This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.
r175673 changed repairIntervalsInRange to find anchoring end points for
ranges automatically, but the calculation of Begin included the first
instruction found that already had an index. This patch changes it to
exclude that instruction:
1. For symmetry, so that the half open range [Begin,End) only includes
instructions that do not already have indexes.
2. As a possible performance improvement, since repairOldRegInRange
will scan fewer instructions.
3. Because repairOldRegInRange hits assertion failures in some cases
when it sees a def that already has a live interval.
(3) fixes about ten tests in the CodeGen lit test suite when
-early-live-intervals is forced on.
Differential Revision: https://reviews.llvm.org/D110182
After D82916 `updateAllRanges()` started to fix holes in main range with
subranges but it fails on instructions with two subregs def which are parts of
one reg. The main range constructed with //all// subranges of subregs just after
processing the first operand. So the main range gets intervals from subranges
those are not updated yet.
The patch takes into account lane mask to update the main range.
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D128553
When evicting interference, it causes an asseertion error
since LiveIntervals::intervalIsInOneMBB assumes that input
is not empty.
This patch fixed bug mentioned in D118020.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D118124
Add an optional bool RemoveDeadValNo argument to the
removeSegment(iterator) overload, for consistency with the other
overloads. This gives clients a way to remove dead valnos while also
getting an updated iterator returned (in the manner of vector::erase).
Use this to clean up some inefficient code in
LiveIntervals::repairOldRegInRange. NFC.
Differential Revision: https://reviews.llvm.org/D110560
If the old instructions mentioned a subreg that the new instructions do
not, remove the subrange for that subreg.
For example, in TwoAddressInstructionPass::eliminateRegSequence, if a
use operand in the REG_SEQUENCE has the undef flag then we don't
generate a copy for it so after the elimination there should be no live
interval at all for the corresponding subreg of the def.
This is a small step towards switching TwoAddressInstructionPass over
from LiveVariables to LiveIntervals. Currently this path is only tested
if you explicitly enable -early-live-intervals.
Differential Revision: https://reviews.llvm.org/D110542
In repairIntervalsInRange, if the new instructions refer to subregs but
the old instructions did not, make sure any existing live interval for
the superreg is updated to have subranges. Also skip repairing any range
that we have recalculated from scratch, partly for efficiency but also
to avoids some cases that repairOldRegInRange can't handle.
The existing test/CodeGen/AMDGPU/twoaddr-regsequence.mir provides some
test coverage for this change: when TwoAddressInstructionPass converts
REG_SEQUENCE into subreg copies, the live intervals will now get
subranges and MachineVerifier will verify that the subranges are
correct. Unfortunately MachineVerifier does not complain if the
subranges are not present, so the test also passed before this patch.
This patch also fixes ~800 of the ~1500 failures in the whole CodeGen
lit test suite when -early-live-intervals is forced on.
Differential Revision: https://reviews.llvm.org/D110328
The fix applied in D23303 "LiveIntervalAnalysis: fix a crash in repairOldRegInRange"
was over-zealous. It would bail out when the end of the range to be
repaired was in the middle of the first segment of the live range of
Reg, which was always the case when the range contained a single def of
Reg.
This patch fixes it as suggested by Matthias Braun in post-commit review
on the original patch, and tests it by adding -early-live-intervals to
a selection of existing lit tests that now pass.
(Note that D23303 was originally applied to fix a crash in
SILoadStoreOptimizer, but that is now moot since D23814 updated
SILoadStoreOptimizer to run before scheduling so it no longer has to
update live intervals.)
Differential Revision: https://reviews.llvm.org/D110238
Unrevert with some changes to the tests:
- Add -verify-machineinstrs to check for remaining problems in live
interval support in TwoAddressInstructionPass.
- Drop test/CodeGen/AMDGPU/extract-load-i1.ll since it suffers from
some of those remaining problems.
The fix applied in D23303 "LiveIntervalAnalysis: fix a crash in repairOldRegInRange"
was over-zealous. It would bail out when the end of the range to be
repaired was in the middle of the first segment of the live range of
Reg, which was always the case when the range contained a single def of
Reg.
This patch fixes it as suggested by Matthias Braun in post-commit review
on the original patch, and tests it by adding -early-live-intervals to
a selection of existing lit tests that now pass.
(Note that D23303 was originally applied to fix a crash in
SILoadStoreOptimizer, but that is now moot since D23814 updated
SILoadStoreOptimizer to run before scheduling so it no longer has to
update live intervals.)
Differential Revision: https://reviews.llvm.org/D110238
AMDGPU normally spills SGPRs to VGPRs. Previously, since all register
classes are handled at the same time, this was problematic. We don't
know ahead of time how many registers will be needed to be reserved to
handle the spilling. If no VGPRs were left for spilling, we would have
to try to spill to memory. If the spilled SGPRs were required for exec
mask manipulation, it is highly problematic because the lanes active
at the point of spill are not necessarily the same as at the restore
point.
Avoid this problem by fully allocating SGPRs in a separate regalloc
run from VGPRs. This way we know the exact number of VGPRs needed, and
can reserve them for a second run. This fixes the most serious
issues, but it is still possible using inline asm to make all VGPRs
unavailable. Start erroring in the case where we ever would require
memory for an SGPR spill.
This is implemented by giving each regalloc pass a callback which
reports if a register class should be handled or not. A few passes
need some small changes to deal with leftover virtual registers.
In the AMDGPU implementation, a new pass is introduced to take the
place of PrologEpilogInserter for SGPR spills emitted during the first
run.
One disadvantage of this is currently StackSlotColoring is no longer
used for SGPR spills. It would need to be run again, which will
require more work.
Error if the standard -regalloc option is used. Introduce new separate
-sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be
controlled individually. PBQB is not currently supported, so this also
prevents using the unhandled allocator.
This is a cleanup patch -- we're now able to support all flavours of
variable location in instruction referencing mode. This patch updates
various tests for debug instructions to be broader: numerous code paths
try to ignore debug isntructions, and they now have to ignore the
additional DBG_PHI and DBG_INSTR_REFs that we can generate.
A small amount of rework happens for LiveDebugVariables: as we don't need
to track live intervals through regalloc any more, we can get away with
unlinking debug instructions before regalloc, then re-inserting them after.
Note that this isn't (yet) true of DBG_VALUE_LISTs, they still have to go
through live interval tracking.
In SelectionDAG, add a helper lambda that emits half-formed DBG_INSTR_REFs
for arguments in instr-ref mode, DBG_VALUE otherwise. This is one of the
final locations where DBG_VALUEs are emitted for vreg arguments.
X86InstrInfo now un-sets the debug instr number on SUB instructions that
get mutated into CMP instructions. As the instruction no longer computes a
subtraction, we can't use it for variable locations.
Differential Revision: https://reviews.llvm.org/D88898
Pseudo probe are currently given a slot index like other regular instructions. This affects register pressure and lifetime weight computation because of enlarged lifetime length with pseudo probe instructions. As a consequence, program could get different code generated w/ and w/o pseudo probes. I'm closing the gap by excluding pseudo probes from stack index and downstream register allocation related passes.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100334
Statepoint instruction has a deopt section which is actually live-through the call.
Currently this is handled by special post pass after RA - fixup-statepoint-caller-saved.
This change teaches Greedy RA that if segment of live interval is ended with statepoint
instruction and its reg is used in deopt bundle then this live interval interferes regmask of this statepoint
and as a result caller-saved register cannot be assigned to this live interval.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100296
VirtRegRewriter may sometimes fail to correctly apply the kill flag where necessary,
which causes unecessary code gen on PowerPC. This patch fixes the way masks for
defined lanes are computed and the way mask for used lanes is computed.
Contact albion.fung@ibm.com instead of author for problems related to this commit.
Differential Revision: https://reviews.llvm.org/D92405
Previous code build the model that tile config register is the user of
each AMX instruction. There is a problem for the tile config register
spill. When across function, the ldtilecfg instruction may be inserted
on each AMX instruction which use tile config register. This cause all
tile data register clobber.
To fix this issue, we remove the model of tile config register. We
analyze the regmask of call instruction and insert ldtilecfg if there is
any tile data register live across the call. Inserting the sttilecfg
before the call is unneccessary, because the tile config doesn't change
and we can just reload the config.
Besides we also need check tile config register interference. Since we
don't model the config register we should check interference from the
ldtilecfg to each tile data register def.
ldtilecfg
/ \
BB1 BB2
/ \
call BB3
/ \
%1=tileload %2=tilezero
We can start from the instruction of each tile def, and backward to
ldtilecfg. If there is any call instruction, and tile data register is
not preserved, we should insert ldtilecfg after the call instruction.
Differential Revision: https://reviews.llvm.org/D94155
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
Unwinders may only preserve the lower 64bits of Neon and SVE registers,
as only the registers in the base ABI are guaranteed to be preserved
over the exception edge. The caller will need to preserve additional
registers for when the call throws an exception and the unwinder has
tried to recover state.
For e.g.
svint32_t bar(svint32_t);
svint32_t foo(svint32_t x, bool *err) {
try { bar(x); } catch (...) { *err = true; }
return x;
}
`z0` needs to be spilled before the call to `bar(x)` and reloaded before
returning from foo, as the exception handler may have clobbered z0.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84737
Clarify the relation between a block's BlockFrequency and the
getEntryFreq() API, and added an API for the relatively common case of
finding a block's frequency relative to the entrypoint.
Added / moved some comments to header.
Differential Revision: https://reviews.llvm.org/D84357
handleMoveDown or handleMoveUp cannot properly repair a main
range of a LiveInterval since they only get LiveRange. There
is a problem if certain use has moved few segments away and
there is a hole in the main range in between of these two
locations. We may get a SubRange with a very extended Segment
spanning several Segments of the main range and also spanning
that hole. If that happens then we end up with the main range
not covering its SubRange which is an error.
It might be possible to attempt fixing the main range in place
just between of the old and new index by extending all of its
Segments in between, but it is unclear this logic will be
faster than just straight constructMainRangeFromSubranges,
which itself is pretty cheap since it only contains interval
logic. That will also require shrinkToUses() call after which
is probably even more expensive.
In the test second move is from 64B to 92B for the sub1.
Subrange is correctly fixed:
L000000000000000C [16r,32B:0)[32B,92r:1) 0@16r 1@32B-phi
But the main range has a hole in between 80d and 88r after
updateRange():
%1 [16r,32B:0)[32B,80r:4)[80r,80d:3)[88r,96r:1)[96r,160B:2)
Since source position is 64B this segment is not even considered
by the updateRange().
Differential Revision: https://reviews.llvm.org/D82916
Without this fix, handleMoveUp can create an invalid live range like
this:
[98904e,98908r:0)[98908e,227504r:1)
where the two segments overlap, but only because we have lost the "e"
(early-clobber) on the end point of the first segment.
Differential Revision: https://reviews.llvm.org/D82110
Summary:
The current handleMoveIntoBundle implementation is unusable,
it attempts to access the slot indexes of bundled instructions.
It also leaves bundled instructions with slot indexes assigned.
Replace handleMoveIntoBundle this with a more explicit
handleMoveIntoNewBundle function which recalculates the live
intervals for all instructions moved into a newly formed bundle,
and removes slot indexes from these instructions.
Reviewers: arsenm, MaskRay, kariddi, tpr, qcolombet
Reviewed By: qcolombet
Subscribers: MatzeB, wdng, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77969
Summary:
Refactor LiveRangeCalc such that it is now split into two classes
The objective is to split all the "register specific" logic away
from LiveRangeCalc.
The two new classes created are:
- LiveRangeCalc - is meant as a generic class to compute and modify
live ranges in a generic way. This class should deal only with
SlotIndices and VNInfo objects.
- LiveIntervalCals - is meant to be equivalent to the old LiveRangeCalc.
It computes the liveness virtual registers tracked by a LiveInterval
object.
With this refactoring LiveRangeCalc can be used to implement tracking of
liveness of LiveRanges that represent other things than just registers.
Subscribers: MatzeB, qcolombet, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76584
This patch turns MachineOperandIteratorBase into a regular forward
iterator, which can be used with iterator_range.
It also adds mi_bundle_ops and const_mi_bundle_ops that return iterator
ranges over all operands in a bundle and updates a use of the old
iterator.
Reviewers: evandro, t.p.northover, paquette, MatzeB, arsenm
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D70561
This is a follow-up to D67448.
Split live intervals with multiple dead defs during the initial
execution of the live interval analysis, but do it outside of the
function createAndComputeVirtRegInterval.
Differential Revision: https://reviews.llvm.org/D68666
If a subregister def was moved across another subregister def and
another use, the main range was not correctly updated. The end point
of the moved interval ended too early and missed the use from theh
other lanes in the subreg def.
llvm-svn: 375300
If there are multiple dead defs of the same virtual register, these
are required to be split into multiple virtual registers with separate
live intervals to avoid a verifier error.
llvm-svn: 371640
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
The top-level BUNDLE instruction should behave as an ordinary
instruction. It is supposed to have all relevant registers as implicit
operands. Moving it should work as any other instruction. I believe
the assert intended to avoid moving instructions inside bundles.
llvm-svn: 366605
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636