Make the range check more precise by calculating the range of
potentially accessed bytes for both accesses and checking whether
their intersection is empty. In that case there can be no overlap
between the accesses and the result is NoAlias.
This is more powerful than the previous approach, because it can
deal with sign-wrapped ranges. In the test case the original range
is [-1, INT_MAX] but becomes [0, INT_MIN] after applying the offset.
This is a wrapping range, so getSignedMin/getSignedMax will treat
it as a full range. However, the range excludes the elements
[INT_MIN+1, -1], which is enough to prove NoAlias with an access
at offset -1.
Differential Revision: https://reviews.llvm.org/D112486
D109746 made BasicAA use range information to determine the
minimum/maximum GEP offset. However, it was limited to the case of
a single variable index. This patch extends support to multiple
indices by adding all the ranges together.
Differential Revision: https://reviews.llvm.org/D112378
The information can be implicit (from `ValueTracking`) or explicit.
This implements the backend part of the following RFC
https://groups.google.com/g/llvm-dev/c/T9o51zB1JY.
We still need to settle on how to best represent the information in the
IR, but this is a separate discussion.
Differential Revision: https://reviews.llvm.org/D109746