The current design allows that the object file contents could be mapped
by one object file plugin and then used by another. Presumably the idea
here was to avoid mapping the same file twice.
This becomes an issue when one object file plugin wants to map the file
differently from the others. For example, ObjectFileELF needs to map its
memory as writable while others likeObjectFileMachO needs it to be
mapped read-only.
This patch prevents plugins from changing the buffer by passing them is
by value rather than by reference.
Differential revision: https://reviews.llvm.org/D122944
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
This is a retry of the original patch https://reviews.llvm.org/D113965 which was reverted. There was a deadlock in the Manual DWARF indexing code during symbol preloading where the module was asked on the main thread to preload its symbols, and this would in turn cause the DWARF manual indexing to use a thread pool to index all of the compile units, and if there were relocations on the debug information sections, these threads could ask the ObjectFile to load section contents, which could cause a call to ObjectFileELF::RelocateSection() which would ask for the symbol table from the module and it would deadlock. We can't lock the module in ObjectFile::GetSymtab(), so the solution I am using is to use a llvm::once_flag to create the symbol table object once and then lock the Symtab object. Since all APIs on the symbol table use this lock, this will prevent anyone from using the symbol table before it is parsed and finalized and will avoid the deadlock I mentioned. ObjectFileELF::GetSymtab() was never locking the module lock before and would put off creating the symbol table until somewhere inside ObjectFileELF::GetSymtab(). Now we create it one time inside of the ObjectFile::GetSymtab() and immediately lock it which should be safe enough. This avoids the deadlocks and still provides safety.
Differential Revision: https://reviews.llvm.org/D114288
This reverts commit 951b107eed.
Buildbots were failing, there is a deadlock in /Users/gclayton/Documents/src/llvm/clean/llvm-project/lldb/test/Shell/SymbolFile/DWARF/DW_AT_range-DW_FORM_sec_offset.s when ELF files try to relocate things.
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
Differential Revision: https://reviews.llvm.org/D113965
This patch deals with ObjectFile, ObjectContainer and OperatingSystem
plugins. I'll convert the other types in separate patches.
In order to enable piecemeal conversion, I am leaving some ConstStrings
in the lowest PluginManager layers. I'll convert those as the last step.
Differential Revision: https://reviews.llvm.org/D112061
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
LLDB has a few different styles of header guards and they're not very
consistent because things get moved around or copy/pasted. This patch
unifies the header guards across LLDB and converts everything to match
LLVM's style.
Differential revision: https://reviews.llvm.org/D74743
This patch has a couple of outstanding issues. The test is not python3
compatible, and it also seems to fail with python2 (at least under some
circumstances) due to an overambitious assertion.
This reverts the patch as well as subsequent fixup attempts:
014ea93376,
f5f70d1c8f.
4697e701b8.
5c15e8e682.
3ec28da6d6.
Summary:
This is the first in a series of patches to enable LLDB debugging of
WebAssembly targets.
Current versions of Clang emit (partial) DWARF debug information in WebAssembly
modules and we can leverage this debug information to give LLDB the ability to
do source-level debugging of Wasm code that runs in a WebAssembly engine.
A way to do this could be to use the remote debugging functionalities provided
by LLDB via the GDB-remote protocol. Remote debugging can indeed be useful not
only to connect a debugger to a process running on a remote machine, but also to
connect the debugger to a managed VM or script engine that runs locally,
provided that the engine implements a GDB-remote stub that offers the ability to
access the engine runtime internal state.
To make this work, the GDB-remote protocol would need to be extended with a few
Wasm-specific custom query commands, used to access aspects of the Wasm engine
state (like the Wasm memory, Wasm local and global variables, and so on).
Furthermore, the DWARF format would need to be enriched with a few Wasm-specific
extensions, here detailed: https://yurydelendik.github.io/webassembly-dwarf.
This CL introduce classes **ObjectFileWasm**, a file plugin to represent a Wasm
module loaded in a debuggee process. It knows how to parse Wasm modules and
store the Code section and the DWARF-specific sections.
Reviewers: jasonmolenda, clayborg, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71575