswitching of a loop by a switch with one successor.
Fix will be submitted soon.
Patch Author: Daniil Suchkov.
Reviewers: reames, asbirlea, skatkov
Reviewed By: skatkov
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64403
llvm-svn: 365600
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Add '-k 1' to 'sort -b' calls in SimpleLoopUnswitch tests, as required
for sort implementation on NetBSD. The '-b' modifier is ineffective
if specified without any key. Per the manpage:
Note that the -b option has no effect unless key fields are specified.
Differential Revision: https://reviews.llvm.org/D55168
llvm-svn: 348097
We need to control exponential behavior of loop-unswitch so we do not get
run-away compilation.
Suggested solution is to introduce a multiplier for an unswitch cost that
makes cost prohibitive as soon as there are too many candidates and too
many sibling loops (meaning we have already started duplicating loops
by unswitching).
It does solve the currently known problem with compile-time degradation
(PR 39544).
Tests are built on top of a recently implemented CHECK-COUNT-<num>
FileCheck directives.
Reviewed By: chandlerc, mkazantsev
Differential Revision: https://reviews.llvm.org/D54223
llvm-svn: 347097
When partial unswitch operates on multiple conditions at once, .e.g:
if (Cond1 || Cond2 || NonInv) ...
it should infer (and replace) values for individual conditions only on one
side of unswitch and not another.
More precisely only these derivations hold true:
(Cond1 || Cond2) == false => Cond1 == Cond2 == false
(Cond1 && Cond2) == true => Cond1 == Cond2 == true
By the way we organize unswitching it means only replacing on "continue" blocks
and never on "unswitched" ones. Since trivial unswitch does not have "unswitched"
blocks it does not have this problem.
Fixes PR 39568.
Reviewers: chandlerc, asbirlea
Differential Revision: https://reviews.llvm.org/D54211
llvm-svn: 346350
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:
- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.
The patch has no compile time effect on code that does not contain any guards.
Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc
llvm-svn: 345387
Recent change to deleteDeadBlocksFromLoop was not enough to
fix all the problems related to dead blocks after nontrivial
unswitching of switches.
We need to delete all the dead blocks that were created during
unswitching, otherwise we will keep having problems with phi's
or dead blocks.
This change removes all the dead blocks that are reachable from the loop,
not trying to track whether these blocks are newly created by unswitching
or not. While not completely correct, we are unlikely to get loose but
reachable dead blocks that do not belong to our loop nest.
It does fix all the failures currently known, in particular PR38778.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D51519
llvm-svn: 341398
Summary:
Assert from PR38737 happens on the dead block inside the parent loop
after unswitching nontrivial switch in the inner loop.
deleteDeadBlocksFromLoop now takes extra care to detect/remove dead
blocks in all the parent loops in addition to the blocks from original
loop being unswitched.
Reviewers: asbirlea, chandlerc
Reviewed By: asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51415
llvm-svn: 340955
switch unswitching.
The core problem was that the way we handled unswitching trivial exit
edges through the default successor of a switch. For some reason
I thought the right way to do this was to add a block containing
unreachable and point the default successor at this block. In
retrospect, this has an amazing number of problems.
The first issue is the one that this pass has always worked around -- we
have to *detect* such edges and avoid unswitching them again. This
seemed pretty easy really. You juts look for an edge to a block
containing unreachable. However, this pattern is woefully unsound. So
many things can break it. The amazing thing is that I found a test case
where *simple-loop-unswitch itself* breaks this! When we do
a *non-trivial* unswitch of a switch we will end up splitting this exit
edge. The result will be a default successor that is an exit and
terminates in ... a perfectly normal branch. So the first test case that
I started trying to fix is added to the nontrivial test cases. This is
a ridiculous example that did just amazing things previously. With just
unswitch, it would create 10+ copies of this stuff stamped out. But if
you combine it *just right* with a bunch of other passes (like
simplify-cfg, loop rotate, and some LICM) you can get it to do this
infinitely. Or at least, I never got it to finish. =[
This, in turn, uncovered another related issue. When we are manipulating
these switches after doing a trivial unswitch we never correctly updated
PHI nodes to reflect our edits. As soon as I started changing how these
edges were managed, it became obvious there were more issues that
I couldn't realistically leave unaddressed, so I wrote more test cases
around PHI updates here and ensured all of that works now.
And this, in turn, required some adjustment to how we collect and manage
the exit successor when it is the default successor. That showed a clear
bug where we failed to include it in our search for the outer-most loop
reached by an unswitched exit edge. This was actually already tested and
the test case didn't work. I (wrongly) thought that was due to SCEV
failing to analyze the switch. In fact, it was just a simple bug in the
code that skipped the default successor. While changing this, I handled
it correctly and have updated the test to reflect that we now get
precise SCEV analysis of trip counts for the outer loop in one of these
cases.
llvm-svn: 336646
r335553 with the non-trivial unswitching of switches.
The code correctly updated most aspects of the CFG and analyses, but
missed some crucial aspects:
1) When multiple cases have the same successor, we unswitch that
a single time and replace the switch with a direct branch. The CFG
here is correct, but the target of this direct branch may have had
a PHI node with multiple entries in it.
2) When we still have to clone a successor of the switch into an
unswitched copy of the loop, we'll delete potentially multiple edges
entering this successor, not just one.
3) We also have to delete multiple edges entering the successors in the
original loop when they have to be retained.
4) When the "retained successor" *also* occurs as a case successor, we
just assert failed everywhere. This doesn't happen very easily
because its always valid to simply drop the case -- the retained
successor for switches is always the default successor. However, it
is likely possible through some contrivance of different loop passes,
unrolling, and simplifying for this to occur in practice and
certainly there is nothing "invalid" about the IR so this pass needs
to handle it.
5) In the case of #4, we also will replace these multiple edges with
a direct branch much like in #1 and need to collapse the entries in
any PHI nodes to a single enrty.
All of this stems from the delightful fact that the same successor can
show up in multiple parts of the switch terminator, and each of these
are considered a distinct edge for the purpose of PHI nodes (and
iterating the successors and predecessors) but not for unswitching
itself, the dominator tree, or many other things. For the record,
I intensely dislike this "feature" of the IR in large part because of
the complexity it causes in passes like this. We already have a ton of
logic building sets and handling duplicates, and we just had to add
a bunch more.
I've added a complex test case that covers all five of the above failure
modes. I've also added a variation on it where #4 and #5 occur in loop
exit, adding fun where we have an LCSSA PHI node with "multiple entries"
despite have dedicated exits. There were no additional issues found by
this, but it seems a useful corner case to cover with testing.
One thing that working on all of this code has made painfully clear for
me as well is how amazingly inefficient our PHI node representation is
(in terms of the in-memory data structures and the APIs used to update
them). This code has truly marvelous complexity bounds because every
time we remove an entry from a PHI node we do a linear scan to find it
and then a linear update to the data structure to remove it. We could in
theory batch all of the PHI node updates into a single linear walk of
the operands making this much more efficient, but the APIs fight hard
against this and the fact that we have to handle duplicates in the
peculiar manner we do (removing all but one in some cases) makes even
implementing that very tedious and annoying. Anyways, none of this is
new here or specific to loop unswitching. All code in LLVM that updates
PHI node operands suffers from these problems.
llvm-svn: 336536
after trivial unswitching.
This PR illustrates that a fundamental analysis update was not performed
with the new loop unswitch. This update is also somewhat fundamental to
the core idea of the new loop unswitch -- we actually *update* the CFG
based on the unswitching. In order to do that, we need to update the
loop nest in addition to the domtree.
For some reason, when writing trivial unswitching, I thought that the
loop nest structure cannot be changed by the transformation. But the PR
helps illustrate that it clearly can. I've expanded this to a number of
different test cases that try to cover the different cases of this. When
we unswitch, we move an exit edge of a loop out of the loop. If this
exit edge changes which loop reached by an exit is the innermost loop,
it changes the parent of the loop. Essentially, this transformation may
hoist the inner loop up the nest. I've added the simple logic to handle
this reliably in the trivial unswitching case. This just requires
updating LoopInfo and rebuilding LCSSA on the impacted loops. In the
trivial case, we don't even need to handle dedicated exits because we're
only hoisting the one loop and we just split its preheader.
I've also ported all of these tests to non-trivial unswitching and
verified that the logic already there correctly handles the loop nest
updates necessary.
Differential Revision: https://reviews.llvm.org/D48851
llvm-svn: 336477
unswitching loops.
Original patch trying to address this was sent in D47624, but that
didn't quite handle things correctly. There are two key principles used
to select whether and how to invalidate SCEV-cached information about
loops:
1) We must invalidate any info SCEV has cached before unswitching as we
may change (or destroy) the loop structure by the act of unswitching,
and make it hard to recover everything we want to invalidate within
SCEV.
2) We need to invalidate all of the loops whose CFGs are mutated by the
unswitching. Notably, this isn't the *entire* loop nest, this is
every loop contained by the outermost loop reached by an exit block
relevant to the unswitch.
And we need to do this even when doing trivial unswitching.
I've added more focused tests that directly check that SCEV starts off
with imprecise information and after unswitching (and simplifying
instructions) re-querying SCEV will produce precise information. These
tests also specifically work to check that an *outer* loop's information
becomes precise.
However, the testing here is still a bit imperfect. Crafting test cases
that reliably fail to be analyzed by SCEV before unswitching and succeed
afterward proved ... very, very hard. It took me several hours and
careful work to build these, and I'm not optimistic about necessarily
coming up with more to cover more elaborate possibilities. Fortunately,
the code pattern we are testing here in the pass is really
straightforward and reliable.
Thanks to Max Kazantsev for the initial work on this as well as the
review, and to Hal Finkel for helping me talk through approaches to test
this stuff even if it didn't come to much.
Differential Revision: https://reviews.llvm.org/D47624
llvm-svn: 336183
unswitching of switches.
This works much like trivial unswitching of switches in that it reliably
moves the switch out of the loop. Here we potentially clone the entire
loop into each successor of the switch and re-point the cases at these
clones.
Due to the complexity of actually doing nontrivial unswitching, this
patch doesn't create a dedicated routine for handling switches -- it
would duplicate far too much code. Instead, it generalizes the existing
routine to handle both branches and switches as it largely reduces to
looping in a few places instead of doing something once. This actually
improves the results in some cases with branches due to being much more
careful about how dead regions of code are managed. With branches,
because exactly one clone is created and there are exactly two edges
considered, somewhat sloppy handling of the dead regions of code was
sufficient in most cases. But with switches, there are much more
complicated patterns of dead code and so I've had to move to a more
robust model generally. We still do as much pruning of the dead code
early as possible because that allows us to avoid even cloning the code.
This also surfaced another problem with nontrivial unswitching before
which is that we weren't as precise in reconstructing loops as we could
have been. This seems to have been mostly harmless, but resulted in
pointless LCSSA PHI nodes and other unnecessary cruft. With switches, we
have to get this *right*, and everything benefits from it.
While the testing may seem a bit light here because we only have two
real cases with actual switches, they do a surprisingly good job of
exercising numerous edge cases. Also, because we share the logic with
branches, most of the changes in this patch are reasonably well covered
by existing tests.
The new unswitch now has all of the same fundamental power as the old
one with the exception of the single unsound case of *partial* switch
unswitching -- that really is just loop specialization and not
unswitching at all. It doesn't fit into the canonicalization model in
any way. We can add a loop specialization pass that runs late based on
profile data if important test cases ever come up here.
Differential Revision: https://reviews.llvm.org/D47683
llvm-svn: 335553